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Abstract—This paper considers the existence of the gener-
alized solution to the initial vale problem for a generalized
Zakharov equation in dimension two. By a priori integral
estimates and the Galerkin method, one can arrive at the global
generalized solution to the problem.

Index Terms—generalized solution, generalized Zakharov
equations, initial value problem, Zakharov equations.

I. Introduction

THE Zakharov equations, derived by Zakharov in 1972
[1], describes the propagation of Langmuir waves in an

unmagnetized plasma. The usual Zakharov system defined in
space time Rd+1 is given by

iEt + ∆E = nE,

ntt − ∆n = ∆ |E|2 ,

where E : Rd+1 → Cd is the slowly varying amplitude of the
high-frequency electric field, and n : Rd+1 → R denotes the
fluctuation of the ion-density from its equilibrium.

This system attracted the wide interest of many scientists
[2]-[10]. In [7], Dem zo. Jahrestag der DDR gewidmet
studied the following generalized Zakharov system, and
established the global existence for the Cauchy problem.

iεt + εxx + (α − n)ε = 0,

vt +

(
1
2

v2 − βvx + n + |E|2
)

x
= 0,

nt + vx = 0.

In this paper, we are interested in the following generalized
Zakharov system.

iεt + ∆ε − nε = 0, (1)

vt +

2∑
j=1

∂

∂x j
gradϕ(v) − ∆v + ∇

(
n + |E|2

)
= 0, (2)

nt + ∇ · v = 0, (3)

with initial data

ε|t=0 = ε0(x), v|t=0 = v0(x), n|t=0 = n0(x), (4)

where ε(x, t) = (ε1(x, t), ε2(x, t), · · · , εN(x, t)) is an N-
dimensional complex valued unknown functional vector,
v(x, t) = (v1(x, t), v2(x, t)) is a 2-dimensional real-valued
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unknown functional vector, n(x, t) is a real-valued unknown
function, ϕ(s) is a real function, and x ∈ R2, t ≥ 0.

We study the generalized Zakharov system in dimension
two with the initial data. First, a priori estimates of the
problem is made. Next, using the Galerkin method, the
global generalized solution of the problem is shown. In fact,
nonlinear partial differential equations have also been studied
by others using different approaches, as seen in [14]-[39].
The main results of this paper are as follows.

Theorem 1. Suppose that

(1) ε0(x) ∈ H1(R2), v0(x) ∈ L2(R2), n0(x) ∈ L2(R2),

(2) ϕ(s) ∈ C2, ϕ(0) = 0.

(3) ‖ε0(x)‖2L2 < σ ‖ψ(x)‖2L2 ,

(4)
∣∣∣gradϕ(s)

∣∣∣ ≤ C (|s| + 1) .

where 0 < σ < 1, ψ(x) is a solution of the equation

∆ψ − ψ + ψ3 = 0.

Then there is the global generalized solution of the initial
problem (1)-(4).

ε(x, t) ∈ L∞(R+; H1) ∩W1,∞(R+; H−1),

v(x, t) ∈ L∞(R+; L2) ∩W1,∞(R+; H−2),

n(x, t) ∈ L∞(R+; L2) ∩W1,∞(R+; H−1),

For the sake of convenience of the following contexts, we
set some notations. For 1 ≤ q ≤ ∞, we denote Lq(Rd) the
space of all q times integrable functions in Rd equipped with
norm ‖·‖Lq(Rd) or simply ‖·‖Lq and Hs,p(Rd) the Sobolev space
with norm ‖ · ‖Hs,p(Rd). If p = 2, we write Hs(Rd) instead of
Hs,2(Rd). Let ( f , g) =

∫
Rn f (x)·g(x)dx, where g(x) denotes the

complex conjugate function of g(x). We use C to represent
various constants that can depend on the initial data.

This paper is organized as follows. In Section II, we make
a priori estimates of the problem (1)-(4). In Section III, we
establish the global generalized solution of the problem (1)-
(4) by the Galerkin method.

II. A PRIORI ESTIMATES

In this section, we will derive a priori estimates for the
solution of the system (1)-(4).

Lemma 1. Suppose that ε0(x) ∈ L2(R2). Then for the
solution of problem (1)-(4), we have

‖ε(x, t)‖2L2(R2) = ‖ε0(x)‖2L2(R2) .

