
 

  
Abstract—Copulas theory provides a convenient way to 

express joint distributions of two random variables. This paper 

presents an introduction to detect variations for bivariate 

relationship, based on the methods of sliding window and copula 

function, illustrated by the case of monthly precipitation and 

streamflow sequence in Xianyang station of Weihe River nearly 

60. Euclidean distance criterion is presented for selecting an 

appropriate model, estimating its parameters, and checking its 

goodness-of-fit. We obtain the combined probability density 

copula function of relationship between precipitation and 

streamflow before and after the variations. Result shows that 

the relationship variant between precipitation and streamflow 

occurred in 1993, and at different times, precipitation and 

streamflow follow the different probability distribution function. 

The goal of this paper is to put forward copula-based in the field 

of variations detection, so as to provide a stepping stone 

exploring variations detection research of the bivariate 

dependence. 

 

Index Terms—Variations, Dependence structure, Copulas, 

Joint distribution 

 

I. INTRODUCTION 

ARIABLES are often correlative and hence require the 

joint modeling of several random variables in 

hydrology[1]. Traditionally, the dependence between 

variables such as precipitation, streamflow depth and volume 

has been described using classical families of multivariate 

distributions. Perhaps the most common models occurring in 

the hydrological variables are the univariate, or bivariate 

normal, gamma, lognormal distributions [2]. The limitation 

above mentioned methods are that the variables must then be 

characterized by identical distribution [3]. Global climate 

changes and human activities are strongly affecting the 

patterns of river runoff and other key hydrological variables 

[4] (Birsan et al., 2005). Especially in the last decades, there 

 are significantly changes in climate, such as temperature, 

rainfall, and runoff. The dependence of between the variables 

has been increasingly emphasized [5]. To date, most 

dependence analyses are focused on identical distribution. In  
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most cases transformation will lose part information of 

compared with the original variable analysis. In addition 

hydrological data that are assumed to be multivariate normal 

distributed are highly developed, but general approaches for 

joint nonlinear modeling of nonnormal data are not well 

developed [6]. But unfortunately a lot of variable distribution 

is not the same; we have to a transform variables to the same 

distribution. 

Copula function analyses, which avoid this restriction, are 

just beginning to make their way into the dependence 

multivariable analysis [7, 8]. The theorem of the copulas was 

introduced in a 1959 article by Sklar [9]. Copulas are 

functions that connect multivariate distributions to their 

one-dimensional margins. It can separate the joint distribution 

into two contributions: the marginal distributions of each 

variable by itself, and the copula that combines these into a 

joint distribution. Copulas represent a substantial advantage 

of over recently proposed simulation based approaches to 

joint modeling. Copulas have proved useful in a variety of 

modeling situations[10]. Copulas analysis has been 

successfully applied to climate and weather related 

research[11], to various multivariate simulation studies in 

civil [12] , to being used for Warranty data analysis [13], to 

modeling turbulent partially premixed combustion, which is 

common in practical combustors[14], to the analysis of 

neuronal dependencies [15], and to various simulation-based 

performance studies[16].  

This paper presents several common copulas, introduces 

methods for selecting which copulas may be most appropriate. 

in addition to this, the behavior of the copulas in tail 

dependence can be used to distinguish among joint 

distributions. Based on the methods of sliding window, we 

detect dependence variations of the precipitation and 

streamflow of Weihe River in Xianyan station from 1951 to 

2010, and pointed out the bivariate distribution pattern before 

and after the variations. The purpose of this paper Provide an 

overview of two-dimensional copula-based constructions in 

Variations detection.  

II. COPULA FUNCTION 

A. Copula theory 

Let F(x), G(y) be random variables marginally uniformly 

distributed on [0, 1]. A 2-dimensional copula function C : 

C:[0,1]
2
→[0,1] is a joint distribution:  

 

(F( ),G( )) P(X , ).C x y x Y y= ≤ ≤                               (1) 
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Sklar’s theorem [9] states that the joint distribution 

( , )H x y  can be represented as a copula function ( )C ⋅  of 

its marginal distributions: 

 

( , ) [ ( ), ( )]H x y C F x G y=                                                (2) 

 

The function ( )C ⋅  is called a copula. For many bivariate 

distributions, the copula form is the easiest way to express and 

generate the joint probabilities. 

