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A Rapid lterative Algorithm for Solving Split
Variational Inclusion Problems and Fixed Point
Problems

Haitao Che, Shoujin Li

Abstract—In this study, we introduce a rapid iterative
algorithm to find a common element of the solution set of split
variational inclusion problems and the set of fixed points of a
nonexpansive mapping by using the hybrid steepest descent
method. The strong convergence results of presented
algorithms have been obtained under some mild conditions.
The proposed results are the supplement, extension and
generalization of the previously known results in this area.
Finally, preliminary numerical results indicate the feasibility
and efficiency of the proposed methods.

Index Terms—Split variational inclusion problem, Fixed
point problem, Nonexpansive mappings

I.  INTRODUCTION

N 2011, A. Moudafi [1] first introduced the split
monotone variational inclusion problem(SMVIP) as
follow: Find a point x* € H; such that

0 € f; (x*) + By (x*) @
and
y* = Ax* € H; solves 0 € f,(y*) + B,(y") (2)

where H; andH, are two real Hilbert spaces with inner
product (--) and induced norm ||-|| , respectively. The
mappings By: H; - 2H1 and B,: H, — 212 are multi-valued
maximal mappings.

A. Moudafi [1] revealed that SMVIP (1)-(2) included the
split common fixed point problem, the split zero problem, the
split variational inequality problem and split feasibility
problem [1-8] as special cases, which have wide applications
to intensity modulated radiation therapy treatment planning,
see [6,7, 9,10].

If f,=0and f, =0, then SMVIP (1)-(2) degenerate
exactly into the split variational inclusion problem (SVIP):
Look for x* € H; such that

0 € B;(x*) ©))
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and
y* = Ax* € H, solves 0 € B,(y*) (4)

We denote the solution set I' of SVIP (3)-(4) by I' = {x* €
H,:x* € SOLVIP(B,;)and Ax* € SOLVIP(B,).}

Many works were devoted to SVIP (3)-(4) [4, 12, 14, 24,
25, 26, 27, 28]. In 2012, C. Byrne et al. [4] revealed the weak
and strong convergence of the iterative method

Xns1 = 131 (%n + VAT ()7 — )Ax,) ®)

where A* is the adjoint of A, and y € (0, %),7\ > 0.

In 2014, Kazmi and Rizvi [12] proposed the following
iterative procedure

{un = ]fl(xn + yA* (])l‘32 — I)Axn) (©)
Xn+1 = anf(Xn) + (1 - an)sun)

Then, the sequence {x,} converges strongly to the solution
set I' andthe fixed point of nonexpansive mapping S.

In 2015, using the hybrid steepest descent method, K.
Sitthithakerngkietnet al. [14] considered theconvergence of
the following iterative procedure

{un =121 (x, + YA ()32 — 1)Ax,) @
Xn+1 = anf(xn) + (I - anD)Snun)

where S, is a sequence of nonexpansive mappings and D is a
strongly positive bounded linear operator.

Following the work of Moudafi [1], Kazmi and Rizvi [12],
Sitthithakerngkiet et al. [14], we introduce a rapid iterative
algorithm for finding a common element of the solution set of
split variational inclusion problems and the set of fixed points
of a nonexpansive mapping. Under suitable conditions, the
strong convergence for the sequences generated by the
algorithm to a solution of the problems is proved. As
applications, we apply our iterative algorithms to split
feasibility problem. Preliminary numerical results indicate
that our algorithm is more effective for SVIP (3)-(4) than the
proposed algorithms in [4], [12] and [14].

Il. PRELIMINARIES

Before proceeding further, we give a few concepts.
A mappingT: H; — H; is called contraction, if there exists
a constanta € (0,1)such that

ITx—Tyl|l < allx—yll,V(xy) € Hy (8)
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holds.

If a = 1, then T is called nonexpansive.

A mapping T: H; — H; is said to be firmly nonexpansive,
if

(Tx—Ty,x —y) = [ITx — Tyll*>, (x,y) € H, ©)

A set-valued mappingQ: H; — 2M1is called monotone if
forallx,y € H;,f € Qxand g € Qy imply (x —y,f— g) = 0.

