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Abstract—It is requisite to construct the normal extended
function for a given function defined on the interface. In this
paper, the extended function is compulsory to satisfy some
interface conditions. Firstly, we construct a proper normal
extended correction function which can transfer the interface
problem to some non-interface one. The correction function
is designed in the form of power series which are helpful to
theoretical analysis. Open and closed interface curves are con-
sidered respectively. Secondly, a simple but efficient algorithm
is presented to obtain the extended function value at any given
point not only on the interface, such as some Gaussian points.
Finally, we employ the extended function into some interface
problems and carry on with some numerical experiments by
employing the linear finite element method. Numerical results
confirm the validity of normal extended correction functions
and the efficiency of the algorithm.

Index Terms—normal extended functions, jump conditions,
interface problems.

I. INTRODUCTION

IN many applications, the interface problem consists of the
usual boundary value problem of the diffusion equation,

plus jump conditions across the material interface required
by pertinent physics. It is well-known that if the interface
is smooth enough, the solution of the interface problem is
also very smooth in individual regions where the coefficient
is smooth, but due to the jump of the coefficient across the
interface, the global regularity is usually low. Due to the low
global regularity and the irregular geometry of the interface,
achieving accuracy is difficult with standard finite element
methods. Some researchers put up some popular and efficient
methods for this problem, such as the immersed interface
methods ([1], [2]), the average methods ([3], [4], [5]), the
finite element methods ([6], [7]), the finite difference method
and the mixed finite element method ([8], [9]), the asymp-
totic expansion method ([10], [11], [12], [13]), and so on.
During the course of theoretical analysis, it is important and
necessary that jump conditions across the material interface
are properly dealt with. Sometimes, interface functions need
be extended to some subregions where are convenient for
error estimates. It stimulates us to consider how to construct
the proper extended function for interface problems. The
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extended function should not only be satisfied with interface
conditions, but also be in simple form and smooth enough
to be helpful for theoretical analysis.

In this paper, the extended function is compulsory to
satisfy some interface conditions, such as the nonhomoge-
neous solution and normal flux jumps. Firstly, we construct
a proper normal extended correction function which can
transfer general jump conditions to natural jump ones. It
leads to the transformation from the interface problem to
some non-interface one. The correction function is designed
in the form of power series which are helpful to theoretical
analysis. Open and closed interface curves are considered,
respectively. Secondly, a simple but efficient algorithm is
presented to obtain the function value at any given point not
on the interface, such as some Gaussian points. This function
value equals to that at some interface point from which there
is an unique normal straight line and simultaneously the
above given point is obligatorily on it. The interface point can
be uniquely determined when the interface curve is convex as
looked from the extended region. Finally, we use the above
extended correction function to some interface problems and
carry on with some numerical experiments where the linear
finite element method is employed. Numerical results verify
the validity of normal extended functions and the efficiency
of the algorithm.

The remainders of this paper is organized as follows. In
section 2, we introduce the demand of normal extended
functions. In section 3, we present normal extended functions
for two cases. In section 4, we employ the constructed
functions to two interface problems and display numerical
results to support our conclusions.

II. THE BACKGROUND AND DEMAND OF THE NORMAL
EXTENDED FUNCTION

In many fields, we focus on a type of elliptic equation as
follows

−∇(β(x)∇u) = f, (1)

together with Dirichlet conditions u = g(x) on the boundary
of the region Ω = Ω+ ∪Ω− ∪ Γ (shown as Fig. 1), Γ is the
intersection curve (called as interface) of the subregions Ω+

and Ω− where φ(x) > 0 and φ(x) < 0, respectively, and the
equation of the interface is φ(x) = 0, β(x) is a continuous
function.

On the interface, jump conditions are as follows

[u]|Γ = (u+ − u−)|Γ = g0(x), (2)

[
∂u

∂n
]|Γ = (u+

n − u−n )|Γ = g1(x), (3)

where u+, u− and u+
n , u

−
n are the solutions on Ω+,Ω− and

the outer normal derivatives on Γ, respectively.
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Fig. 1. The region and the interfaces.

If problem (1) satisfies the compatibility condition

−
∫

Γ

g1ds =

∫
Ω

f(x)dx,

then there exists unique solution for it.
To solve problem (1), one agreeable idea is to transform it

to another elliptic problem with the natural jump condition

[q]|Γ = 0, [qn]|Γ = 0, (4)

where

q(x) = u(x)− û(x), (5)

û(x) =

{
0, x ∈ Ω− ,
ũ(x), x ∈ Ω+, (6)

and ũ(x) is the undetermined smooth function.
From (5) and (6), problem (1) can be transformed as

follows

−∇ · (∇q) = f̃ , x ∈ Ω/Γ, (7)
[q](x) = 0, x ∈ Γ,

[qn](x) = 0, x ∈ Γ,
q(x) = q0, x ∈ ∂Ω,

where f̃ =

{
f−, x ∈ Ω−,
f+ +4ũ(x), x ∈ Ω+,

and q0 = (g − ũ)|∂Ω.
One can see that (7) is an usual elliptic problem convenient

to be solved by many numerical methods. Hence, it is the
key point to construct the normal extended function ũ(x)
according to compulsory conditions (2) and (3) in interface
problems. It is our main task to take in this paper.