B. Families of copulas 

Some well-known copulas distributions are reviewed here 

[17].  

The bivariate Gaussian copula ( , ; )GaC u v ρ  is given in 

the following form:  

 

1 1 2 2
( ) ( )

22

1 2
exp

2(1 )2 1

u v s st t
dsdt

ρ
ρπ ρ

− −Φ Φ

−∞ −∞

 − +
× − −−  

∫ ∫       (3) 

 

Where 
1−Φ is the inverse cumulative distribution function 

of a standard Gaussian and the correlation parameter ρ 

approaches −1 and 1.  

The Gaussian copula is flexible in that it allows for equal 

degrees of positive and negative dependence. 

The t-distribution with k degrees of freedom and 

correlation ρ takes the form,  ( , ; , )tC u v kρ  is given in the 

following form:  

 

1 1
( 2)/2

2 2
( ) ( )

22

1 2
1

(1 )2 1

k k

k
t u t v s st t

dsdt
k

ρ
ρπ ρ

− −
− +

−∞ −∞

 − +
+ −−  

∫ ∫    (4) 

 

where t− 1
 denotes the inverse of the cumulative distribution 

function of the t-distribution. 

Archimedean copulas are a set of functions which are 

popular because they allow modeling dependence in 

arbitrarily high dimensions with only one parameter, 

governing the strength of dependence. Most common 

Archimedean copulas admit an explicit formula. Commonly 

used functions contain Gumbel Copula, Clayton Copula and 

Frank Copula. Distribution functions are described as follow: 

 
1

( , ; ) max[( 1) ]ClC u v u vθ θ θθ − −= + −                           (5) 

 

Where, (0, )θ ∈ ∞  

 

1 ( 1)( 1)
( , ; ) ln[1 ]

( 1)

u v
Fr e e

C u v
e

θ θ

θθ
θ

− −

−

− −
= − +

−
           (6) 

 

Where, ( , ) \{0}θ ∈ −∞ ∞  

 
1

( , ; ) exp{ [( ln ) ( ln ) ] }GuC u v u vθ θ θθ = − − + −            (7) 

 

    

Where, [1, )θ ∈ ∞  

The Clayton copula cannot account for negative 

dependence. It has been used to study correlated risks because 

it exhibits strong left tail dependence and relatively weak right 

tail dependence. As θ approaches zero, the marginal 

distribution become independent. The Frank copula is 

popular for several merit reasons. First, unlike some other 

copulas, The Frank copula permits negative dependence 

between the marginal distribution, and dependence is 

symmetric in both tails. Parameter values of 1 correspond to 

independence. Gumbel does not allow negative dependence, 

but it contrast to Clayton, Gumbel exhibits strong right tail 

dependence and relatively weak left tail dependence. 

C. Tails dependence of copulas 

In some cases the concordance between tail values of 

random variables is of interest. It requires a dependence 

measure for upper and lower tails of the distribution. The tail 

dependence measure is essentially related to the conditional 

probability and the upper and lower tails of the distribution 

can be defined as follow, 

 

1 1

1
lim [ ( ) ( )]up

u
P Y G u X F uλ

−

− −

→
= > >                       (8) 

 
1 1

0
lim [ ( ) ( )]low

u
P Y G u X F uλ

+

− −

→
= < <                      (9) 

 

The measure λ
up

 and λ
low

 are widely used in drought or 

floods applications of extreme value theory to handle the 

probability that one event is extreme conditional on another 

extreme event. For copulas with analytical expressions, the 

computation of λ
up

 and λ
low

 can be straight-forward. For 

example, for the Gumbel-copula λ
up

 equals 2 − 2
θ
. 

D. Empirical copula 

Empirical copula function can help in choosing a copula 

that is appropriate for modeling given data. The bivariate 

empirical copula for a bivariate sample of length n is defined 

for random variables X and Y as: let 

( , )( 1,2, , )i ix y i n= ⋯  be samples taken from the two 

dimension random variable ( , )X Y , and ( )nF x  and 

( )nG y  are empirical distribution functions X and Y  

respectively. 