A monotone mapping Q: H; — 2M1 is called maximal if
the graph G(Q) of Q is not properly contained in the graph of
any other monotone mapping. It is well known that a
monotone mapping Q is maximal if and only if for the
following relation (x,f) e HXx H,{(x —y,f—g) = 0,(y,g) €
G(Q) impliesf € Qx.

To obtain our results, we need the following technical
lemmas.

Lemma 2.1 [18] If x,y,z € H, then

@) lIx + ylI* < lIXlI* + {y,x + y).

(b) For any A€ [01]lIAx+ (1+Nyll*> = Allx||? +
A =Dlyll* = A1 =Vlx-yll*.

Lemma 2.2 [20] Assume that {a,} is a sequence of
nonnegative real numbers such thata,,; < (1 —vy,)a, +
8,,n =0, where y, € (0,1) and {§,} is a sequence inR,
such that

()Xo Yn =

(ii) lim,, ., supj—: < 0018, 8, < oo

Then, lim,_,,, a, = 0.

Lemma 2.3 [12] Assume A is a strongly positive linear
bounded operator on a Hilbert space Hwith the coefficient
y>0and 0 < p < ||Al|7. Then ||I — pA|l < 1 — py.

Il. MAINRESULTS

In this section, we first show some important lemmas and
propose our algorithm. Then the convergence analysis of the
algorithm is proved.

The following results are some important tools in this
paper.

Lemma 3.1 [13] Let H be a real Hilbert space. LetM: H —
2" be a multi-valued maximal monotone mapping and let
the resolving mapping]M:H - H be defined byJ} (x) =

(I4+AM)~1(x) associated with M > 0,4> 0. Then the
following are satisfied:

(i) For eachA >0, JMis a single-valued and firmly
nonexpansive mapping.

(i) Suppose that M~1(0) =@ , then ||x —]ﬁ"(x)”2 +
1 x) - %||” < Ilx — xI|>for eachx € H, X € M~1(0)andA >
0.

(i) Suppose thatM~1(0) = @, then
=G —w) 20

foreachx € H, w € M~ (0)and A > 0.

i) 1360 - H @I < (x -y, 1 @)~ ¥ ) for each
x,y € Hand 4 > 0.

Lemma 3.2 If the resolving mapping JM:H - H is

defined by Lemma 3.1, for each x,y € Hand A > 0, then we
have

M M-I < lk-ylI2 - [F@-x+y-
ol

(i) ') —x+y =R < lIx -yl

(i) 1M ) — x||° < M) — %, w — x),for w € M~1(0).

Proof. For (i), from lemma 3.1 (iv), for x,y € H, we have

I = @* < x=y 60 = 1M ()
= lIx—ylI?
+x—y N —x+y -1
= lx=ylI? = I} = x+y = M|
+ (G-I —x+y =)
< lx=ylI2 = I —x+y -1

(i) is straightforward from (i), which means J} (x) — x is
1-Lipschitz.

For (iii), from lemma 3.1 (iii), for x € H one has

B =-xw=x =@ -xw=]0) +
Y —x Y60 %) = 160 — x|

Lemma 3.3 [1]SVIP(3)-(4) is equivalent to the problem

x* € H* such that y* = Ax* € H,
X* = ]flx*,y* = ]fzy*,forl >0

Lemma 3.4 Let H; and H, be two real Hilbert spaces and
A:H; > H; be a bounded linear operator. Assume
thatB;: H; - 2M1and B,: H, — 2H2 are maximal monotone
mappings. Let S be a nonexpansive mappings on H; such
that T N F(S) # @ . Suppose f:H; - H; is a contraction
mapping with constant § € (0,1) and D is a strongly positive
bounded linear operator with coefficient y > 0and0 < & < %

For any t € (0,1)andx € H;, let the mapping W, on H; be
defined by Wx = 21 (1 + tA* ()2 — DAJ! (t8F(x) + (1 —
tD)Sx)where 4 > 0, andt € (0, i), L, is the spectral radius
of the operator AA* and A* is the adjoint of A. Then the

mapping W, is contraction and has a unique fixed point.
Proof. Note that

P11+ 1A*(JP? —1)A is nonexpansive and [|I — tD|| <
1 —ty. Forany x,y € H;, we have