Proof: Taking the inner product of (1) and ε, it follows
that

(iεt + ∆ε − nε, ε) = 0. (5)
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and since

Im (iεt, ε) =
1
2

d
dt
‖ε‖2L2 ,

Im (∆ε − nε, ε) = 0,

hence from (5), we get

d
dt
‖ε(x, t)‖2L2 = 0.

We thus get Lemma 1.

Lemma 2. Supposing that

(1) ε0(x) ∈ H1(R2), v0(x) ∈ L2(R2), n0(x) ∈ L2(R2),

(2) ϕ(s) ∈ C2, ϕ(0) = 0.

Then we have

F (t) +

∫ t

0
‖∇v(x, τ)‖2L2 dτ = F (0).

where

F (t) =
1
2
‖v‖2L2 +

1
2
‖n‖2L2 + ‖∇ε‖2L2 +

∫
R2

n |ε|2 dx.

Proof: Taking the inner products of (2) and v, it follows
that vt +

2∑
j=1

∂

∂x j
gradϕ(v) − ∆v + ∇

(
n + |E|2

)
, v

 = 0. (6)

And since

(vt, v) =
1
2

d
dt
‖v‖2L2 , (−∆v, v) = ‖∇v‖2L2 ,

 2∑
j=1

∂

∂x j
gradϕ(v), v

 = −

2∑
j=1

(
gradϕ(v),

∂v
∂x j

)

= −

2∑
j=1

((
gradϕ(v)

)
x j
, 1

)
= 0,

(∇n, v) = − (n, ∇ · v) = (n, nt) =
1
2

d
dt
‖n‖2L2 ,

(
∇ |ε|2 , v

)
= −

(
|ε|2 , ∇ · v

)
=

(
|ε|2 , nt

)
=

∫
R2

nt |ε|
2dx,

thus from (6) it follows that

1
2

d
dt

(
‖v‖2L2 + ‖n‖2L2

)
+ ‖∇v‖2L2 +

∫
R2

nt |ε|
2dx = 0. (7)

Taking the inner products of (1) and −εt, it follows that

(iεt + ∆ε − nε, −εt) = 0. (8)

And since

Re (iεt, −εt) = 0,

Re (∆ε, −εt) = Re (∇ε, ∇εt) =
1
2

d
dt
‖∇ε‖2L2 ,

Re (−nε, −εt) =
1
2

∫
R2

n
(
|ε|2

)
t
dx

=
1
2

d
dt

∫
R2

n|ε|2dx −
1
2

∫
R2

nt |ε|
2dx.

Thus from (8) it follows that

1
2

d
dt

(
‖∇ε‖2L2 +

∫
R2

n|ε|2dx
)
−

1
2

∫
R2

nt |ε|
2dx = 0. (9)

Hence from (7) and (9), we get

d
dt

(
1
2
‖v‖2L2 +

1
2
‖n‖2L2 + ‖∇ε‖2L2 +

∫
R2

n|ε|2dx
)

+ ‖∇v‖2L2 = 0.

Letting

F (t) =
1
2
‖v‖2L2 +

1
2
‖n‖2L2 + ‖∇ε‖2L2 +

∫
R2

n|ε|2dx.

It follows that

F (t) +

∫ t

0
‖∇v(x, τ)‖2L2 dτ = F (0).

Lemma 3 (Gagliardo-Nirenberg inequality [11]). Assume
that u ∈ Lq(Rn), Dmu ∈ Lr(Rn),1 ≤ q, r ≤ ∞, 0 ≤ j ≤ m,
we have the estimations

‖D ju‖Lp(Rn) ≤ C‖Dmu‖αLr(Rn)‖u‖
1−α
Lq(Rn),

where C is a positive constant, 0 ≤ j
m ≤ α ≤ 1,

1
p

=
j
n

+ α

(
1
r
−

m
n

)
+ (1 − α)

1
q
.

Lemma 4 (Sobolev’s best constant estimates [12]). Suppose
that f (x) ∈ H1(RN). Then we have

‖ f ‖2p+2
L2p+2(RN ) ≤ C2p+2

p,N ‖∇ f ‖pN
L2(RN )‖ f ‖

2+p(2−N)
L2(RN ) ,

0 < p <
2

N − 2
, N ≥ 2,

where the constant

Cp,N =

 p + 1

‖ψ‖
2p
L2(RN )


1

2p+2

and ψ(x) is a ground state solution for the equation
pN
2

∆ψ −
(
1 +

p
2

(2 − N)
)
ψ + ψ2p+1 = 0. (10)

Obviously, the solution of equation (10) exists, and ψ(x) , 0.