 

[ ( ) ] [ ( ) ]

1

1
( , ) ,   , [0,1]

n i n i

n

n F x u G y v

i

C u v I I u v
n

∧

≤ ≤
=

= ∈∑       (10) 

 

In the formula (10) [ ]I • is indicator function, 

when ( )n iF x u≤ , [ ( ) ] 1
n iF x uI ≤ = [ ( ) ] 1

n iF x uI ≤ =

[ ( ) ] 1
n iF x uI ≤ =  else [ ( ) ] 0

n iF x uI ≤ = .The Euclidean distance of 

E-Copula and bivariate copula is defined as equation (11), 
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2

1

( , ) ( , )
n

ni i i i

i

d C u v C u v
∧

=

= −∑                                (11) 

 

Euclidean distance can reflect goodness of fit, the smaller 

the value, the copula function is more appropriate. 

E. Sliding copula function 

The correlation coefficient will obvious change when 

changes in the relationship between two random variables. 

The variation analysis steps two random variables are as 

follows: 

(1)Choose the length of the sliding window W, window 

length of two random variables should be consistent. 

(2)Select sliding step length L, and sliding window W 

remains the same, starting from the first time series data with 

sliding step moving window W, L until the end of the time 

series. 

(3)Calculate the parameters of the two variables’ copulas 

within each window function, get along with the parameter 

sequence. 

(4)Analyze parameters sequence each window copulas; 

(5)Determine the best copulas types before and after 

variation based on Euclidean distance criteria. 

III. CASE STUDY 

We analyze variation relationship of precipitation and 

runoff of Xianyang station in weihe river basin in this paper. 

The Xianyang station is located in the mainstream. The data 

analyzed here are annual average steamflow and runoff 

collected from 1951 to 2010 archived by the Weihe River 

Hydrological Bureau. Both sequence length of precipitation 

and runoff are 720. The steamflow and runoff were affected 

by global climate changes and human activities are strongly 

affecting the spatial and temporal patterns of river runoff and 

other key hydrological variables. Due to human activities and 

climate factors, the relationship of rainfall and runoff changed, 

and showed a trend of decrease in Xianyang. 

A. Correlation coefficient 

To illustrate the variation relationship between rainfall and 

runoff, first we calculate correlation coefficient of monthly 

precipitation and runoff in the different window. The sliding 

step length is 12, and the length of the moving window is 12, 

24, 36, 48, 60 respectively, as shown in figure 1. 

In order to further explain the occurrence of the abrupt 

change points of  precipitation and streamflow, the correlation 

coefficient is calculated, as shown in figure 1. The size of the 

window have play an important role in smoothing, and we 

choose the window size is W=12, step length L=12 using 

sliding copula function in this research  [18,19].  

As can be seen from the figure 1, the correlation coefficient 

sequence of precipitation and streamflow is divided into three 

sections by two points of 1971 and 1993, so can be 

preliminarily ascertained two variation points occurred in 

1971 and 1993 at Xianyang from 1951 to 2010. In addition, 

the variation tendency of the correlation coefficient is 

consistent in different sliding window. 

As shown in figure 1, the correlation coefficient of 

precipitation and streamflow significantly declined in the 

Xianyang, and the correlation coefficient of precipitation and 

streamflow is divided into three parts by two points, and 

significant changes in the correlation coefficient occurred at 

1971and 1993. 

B.  Fitting copula function 

Three stages of copulas connect function of various 

parameters such as shown in table I, only considering the 

correlation coefficient. 

Calculate tail-dependence coefficient of three stages, as 

shown in figure 2: 

 

 
Fig. 2-1.  Tail-dependence coefficient from 1951 to 1971. 

 

 
Fig. 1.  The correlation coefficient of precipitation and streamflow different 

moving window. 