IWex — Weyll = 132 (1
+ 1A ()32 = 1)A))} (tEF(%)
+ (1= tD)Sx)—J (1 + TA*(J?
— DA} (EE(y) + (1 — tD)Sy)||
< || (t&(x) + (1 — tD)Sx) — (tEE(y) + (I
—tD)Sy)|
< tiBlix—yll + (1 — tD)llx—yll
=(1—tly—EBNlx—yll

Thus, W, is a contraction whent € (0, ﬁ). Furthermore,

it follows from the Banach contraction principle thatW; has a
unique fixed point. This completes the proof.
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Remark 3.1 Lemma 3.4 means that x, is the unique
solution of the fixed point equationx, = ]fl(l + rA*(]ABZ —
DAJP! (t8f(x, ) + (1 — tD)Sxy ).

Now, we are in a position to show the description of our
algorithm.

Algorithm 3.1 For an arbitrary initial pointx, € H;, we
define {x,} by

{yn =]y  (an8f(x,) + (I — 2, D)Sx,,) 10)

Xnt1 = 131 (ya + TAT(}? — DAy, )

where 4 > 0,a, € (0,1), andt € (0, Li),L1 is the spectral
1

radius of the operator AA* and A* is the adjoint of A.

Next, we will show the convergence analysis of the
algorithm (10) for approximating a common solution of SVIP
(3)-(4).

Theorem 3.1 Let H; and H, be two real Hilbert spaces
and A: H; — H; be a bounded linear operator. Assume that
B;:H; - 2" and B,:H, - 2H2 are maximal monotone
mappings. Let S be a nonexpansive mappings onH; . Let
f: H; — H, be a contraction mapping with constant 8 € (0,1)
and D be a strongly positive bounded linear operator with

coefficient ¥ >0 and 0 <& < % Assume that Q=Tn

F(S) # @. Let the sequences {x,} be generated by (10).
Assume that the sequence {a,} satisfies the following
conditions:

(i) lim, L a, = 0.

(i) Y=o an = oo.

(iii) Xiolag+1 — an| < oo.

Then {x,} converges strongly to a point z, where z =
Po(I—D+ &) is a unique solution of the variational
inequalities

((D—-¢&Nz,z—x) < 0. (11)

Proof. We divide the proof into five steps.
Stepl.We prove that {x,} is bounded.

Setp € Q. From p = ]ABlp, Ap = ]fz(Ap), Sp € p, and
Lemma 3.3, we have

o1 = pIIZ = 122 (v + TA" (122 = DAy,) — || =
B (v + A" (0%2 = D)Ayy) —12p||” < [ly +
(1 — DAy, —pl” = llya — pll? + 2 |A° (% -
DAyall® + 21y, — p, A'(172 — 1)Ay,)(12)

Since

20y, — p, A (112 — 1)Ay,) = 2T(A(y, — p), A" ()12 —

1)Ay,) = 2t(Ay, — Ap + (J;2 = 1)Ay,—(J;? —

DAy, (172 = 1)Ay,) = 2122 Ay, — p, (12 — 1)Ay,) —
2 2

27|03 = Davall” = < (102 aya — ol + 105 -

DAy = llay, — Apli2) — 2t (%2 = DAy, |’ <

2 2
)| (12 - DAy, || — 21|52 — DAy, || - 2t]| (032 -
Ay, [|"(13)

and

2| (F2 ~ DAy, ||

= (A" (1,2 — 1)Ay,, A* (122 — 1)Ay,)

= (5% — DAy, AA*(J;2 — 1)Ay,) < Lit((52 —
DAy, 022 — DAy, < Lie2 (5 - Day, |

(14
From (13), (14) and (12), we deduce
2
[%n 1 = PI? < llyn = pI? + Lyt = D] (037 = DAya||” <
lly. — plI? (15)

The definition of y, yields

||Yn - p” = ”])l?l(anzf(xn) + (I - anD)SXn) - p” <
llan8fCx,) (I — 2, D)Sx,, — pll < ay&lIf(x,) — f(P)Il +
IT —a, Dlll[Sx, — pll + a, [If(p) — Dpll < a,&BlIx, — pll +
(1 —ayY)lIx, = pll +a,llf(p) = Dpll < (1 —a, (¥ —

B lIxn = pll + a,[If(p) — Dpl| (16)

Thus, following from (15), (14) and Lemma 2.3, we have

X041 =PIl < llyn = pll < (1 = a, (v = EB)IIxn — pIl +

- f(p)—
an If(p) = Dpll < maxillx, — pll, 22 (17)
By induction, we have
If(p) — Dpll
a1 = pll < max{ux —pll—;
n+1 p 0 p y— EB

which indicates that {x,} is bounded. It is easily to show
that {f(x,)},{Sx,},{Dx,} and {y, } are all bounded.