Lemma 5. Supposing that the conditions of Lemma 2 are
satisfied and

‖ε0(x)‖2L2 < σ ‖ψ(x)‖2L2 ,

where 0 < σ < 1, ψ is a solution of the equation

∆ψ − ψ + ψ3 = 0.

Then we have

‖∇ε‖22 + ‖n‖22 + ‖v‖22 +

∫ t

0
‖∇v(x, τ)‖2L2 dτ ≤ C.

Proof: By Hölder inequality and Young inequality, there
holds ∣∣∣∣∣∫

R2
n |ε|2 dx

∣∣∣∣∣ ≤ ‖n‖L2‖ε‖2L4

≤
σ

2
‖n‖2L2 +

1
2σ
‖ε‖4L4 . (11)

Using Gagliardo-Nirenberg inequality and Lemma 4, we
write

‖ε‖4L4 ≤
2
‖ψ‖2L2

‖∇ε‖2L2‖ε‖
2
L2 . (12)
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Note that Lemma 2 and Equations (11), (12), one has

1
2
‖v‖2L2 +

1 − σ
2
‖n‖2L2 +

1 − ‖ε0‖
2
L2

σ‖ψ‖2L2

 ‖∇ε‖2L2

+

∫ t

0
‖∇v(x, τ)‖2L2 dτ ≤ |F (0)|.

Note that ‖ε0(x)‖2L2 < σ‖ψ(x)‖2L2 and 0 < σ < 1, we thus get
Lemma 5.

Lemma 6. Supposing that the conditions of Lemma 5 are
satisfied and

∣∣∣gradϕ(s)
∣∣∣ ≤ C (|s| + 1). Then we have

‖εt‖H−1 + ‖vt‖H−2 + ‖nt‖H−1 ≤ C.

Proof: Taking the inner product of Eq. (1) and Φ, Eq.
(2) and Γ, Eq. (3) and η, it follows that

(iεt + ∆ε − nε, Φ) = 0, (13)vt +

2∑
j=1

∂

∂x j
gradϕ(v) − ∆v + ∇

(
n + |E|2

)
, Γ

 = 0, (14)

(nt + ∇ · v, η) = 0, (15)

where η, η j, ζk ∈ H2
0 ( j = 1, · · · ,N, k = 1, 2), Φ =

(η1, · · · , ηN), Γ = (ζ1, ζ2).
By Hölder inequality, it follows from Eq. (13) that

|(εt,Φ)| ≤ |(∆ε,Φ)| + |(nε,Φ)|
= |(∇ε,∇Φ)| + |(nε,Φ)|
≤ ‖∇ε‖L2 ‖∇Φ‖L2 + ‖n‖L2 ‖ε‖L4 ‖Φ‖L4 . (16)

By Gagliardo-Nirenberg inequality, we know that

‖ε‖L4 ≤ C‖∇ε‖
1
2

L2‖ε‖
1
2

L2 ≤ C, (17)

‖Φ‖L4 ≤ C‖∇Φ‖
1
2

L2‖Φ‖
1
2

L2 ≤ C (‖∇Φ‖L2 + ‖Φ‖L2 ) .

Hence from Eq. (16) we get

|(εt,Φ)| ≤ C‖Φ‖H1
0
. (18)

Using Hölder inequality, from Eq. (14), there is

|(vt, Γ)| ≤

∣∣∣∣∣∣∣∣
 2∑

j=1

∂

∂x j
gradϕ(v), Γ


∣∣∣∣∣∣∣∣ + |(∆v, Γ)|

+
∣∣∣∣(∇ (

n + |E|2
)
, Γ

)∣∣∣∣
=

∣∣∣∣∣∣∣∣
2∑

j=1

(
gradϕ(v),

∂Γ

∂x j

)∣∣∣∣∣∣∣∣ + |(v, ∆Γ)|

+
∣∣∣∣(n + |E|2 , ∇ · Γ

)∣∣∣∣
≤ C (‖v‖L2 + 1) ‖Γ‖H1

0
+ ‖v‖L2 ‖∆Γ‖L2

+ ‖n‖L2 ‖∇ · Γ‖L2 + ‖ε‖2L4 ‖∇ · Γ‖L2 . (19)

From Eq. (17) and (19) we get

|(vt, Γ)| ≤ C ‖Γ‖H2
0
. (20)

From Eq. (15) and Hölder inequality, we have

|(nt, η)| = |(∇ · v, η)| = |(v,∇η)|
≤ ‖v‖L2 ‖∇η‖L2 ≤ C‖η‖H1

0
. (21)

Hence from (18), (20) and (21), we obtain

‖εt‖H−1 + ‖vt‖H−2 + ‖nt‖H−1 ≤ C.