TABLE I 

COPULA FUNCTION PARAMETERS 

 1751.1-1971.12 1972.1-1993.12 1994.1-2010.12 

Gauss ρ = 0.72 ρ = 0.72 ρ = 0.64 

T 
ρ = 0.72 

k = 4 

ρ = 0.72 

k = 7 

ρ = 0.64 

k = 13 

Gumbel θ =1.95 θ =1.88 θ =1.65 

Clayton θ =1.78 θ =1.75 θ =1.46 

Frank θ =5.72 θ =5.35 θ =4.33 

 

TABLE I 

COPULA FUNCTION PARAMETERS 

 1751.1-1971.12 1972.1-1993.12 1994.1-2010.12 

Gauss ρ = 0.72 ρ = 0.72 ρ = 0.64 

T 
ρ = 0.72 

k = 4 

ρ = 0.72 

k = 7 

ρ = 0.64 

k = 13 

Gumbel θ =1.95 θ =1.88 θ =1.65 

Clayton θ =1.78 θ =1.75 θ =1.46 

Frank θ =5.72 θ =5.35 θ =4.33 

 

IAENG International Journal of Applied Mathematics, 47:3, IJAM_47_3_02

(Advance online publication: 23 August 2017)

 
______________________________________________________________________________________ 



 

 

 

Fit copula-based bivariate distributions to bivariate data, 

and estimate both the marginal and the copula parameters (the 

correlation coefficient, the number of degrees of freedom, the 

upper tail dependence coefficient, the coefficient of lower tail 

dependence, the empirical distributions etc.) of precipitation 

and streamflow copulas within each window function. 

According to the section 1, slide copulas connect method step, 

we choose the window size is W=12, step length L=12 in this 

paper. 

Table I and figure 2 shows, the first stage (1951-1971) and 

the second stage (1972-1993) of the various parameters of 

precipitation and streamflow are close, whether the 

relationship between precipitation and streamflow vary in 

1971, has yet to be further verified. Euclidean distance of 

E-Copula and b                 cty b cc8vgvbivariate copula can 

reflect goodness of fit. 

Euclidean distance of E-Copula and bivariate copula of 

three stages as shown in table Ⅱ, 

 

 
Kernel density of precipitation and streamflow as shown 

figure 3, 

 

 

  

We can be seen from table 2 and figure 3, there are changes 

of copulas parameter of precipitation and steamflow in the 

first stage (1951-1971) and second stage (1972-1993), but the 

type of density function has not changed. The density function 

obeys Gumbel-copula distribution in 1951-1993 and follows 

Frank-Copula function distribution in 1994-2010. The 

optimum density functions at each stage as shown in figure 4: 

 

 
Fig. 4-1. Bivariate Gumbel-copula density function from 1951 to 1971 

 
Fig. 3-3. Kernel density from 1994 to 2010. 

Fig. 3. Kernel density from 1951 to 2010 of Xianyang station. 

 

 

 
Fig. 3-2. Kernel density from 1972 to 1993.  

 

 
Fig. 3-1. Kernel density from 1951 to 1971. 

 

 
Fig. 2-3.  Tail-dependence coefficient from 1994 to 2010. 

Fig. 2. Tail dependence coefficient from 1951 to 2010 of Xianyang 

station. 

 

 
Fig. 2-2.  Tail-dependence coefficient from 1972 to 1993. 

 

TABLE Ⅱ 

EUCLIDEAN DISTANCE OF E-COPULA AND BIVARIATE COPULA IN 

XIANYANG STATION 

 1951.1-1971.12 1972.1-1993.12 1994.1-2010.12 

GAUSS d = 0.491 d = 0.398 d = 0.327 

T d = 0.387 d = 0.379 d = 0.492 

GUMBEL d = 0.357 d = 0.339 d = 0.415 

CLAYTON d = 0.493 d = 0.456 d = 0.527 

FRANK d = 0.478 d = 0.455 d = 0.369 

OPTIMAL 

COPULA 

GUMBEL 

-COPULA 

GUMBEL 

-COPULA 
FRANK -COPULA 
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IV. DISCUSSIONS 

Hydrological cycles and water resources are strongly 

influenced by climatic factors, such as El Niño events and 

global climate changes, and human activities, such as 

large-scale water conservation constructions and ecological 

restoration measures [20, 21]. In 1993 a third ENSO event 

occurred, while the West Pacific Subtropical high pressure 

system was strong, resulting in a further significant drop 

(14.9%) in precipitation in the Weihe River[22], which 

substantially contributed to a 42.4% reduction in average 

annual runoff. However, human activities have also markedly 

influenced runoff patterns. Notably, the construction of 

terraces, reservoirs and irrigation canals, and other water 

conservancy measures, reduced the efficiency and runoff of 

watershed source area. Continuous increases in industrial and 

agricultural water consumption, combined with climate 

change, contributed to both the abrupt change of runoff in 

1993 and its tendency to decline [23, 24]. 