Step 2. We reveal thatlim,, o [|X,41 — X, 1l = 0.

Since ]fl(l + AA* (sz — DA is nonexpansive, one has

%01 — Xl = 120+ TA* (132 = DAY, )5 (L +
A (15 = DAYl < llyn — ya111(28)

In what follows, we will estimate||ly, — y,—1]l. It follows
from (10) that

lyn = yn-1ll =

”])Ejl(anzf(xn) + (I - anD)SXn)_]}?l(an—lgf(xn—l) + (I -
an—lD)SXn—l)” < ”anzf(xn) + (I - anD)SXn -
an—lEf(Xn—l) + (I - an—lD)SXn—l < anEB”Xn - Xn—l” +
|an - an—l”lzf(xn—l)” + (1 - an\_/)”Xn - Xn—l” +

lan — an_1[IDSxy_1 [l < (1 — 2, (¥ — &B)lIxn — xoall +
lan = an—1 [ (IIEFCxn-1l + IDSx4 1 1) (19)

Then, one has

”Xn+1 _Xn” < ||Yn _le—lll
< (1 —dp (V - EB))”Xn - Xn—l”
+ |an - an—ll(llzf(xn—l)” + ”DSXn—lll)

Furthermore, by Lemma 2.2, we obtain

(Advance online publication: 23 August 2017)



TAENG International Journal of Applied Mathematics, 47:3, [JAM 47 3 01

1irnn—»c>o||xn+1 - Xn” =0 (20)

Step 3. We will obtainlim,, ., ||Sx, — Sx, || = 0.
Setz, = a,&f(x, ) + (I — a,D)Sx, ). One hasy, = J.'z,.
It follows from Lemma 2.1 that

lys = pII® = [ (@EFCx,) + (1 - 2, D)Sx,) = p|* <
”Zn - p”2 = ”anzf(xn) + (I - anD)SXn - p”2 =

”(I - anD)SXn - (I - anD)p_anzf(Xn) - anDPHZ <
(I - an?)”Xn - p”2 + 2an<Ef(Xn) - Dp, Zpn — p) <
lIxa = plI* + 2a, lI5f(x,) — Dpllllz, — pll(21)

(15) and (21) deduce

I%y11 = I = llys = plI? + T(Lit = D152 = DAy, ||’
< (1— a,P)llx, — plI?
+ 2a, [EF(x,) — Dpllllzy — pll + (LT
- DJ|(F2 - DAy. |
< Iy — plI?
+ 2a, [E€Gx,) — Dpllllzn — pll + t(Lyt

— D052 — DAy,

Moreover,

o1 = 10| 057 = DAy, ||
< 2a,[|&f(xy) = Dpllllz, — pll + (llx, — plI?
— IXn4+1 = pII*)
< 2a,[I§f(x,) — Dpllllz, — pll + (lIxy = x—1 1D lx, —

p|| + IXa+1 — pID (22)

Sincet(1 — Lt) > 0,a, — 0 and (22), we have

limn—»OO”U}]?Z - I)AYn” =0
(23)

Furthermore, it follows from (10) that

2
%01 — plI? = 132 (v + TA* (152 = 1)Ay,) — p|
2
= {17 (7 + A" (0,2 = 1)Ay,) = ), 'p|
< (Xn+1 — P ¥n + TA*(]}?Z - I)AYn) - p)