III. THE EXISTENCE OF GLOBAL GENERALIZED
SOLUTION

In this section, we formulate the proof of Theorem 1. First
we give the definition of generalized solution for problems
(1)-(4).

Definition 1. The functions

εm(x, t) ∈ L∞(R+; H1) ∩W1,∞(R+; H−1), m = 1, 2, · · · ,N,

vλ(x, t) ∈ L∞(R+; L2) ∩W1,∞(R+; H−2), λ = 1, 2,

n(x, t) ∈ L∞(R+; L2) ∩W1,∞(R+; H−1)

are called generalized solution of problems (1)-(4), if for any
ξ ∈ H2

0 they satisfy the integral equality

(iεmt, ξ) − (∇εm,∇ξ) − (nεm, ξ) = 0,

(vλt, ξ) −
2∑

j=1

(
∂ϕ(v)
∂vλ

,
∂ξ

∂x j

)
− (vλ,∆ξ) −

(
n + |ε|2 ,

∂ξ

∂xλ

)
= 0,

(nt, ξ) − (v,∇ξ) = 0,
m = 1, 2, · · · ,N, λ = 1, 2.

with initial data

ε|t=0 = ε0(x), n|t=0 = n0(x), v|t=0 = v0(x),

Next, we give two lemmas recalled in [13].

Lemma 7. Let B0, B, B1 be three reflexive Banach spaces
and assume that the embedding B0 → B is compact. Let

W =

{
V ∈ Lp0 ((0,T ); B0),

∂V
∂t
∈ Lp1 ((0,T ); B1)

}
,

T < ∞, 1 < p0, p1 < ∞.

W is a Banach space with norm

‖V‖W = ‖V‖Lp0 ((0,T );B0) + ‖Vt‖Lp1 ((0,T );B1).

Then the embedding W → Lp0 ((0,T ); B) is compact.

Lemma 8. Let Ω be an open set of Rn and let g, gε ∈
Lp(Rn), 1 < p < ∞, such that

gε → g a.e. in Ω and ‖gε‖Lp(Ω) ≤ C.

Then gε → g weakly in Lp(Ω).

Now, one can estimate Theorem 1.
Proof: By using the Galerkin method, choose the basic

periodic functions {ω j(x)} as follows:

−∆ω j(x) = λ jω j(x), ω j(x) ∈ H2
0(Ω), j = 1, 2, · · · , l.

The approximate solution of problem (1)-(4) can be written
as

εl(x, t) =

l∑
j=1

αl
j(t)ω j(x), vl(x, t) =

l∑
j=1

βl
j(t)ω j(x),

nl(x, t) =

l∑
j=1

γl
j(t)ω j(x),

where

εl =
(
εl

1, · · · , ε
l
N

)
, αl

j(t) =
(
αl

j1(t), · · · , αl
jN(t)

)
,

vl =
(
vl

1, v
l
2

)
, βl

j(t) =
(
βl

j1(t), βl
j2(t)

)
.
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and Ω is a 2-dimensional cube with 2D in each direction,
that is, Ω = {x = (x1, x2) | |xi| ≤ 2D, i = 1, 2}. According to
Galerkin’s method, these undetermined coefficients αl

j(t),
βl

j(t) and γl
j(t) must satisfy the following initial value prob-

lem of the system of ordinary differential equations.(
iεl

mt, ωκ
)
−

(
∇εl

m,∇ωκ
)
−

(
nlεl

m, ωκ
)

= 0, (22)(
vl
λt, ωκ

)
−

2∑
j=1

∂ϕ(vl)
∂vl

λ

,
∂ωκ
∂x j

 − (
vl
λ,∆ωκ

)
−

(
nl +

∣∣∣εl
∣∣∣2 , ∂ωκ

∂xλ

)
= 0, (23)(

nl
t, ωκ

)
−

(
vl,∇ωκ

)
= 0, (24)

m = 1, 2, · · · ,N, λ = 1, 2, κ = 1, 2, · · · , l.

with initial data

εl|t=0 = ε0(x), nl|t=0 = n0(x), vl|t=0 = v0(x), (25)

Suppose

εl
0(x)

H1

−−→ ε0(x), vl
0(x)

L2

−−→ v0(x),

nl
0(x)

L2

−−→ n0(x), l→ ∞.