V.  CONCLUSIONS 

Copulas have become a popular tool in multivariate 

modeling successfully applied in many fields. Copula 

function was used to estimate the probability distribution of 

precipitation and streamflow in the paper. And on this basis, 

we discuss the variation of dependence structure between 

precipitation and streamflow. The copula function contains all 

information on the dependence structure between the 

components of precipitation and streamflow, whereas the 

marginal cumulative distribution function contains all 

information on the marginal distribution. The copula function, 

calculated as described above, show significant correlation 

features with significant decreasing trends in month runoff 

throughout the study period were detected at Xianyang 

hydrological station. During the period of records, the Weihe 

River basin has been becoming drier. Meantime, the local 

human activities have become more and more extensive. 

Because of climate changes and a series of water conservancy 

measures, there is one variation of precipitation and 

streamflow in Xianyang station. Result shows that the variant 

of the dependence structure between precipitation and 

streamflow occurred in 1993, obeyed Gumbel-copula 

function distribution in 1951-1993 and followed 

Frank-copula function distribution in 1994-2010. Many 

advantages of the copula function help us further understand 

the tail dependence of precipitation and streamflow 

relationship in the simulation relationship bivariate. 

ACKNOWLEDGMENTS 

The work was supported by Natural Science Foundation of 

China (51190093, 51179149), the Ministry of Education in 

the new century talents program (NCET-10-0933). The 

author thanks Professor Zhang for helpful discussions on time 

in modeling, Doctor Huang for helpful discussions on copulas, 

and referees for helpful comments that improved the paper. 

REFERENCES 

[1] M. Sulkava, S. Luyssaert, P. Rautio, I. A. Janssens, and J. Hollm’en; 

“Modeling the effects of varying data quality on trend detection in 

environmental monitoring,” Ecological Informatics, vol. 2, no. 2, pp. 

167-176, 2007.  

[2] R. V. Andreoli , M. T. Kayano “Multi-scale variability of the sea 

surface temperature in the tropical Atlantic.” Journal of Geophysical 

Research-atmospheres, vol. 109, no. 5, pp. 2719-2732, 2004. 

[3] C. Genest , A. C. Favre, “Everything You Always Wanted to Know 

about Copula Modeling but Were Afraid to Ask,” Journal of 

Hydrologic Engineering, vol. 12, no. 4,  pp. 347-368, 2007. 

[4] M. V. Birsan, P. Molnar, P. Burlando, and M. Pfaundler, “Streamflow 

trends in Switzerland.” Journal of Hydrology, vol. 314, no. 1-4, pp. 

312-329, 2005. 

[5] B. Chen, “Climate change and pesticide loss in watershed systems: a 

simulation modeling study”, Journal of Environmental Informatics, vol. 

10, no. 2,  pp. 55-67, 2007. 

[6] P. K. Trivedi , D. M. Zimmer, “Copula Modeling: An Introduction for 

Practitioners”, Foundations and Trends in Econometrics, vol . 1, no. 1 

pp. 1-11,  2007. 

[7] C. D. Michele, G. Salvadori, M. Canossi, A. Petaccia, and R. Rosso, 

“Bivariate statistical approach to check adequacy of dam spillway.”  
Journal of Hydrologic Engineering, vol. 10, no. 1, pp. 50–57, 2005. 

[8] Favre, A.-C., El Adlouni, S., Perreault, L., Thiémonge, N., and Bobée, 

B., “Multivariate hydrological requency analysis using copulas.” 

Water Resour. Res., vol. 10, no. 1, pp. 1–12, 2005. 

[9] A. Sklar, “Random variables, joint distributions, and copulas,”  
Revue De Théologie Et De Philosophie, vol. 9, no. 6, pp. 449–460, 

1973. 

[10] D. M. Zimmer, P. K. Trivedi , “Using trivariate copulas to model 

sample selection and treatment effects: Application to family health 

care demand”. Journal of Business and Economic Statistics vol. 24,  

pp. 63–76, 2006. 