1
=5 i1 =l
+ _||Xn+1 -p- (Yn + TA*(]}]?Z - I)AYn
2
-pl" =

s = DI+ [y, + <42 ~ DAy, —pl
~[lnsr = o = TA° (157 = Dy, )
< 5 lsass — pIP) + lly, — pII? + 7(Le
- D105 - DAya - ol
~[lnsr = ¥a = A (157 = Dy, )
< %(”Xn+1 = pll* + lly, — plI*
— (U%ns1 = yall? + 2[4 (052 = Dy, |
— 2t(xy41 — Yo, AT (32 — 1)Ay,)))
< 2 (a1 I + Iy, — I

- ”Xn+1 - Ynllz
+ 2TllAGa 41 — yNI||(052 = DAy

which implies that

”Xn+1 - p”2 < ”le - p"2 - ||Xn+1 - Ynllz + ZT”A(Xn+1 -
B
yn)Il03* = DAy, | (24)

Furthermore,

%041 = Yall? < llyn =PI = Ixn41 =PI + 2Tl AGR 41 —
y) Il 022 = DAyl < lixy = plIZ = %440 — plI? +

2a, l1fGxy) = Dpllllys — pll + 2l AG, 41 — y) | 032 =
DAYl < l1xn = %-1 ICllxy = pll = lIxy50 = pID +

2a, [|Cx,) — Dplllly, — pll + 2TlAG, 1 — vyl (57 -
DAy, || (25)

Following the fact a, — 0 and (20), (23), we have

limn—>oo||Xn+1 - YH” =0

(26)
which means that

limn—»oo”Xn - YH” =0
(27)

Since I — ]}1\32 is a firmly nonexpansive mapping, we obtain

(0= 172) A%, = (1= 172)Ava|
< (Ax, — Ay, (1-72)Ax,
—(1-1}%)Ay,)
<(x, — yn,A*(I — ]fz)Axn
— A (1-17?)Ay,)
< lIx, — yull[|A*(1 = 157 Ax,
— A (1-172) Ay, |l

Thus,
lim [|(1 = 172)Ax, — (1= 172)Aya|| = 0

This together with (23) implies
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|1 = 122), ] = 0
(28)

On the other hand, we note that

limn—mo”Zn - SXn” =0 (33)

By (32), one has

lim, L0 [ISX, — x4l =0
* 4
o =I5l < 107 O + (32 = DAv) = vl B9
* BZ
<o +BTA 032 = DAYn) = va| Step 4. Next, we will prove that
= [[eA (3 — DAy ||
< tl|A*|l]| (777 — 1) Ay, || lim, o sup((D —§0z,z—y,) <0
(35)
And
To obtain this inequality, we need to show the following
_ yB1 _ _ yB1 inequality lim,_., sup {((D — &f)z,z — x,) < 0 holds,
X Xnll = [|x X + X
” » n” ” ", n|J|r1 hi¥a wherez = P, (I — D + &f)(z) is a unique solution of the
l W l X B variational inequality (11).
< ”Xn — Xpptll + o1 = T3 | We choose a subsequence {x, } of {x,} such that
B B
+ ”]Alyﬂ _]A1Xn|l
lim sup ((D — &)z,z — x,) = lim sup ((D — &f)z,z — an)
From (20), (23) and (27), we have n—co je
Since {x, } is bounded, then there exists a subsequence
limy oo 0 — J¥5, ]| = 0 (29) b, J “

It follows from lemma 3.1 and (21) that

— bl = 1P (anE(x,) + (1 — aaD)Sxy) — p||” =

[lyn
2 2
”])‘ Zy — p” < ”Zn - p”2 - ”])l?lzn - Zn“ =
”Z - p”2 - ||YI1 - anlz < ”Xn - p”2 + Zanllzf(xn) -
Dpllllz, — pll = lly, — 2, I?
Therefore,
X041 — pII? < llyn — plI?
< lIx, — pll?
+ 2a, 18f(x,) — Dpllllz, — pll
- ||Yn - anlz
Furthermore,

||YI1 - anlz < ”Xn - pHZ - “Xn+1 - p”2
+ 2a, ||&f(x,) — Dpllllz, — pll
< |Ixn = Xnpa 1%y =PI+ 11X044
+ 2a, ||&f(x,) — Dpllliz, — pll

which means that
1imn—>oo”Yn - Zn” =0

Consequently,

lim ”Xn —Z, ”
n—oo

< limy oo (1% = Yl + llyn —zall) = 0
(32)