Similar to the proof of Lemma 1-6, for the solution εl(x, t),
vl(x, t) and nl(x, t) of problem (22)-(25), we can establish the
following estimations.∥∥∥εl

∥∥∥
H1 +

∥∥∥vl
∥∥∥

L2 +
∥∥∥nl

∥∥∥
L2 ≤ C (26)∥∥∥εl

t

∥∥∥
H−1 +

∥∥∥vl
t

∥∥∥
H−2 +

∥∥∥nl
t

∥∥∥
H−1 ≤ C (27)

where the constant C is independent of l and D. By compact
argument, some subsequence of

(
εl, vl, nl

)
, also labeled as l,

has a weak limit (ε, v, n). More precisely,

εl(x, t)→ ε(x, t) in L∞(R+; H1) weakly star, (28)

vl(x, t)→ v(x, t) in L∞(R+; L2) weakly star, (29)

nl(x, t)→ n(x, t) in L∞(R+; L2) weakly star. (30)

Eq. (27) implies that

εl
t → εt in L∞(R+; H−1) weakly star, (31)

vl
t → vt in L∞(R+; H−2) weakly star,

nl
t → nt in L∞(R+; H−1) weakly star.

Moreover, it should be noted that the following maps are
continuous.

H1(R2)→ L4(R2), u 7→ u,

H1(R2) × L2(R2)→ L2(R2), (u, v) 7→ uv.

It then follows from Eq. (28) and (30) that∣∣∣εl
∣∣∣2 → w in L∞(R+; L2) weakly star, (32)

nlεl → z in L∞(R+; L2) weakly star. (33)

First, we prove w = |ε|2. Let Ω be any bounded subdomain
of R2. We notice that

the embedding H1(Ω)→ L4(Ω) is compact.

and for any Banach space X,

the embedding L∞(R+; X)→ L2(0,T ; X) is continuous.

Hence, according to Eq. (28), (32) and Lemma 7, applied to
B0 = H1(Ω), B = L4(Ω), B1 = H−1(Ω), and says that some
subsequence of εl |Ω (also referred to as l) converges strongly
to ε |Ω in L2(0,T ; L4(Ω)). So we can assume that

εl → ε strongly in L2(0,T ; L4
loc(Ω)), (34)

and thus
εl → ε a.e. in [0,T ] ×Ω.

Then, using Lemma 8 and Eq. (32) imply that w = |ε|2

Second, we prove z = nε. Let χ be a test function in
L2(0,T ; H1), suppχ ⊂ Ω ⊂ R2.∫ T

0

∫
R2

(
nlεl − nε

)
χdxdt

=

∫ T

0

∫
Ω

nl
(
εl − ε

)
χdxdt +

∫ T

0

∫
Ω

(
nl − n

)
εχdxdt.

Firstly,∣∣∣∣∣∣
∫ T

0

∫
Ω

nl
(
εl − ε

)
χdxdt

∣∣∣∣∣∣
≤

∥∥∥nl
∥∥∥

L∞(0,T ;L2(Ω))

∥∥∥εl − ε
∥∥∥

L2(0,T ;L4(Ω)) ‖χ‖L2(0,T ;L4(Ω)) ,

Since Ω is bounded, we deduce from Eq. (30) and (34) that∣∣∣∣∣∣
∫ T

0

∫
Ω

nl
(
εl − ε

)
χdxdt

∣∣∣∣∣∣→ 0 (l→ +∞).

Secondly, let us note that εχ ∈ L1(0,T ; L2). In fact,

‖εχ‖L1(0,T ;L2) ≤ ‖ε‖L2(0,T ;L4) ‖χ‖L2(0,T ;L4) < ∞.

Therefore we deduce from Eq. (30) that∫ T

0

∫
Ω

(
nl − n

)
εχdxdt → 0 (l→ +∞).

Thus nlεl → nε in L2(o,T ; H−1). So z = nε.
Hence taking l → ∞ from Eq. (22)-(25), by using the

density of ω j in H2
0(Ω) we arrive at the local generalized

solution for the periodic initial value problem (1)-(4); letting
D→ ∞, the local solution for the initial value problem (1)-
(4) can be obtained. By the continuation extension principle
and a priori estimates, we can arrive at the global generalized
solution for problem (1)-(4).

We thus complete the proof of Theorem 1.
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