[11] C. S. Lzel, P.Friederichs, “Multivariate non-normally distributed 

random variables in climate research – introduction to the copula 

approach”. Nonlinear Processes in Geophysics, vol. 15, no. 5, pp. 

761-772, 2008. 

[12] D. B. Thompson, R. T. Kilgore, “Estimating Joint Flow Probabilities at 

Stream Confluences using Copulas”, Transportation Research 

Record , vol. 2262, no. 20, pp. 200–206, 2012.  

[13] S. Wu, “Construction of asymmetric copulas and its application in 

two-dimensional reliability modelling,” European Journal of 

Operational Research,  vol 238, no. 2, pp. 476–485, 2014. 

 
Fig. 4-3. Bivariate Frank -copula density function in from 1994 to 2010 

Fig. 4. The joint probability density function of best copula functions 

each stage 

 
Fig. 4-2. Bivariate Gumbel-copula density function from 1972 to 1993 

 

IAENG International Journal of Applied Mathematics, 47:3, IJAM_47_3_02

(Advance online publication: 23 August 2017)

 
______________________________________________________________________________________ 



 

[14] S. Ruan, “Modelling of turbulent lifted jet flames using flamelets: a 

priori assessment and a posteriori validation,” Combustion Theory and 

Modelling, vol. 18, no. 2, pp 295–329, 2014.  

[15] E. Eban, G. Rothschild, A. Mizrahi, G. Elidan, C. Carvalho, and P. 

Ravikumar, “Dynamic Copula Networks for Modeling Real-valued 

Time Series,” Journal of Machine Learning Research, vol. 31, no. 2  

pp. 397–405, Part II, 2013. 

[16] H. M. Bandara, A. P. Jayasumana, "On Characteristics and Modeling 

of P2P Resources with Correlated Static and Dynamic Attributes". 

IEEE Global Telecommunications Conference, pp. 1–6, 2011. 

[17] A. Philipp. "Bayesian Copula Distributions, with Application to 

Operational Risk Management-Some Comments", Methodology and 

Computing in Applied Probability, vol. 15, no. 1,  pp. 105–108,  2013. 

[18] Y. L. Li, J.X. Chang, Q. Huang, and Z. L. Wang, “Diagnosis of abrupt 

changes in precipitation and runoff relation based on sliding Copula 

function,” Journal of Hydroelectric Engineering, vol. 33, no. 6 , pp. 

20-24, 2014. 

[19] Y. Fang, L. Madsen, L. Liu, “Comparison of Two Methods to Check 

Copula Fitting,” IAENG International Journal of Applied 

Mathematics, vol. 44, no.1, pp. 53-61, 2014. 

[20] Z. X. Bao, J. Y.  Zhang , G. Q. Wang, “Attribution for decreasing 

streamflow of the Haihe River basin, northern China: Climate 

variability or human activities.” Journal of Hydrology, vol. 407, pp. 

117-129, 2012. 

[21] K. Kezer , H .Matsuyama, “Decrease of river runoff in the Lake 

Balkhash basin in central Asia.” Hydrol. Process, vol. 20, no.2,  pp. 

1407-1423, 2006. 

[22] H. L. Zhang, Y. Chen , G .X. Ren, “The characteristics of precipitation 

variation of Weihe River Basin in Shaanxi Province during recent 50 

years.” Agricultural Research in the Arid Areas, vol. 26, pp. 236-240, 

2008. 

[23] S.L. Zhang, Y.H. Wang , P. T.Yu,  “Impact of human activities on the 

spatial and temporal variation of runoff of Jinghe Basin,Northwest 

China.” Journal of Arid Land Resources and Environment, vol. 25, no. 

2, pp. 66-72, 2011. 

[24] A. Bouchoucha, R. Bessaïh, “Natural convection and entropy 

generation of nanofluids in a square cavity”, International Journal of 

Heat and Technology, vol. 33, no. 4, pp. 1-10, 2015. 

IAENG International Journal of Applied Mathematics, 47:3, IJAM_47_3_02

(Advance online publication: 23 August 2017)

 
______________________________________________________________________________________ 