Since
Zy — SXn = anEf(Xn) + (I —ay D)SXU - SX"

=ap (Ef(xn) - DSXn)

Bya, — 0, we have

- plD

{ank} of {an} which converges weakly to . Without loss of
generality, we assume thatxn]_ — q. Thus, from (28), (29) and

(34), we obtaing € Q. Since z = P, (I — D + &f)z, it follows
that

lim,, e sup ((D — &f)z,z — x,) = lim;_,,, sup {(D —
@0 D20 -Fzz-a <0
This together with (27) means that (35) holds.
Step 5. Finally, we show that x, — z.
Indeed, from (10), we have

||Yn - lez = ”]}l?lzn - Z”2 < (Zn - Z!])l?lzn - Z)
= (Zn —ZYn — z)
= (anEf(Xn) +d- anD)San -
+ an(Ef(Z) — Dz, Yn — Z)
< (1 —a,(y = EBNIxn — zllllyn — 2zl
+a,(8f(z) — Dz, y, —z)

1—a,(y— 1
< QO a4 2y, ol
+ a,(&f(z) — Dz, y, — z)

Z,Yn — Z)

It follows that
(31)
llyn —zll? < (1 —a,(y — &B)) lIx, — zlI* + 2a, (§f(2) —
Dz,y, —z) (36)

From (36) and (10), we obtain

%01 —zll® < llyn —zlI>
< (1 —a,(y = &B)Ix, —zll?
+ Zan(Ef(zl— Dz,y, — z)
=1 -a,(y—-%B)

2a,(v — §B)
e — f _D ) n_
+ G ~ Doy, )
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Hence, all conditions of Lemma 2.2 are satisfied, we
immediately deduce thatx, — x. This completes the proof.

The following conclusions can be obtained from
Algorithm 3.1 and Theorem 3.1 immediately.

Algorithm 3.2 For an arbitrary initial pointx, € Hy, we
define {x,} iteratively

{ Yo = ) @ 8f(x, ) + (1= ap)xy, ) -

Xni1 = )y (v + TA*(}? — DAY, )

Theorem 3.2 Let the sequences {x,} be generated by
(37). Assume that the sequence {a,} satisfies the control
conditions:

(i) lim,_,a, =0.

(i) Xizo a = oo.

(i) Xiolan+1 — ap| < co.

Then, {x,} converges strongly to a pointz € I', which
solves the variational inequalities (11).

Algorithm 3.3 For an arbitrary initial pointx, € H;, we
define {x, } iteratively by

By
{ Yn = ]}\ ((I - an)xn) (38)
Xns1 = 3 (vn + TAT0R% — DA )
where 1 > 0,a, €[0,1], andt € (0, i) , Ly is the spectral

radius of the operator AA* and A* is the adjoint of A.

Theorem 3.3 Let the sequences {x, } be generated by (38).
Assume that the sequence {a,} satisfies the following
conditions:

(i) lim, ., a, = 0.

(i) Xz an = oo.

(iii) Xr=olant1 — an| < co.

Then, {x,} converges strongly to a pointz € T, which is
the minimum norm element in T

IV. APPLICATIONS

We now pay our attention to applying our iterative
algorithms to split feasibility problem.

The split feasibility problem (SFP) was first introduced by
Censor and Elfving [20] to look for
x € C suchthat Ax€Q (39)
where A: H; — H; is a bounded linear operator, C and Q are
nonempty closed convex subset of real Hilbert spaces H; and
H,, respectively. It is well known that SFP arise from phase
retrievals and medical image reconstruction [21].

Define B; = 08.:H; - 2H1, where 8.:H; - [0, +0] is
the indicator function of C, i.e,

(0, xecC
GC_{+OO, x & C

and B, = 084:H, — 242, where 8y:H, — [0,+0] is the
indicator function of Q, i.e,

s _{0, XEQ
Q7 4, x€Q

Thus, Algorithm 3.1 becomes to be the following
algorithm.