III. CONSTRUCTION OF THE NORMAL EXTENDED
FUNCTION

We will come to discuss how to extend the function g0(x)
in (2) to some given subregion, such as Ω+, in the normal
direction. Let the extended function be ũ(x). From (2),(3)
and (4), we can obtain

ũ|Γ+ = g0(x), (8)
ũn|Γ+ = g1(x), (9)

where Γ+ means the single side limit from subregion Ω+.
In the following, we shall present how to construct ũ(x)

with the compulsory conditions (8) and (9) according to open
and closed interface curves, respectively.

Fig. 2. A special interface.

A. Open interface curve

We firstly derive the normal extent function ũ(x) for a
simple but basic interface curve Γ expressed as φ(x) = x2−
x1 = 0. Let s = x2−x1√

2
, t = x2+x1√

2
and ũ be in the form

of power series

ũ(x) = ũ(s, t) =
∞∑
i=0

ai(t) s
i, (10)

where the interface Γ : s = 0 and variables s, t are shown in
Fig. 2 (a).
To obtain ũ, we only need determine the coefficients
ai(t), i = 0, 1, 2, 3, ....

The conditions (8) and (10) lead to

a0(t) = ũ|s=0 = g0(x(t)). (11)

By some basic calculations and conditions (9) and (10),

a1(t) =
∂ũ

∂s
|s=0 = un|Γ+ = g1(x(t)). (12)

From some inductions, one can see that

−4ũ = −4̃ũ, (13)

where 4̃ũ = ∂2ũ
∂s2 + ∂2ũ

∂t2 , 4ũ = ∂2ũ
∂x2

1
+ ∂2ũ

∂x2
2

.
From (14) and the facts

−4̃ũ|Γ = [−
∞∑
i=0

a”
i (t)s

i +

∞∑
i=2

aii(i− 1)si−2]|s=0

= −a”
0(t)− 2a2,

and

−4ũ|Γ = −4(u+ − u−)|Γ = (f+ − f−)|Γ,

one can obtain

a2(t) = −1

2
a”

0(t)− 1

2!
(f+ − f−)|s=0,

where a”
0(t) = ∂2a0

∂t2 , and (f+− f−)|s=0 is a function about
variable t.

Similar derivation leads to

a3(t) = −1

6
a”

1(t)− 1

3!

∂(f+ − f−)

∂s
|s=0.

In general,

ak(t) = − 1

k(k − 2)
a”
k−2(t)− 1

k!
F (k−2)(t), k ≥ 2, (14)

where a”
k−2(t) = ∂2ak−2

∂t2 ,
and F (k−2)(t) := ∂k−2(f+−f−)

∂k−2s
|s=0 is a function about

variable t.
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Hence, from (11), (12) and (15), we have

ak(t) =


g0(x(t)), k = 0,
g1(x(t)), k = 1,
− 1
k(k−1)a

”
k−2(t)− 1

k!F
(k−2)(t), k ≥ 2,

(15)

and the normal extended correction function (10) is deter-
mined.
Remark 1: We can obtain the corresponding extended func-
tion only by some rotation transformation as the interface is
other straight line.

In the following, we will consider a general case. In
general, we can consider the interface composed by sev-
eral segment lines. To be convenient, we only discuss the
case of two segment lines (shown as Fig. 2 (b)), where
Γ = Γ1 ∪ Γ2, (x0

1, x
0
2) = Γ1 ∩ Γ2, and

Γ1 : x2 = x0
2, x1 ≥ x0

1, Γ2 : x1 = x0
1, x2 ≤ x0

2.

Hence, region Ω is divided into two subregions Ω− and Ω+,
and Ω+ is partitioned three parts Ω+,i, i = 1, 2, 3.

Assume that interface functions g0(x), g1(x), x ∈ Γ1,Γ2,
are smooth enough, respectively. In the following, we shal-
l determine the corresponding normal extended functions
ũi(x), i = 1, 2, 3 in three subregions, respectively.

For the interface Γ1 : x2 − x0
2 = 0,

ũ1(x) =
∞∑
i=0

ai(x1)(x2 − x0
2)i, x ∈ Ω+,1. (16)

By some calculations similar to (15),

ak(x1) =


g0(x1), k = 0,
g1(x1), k = 1,
− 1
k(k−1)a

”
k−2(x1)− 1

k!F
(k−2)(x1), k ≥ 2,

where

F (k−2)(x1) =
∂k−2(f+ − f−)

∂xk−2
2

|x2=x0
2

=
∂k−2(f+ − f−)

∂xk−2
2

(x1).