Algorithm 4.1 For an arbitrary initial pointx, € H;, we
define {x, } iteratively by

{yn =P (an Ef(xn ) + (I ~n D)SXn ) (40)

Xn+1 = PC (Yn + TA” (PQ - I)AYn )

where 4 > 0,a, € [0,1], andt € (O,Li), L, is the spectral
1

radius of the operator AA* and A* is the adjoint of A.
Furthermore, if S =1, then Algorithm 4.1 can reduce to
the following algorithm [22].
Algorithm 4.2 For an arbitrary initial pointx, € H;, we
define {x,} iteratively by

{yn = Pe(anéf(x,) + 1 —a,D)x,) (41)

Xn41 = B¢ (Yn + TA*(PQ - I)AYn)

where 4 > 0,a, € [0,1], andt € (0, Li), L, is the spectral
1
radius of the operator AA™ and A™ is the adjoint of A.

V. NUMERICAL EXAMPLES

We now propose a numerical example to demonstrate the
performance and the convergence of our result. In the
experiment, the stopping criterion is |[x, —x*|| <&, IT
denotes the iterative number, and SOL denotes a solution of

the test problem. Seta, = %,)\ €0.5,£=1,D=1, and the
initial point(100,100).
Example 5.1 Let A and By, B,: R? - R? be defined by

A=t Oa=(8 9o )

We take a mapping S:v = (vy,v3)T: - (sinvy, sinv,)T,
and it is easily to see thatS is nonexpansive. SinceLi =1, so,
1

we can take T € 0.8.
Example 5.2 Let A and By, B,: R? - R? be defined by

A= (g _11)1131 = (g g)’BZ - (g g)

Let S be the same as in Example 5.1. SinceLi = 0.1910, so,
1

we can taket € 0.15.
Example 5.3 Let B;:R? > R? and B,:R3 - R® be
defined by

2 1 30 0
A=(1 2>,B1:(g g),32:<o 6 0)

2 2 0 0 9

We define a mapping S = , and it is easy to

Wk WIN
WIN W=

observe that S is nonexpansive. SinceLL = 0.0588, so, we
1
can taket € 0.05.

(Advance online publication: 23 August 2017)
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TABLE |
NUMERICAL RESULTS FOR EXAMPLE 5.1
£=10"* €=10"°
Method IT Solution Norm IT Solution Norm
3.1 6 (0.0,0.2) 2.0e-5 8 (0.0, 0.2) 1.5e-7
[4] 10 | (0.0,0.5) 5.1e-5 | 13 | (0.0,0.4) 4.1e-7
[12] 9 (0.0,0.5) | 5.0e-5 | 12 | (0.0,0.3) 3.4e-7
[14] 9 | (0.0,03) | 31e5 | 12 | (0.0,02) | 2.2e-7
TABLE Il
NUMERICAL RESULTS FOR EXAMPLE 5.2
e=10"* £=10"°
Method IT Solution Norm | IT Solution Norm
3.1 7 || (01,07) | 71e5] 10 | (-0.0,0.4) | 4.0e-7
[4] 17 | (-0.1,04) | 42e-6 | 22| (-0.1,05) | 4.9e-7
[12] 13 | (-0.1,06) | 6.1e-56 | 18 | (-0.1,05) | 5.5e-7
[14] 11 | (-0.1,06) | 57e-5 | 16 | (-0.1,05) | 5.0e-7

Table I, 11 and 111 at the initial point (10, 10) " with e=10"

show that the iteration process of the sequence is a
monotone decreasing sequence and the iteration sequence
converges to (0, 0) ". Furthermore, it reveals that the more
the iteration steps are, the more slowly the sequence
converges to (0, 0) *. From Table I, Il and Ill, we can
observe that our algorithm is more effective for SVIP (3)-(4)
than the proposed algorithms in [4], [12] and [14].

TABLE 1l
NUMERICAL RESULTS FOR EXAMPLE 5.3

£e=10"* e=10"°

Method || IT

Solution Norm IT Solution Norm

3.1

(:0.0,0.3)

3.2e-5

8

(:0.0,0.2)

2.2e-7

(4]

14

(-0.2,0.7)

6.8e-5

19

(-0.1, 0.4)

4.5e-7

[12]

11

(-0.2,0.7)

7.7e-5

18

(-0.1,0.4)

3.8e-7

[14]

(0.1, 0.1)

1.6e-5

11

(0.2, 0.4)

4.2e-7

[1]

[2]

(3]

[4]

[5]

6]
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