For the interface Γ2 : x1 − x0
1 = 0,

ũ2(x) =

∞∑
i=0

bi(x2)(x1 − x0
1)i, x ∈ Ω+,2. (17)

Similarly, we have

bk(x2) =


g0(x2), k = 0,
g1(x2), k = 1,
− 1
k(k−1)a

”
k−2(x2)− 1

k!F
(k−2)(x2), k ≥ 2,

where

F (k−2)(x2) =
∂k−2(f+ − f−)

∂xk−2
1

|x1=x0
1

=
∂k−2(f+ − f−)

∂xk−2
1

(x2).

For the remainder subregion Ω+,3, we can choose the
simplest way that the normal extended function is a constant
g0(x0

1, x
0
2). This way naturally satisfies the consistency of t-

wo normal extended functions defined in subregions between
Ω+,1 and Ω+,2.

ũ3(x) = g0(x0
1, x

0
2), x ∈ Ω+,3. (18)

Hence, the normal extended function ũ(x),x ∈ Ω+ is
completely determined by (16), (17) and (18) for this general
case.
Remark 2: We maybe encounter some difficulties when the
reconstructions are needed for the first, even second order
derivative at some non-interface point by ũ3(x),x ∈ Ω+,3.
These difficulties are from the facts that the derivative
function is discontinuous on the intersection face between
subregions Ω+,3 and Ω+,i, i = 1, 2. In practice, we can
use some smooth curves to approximate the corner (x0

1, x
0
2),

which can relieve even eliminate it.

B. Closed interface curve

We firstly consider a simple but basic case that the
interface is consisted of a rectangle (shown as 2 (c)). We shall
not present the derivation and construction of the normal
extended function ũ(x),x ∈ Ω+ because its procedure is
only to repeat and resemble that in Section 3.1. As a matter of
fact, we can deal with some convex closed polygon interface
only by some rotation transformation.

In the following, we will consider how to construct the
normal extended function ũ(x),x ∈ Ω+ when the interface
is a circle

r = r0,

where r =
√
x2

1 + x2
2 and r0 is a constant.

Let ũ(x),x ∈ Ω+ be the form of power series in polar
coordinates

ũ(x) = ũ(r, θ) =

∞∑
i=0

ai(θ) (r − r0)i, (19)

where θ = arctan(x2

x1
).

Firstly, we have

a0(θ) = ũ|r=r0 = g0(r0, θ),

a1(θ) =
∂ũ

∂n
|r=r0 =

∂ũ

∂r
|r=r0 = g1(r0, θ).

Noticing that

4ũ|Γ = (
1

r

∂ũ

∂r
+
∂2ũ

∂r2
+

1

r2

∂2ũ

∂θ
)|Γ

=
1

r
a1(r0, θ) + 2!a2(r0, θ) +

1

r2
a
′′

0 (r0, θ)

= (f+ − f−)|Γ,

we have

a2(θ) = − 1

2!
[(f+ − f−)|Γ +

1

r0
a1(r0, θ) +

1

r2
0

a
′′

0 (r0, θ)].

In general, for k ≥ 2,

ak(θ) = − 1

r2
0

1

k(k − 1)
a”
k−2(r0, θ)−

1

r0

1

k
a
′

k−1(r0, θ)

− 1

k!
Fk−2(r0, θ),

where Fk(r0, θ) = ∂k−2(f+−f−)
∂rk−2 |Γ1 .

Hence, we have

ak(θ) =


g0(r0, θ), k = 0,
g1(r0, θ), k = 1,
− 1
r20

1
k(k−1)a

”
k−2(r0, θ)− 1

r0
1
ka
′

k−1(r0, θ)

− 1
k!Fk−2(r0, θ), k ≥ 2,
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where

F (k−2)(r0, θ) =
∂k−2(f+ − f−)

∂rk−2
|Γ

=
∂k−2(f+ − f−)

∂rk−2
(r0, θ).

Therefore, the normal extended function (19) is deter-
mined.
Remark 3: For the general interface curve Γ : φ(x) = 0, let
ũ be in the form of generalized power series as follows

ũ(x) =
∞∑
i=0

ai(x)φi(x).

Due to the complicity, we only roundoff it several terms to
approximate the normal extended function ũ. For instance,
we have

ũ(x) ≈ a0(x) + a1(x)φ(x) + a2(x)φ2(x),

where

a0(x) = g0(x), a1(x) =
1
∂φ
∂n

(g1 −
∂g0

∂n
)|φ(x)=0,

a2(x) =
(f+ − f−)−4g0 − g14φ− 2∇g1 · ∇φ

2!|∇φ|2
|φ(x)=0.

IV. AN ALGORITHM FOR THE NORMAL EXTENDED
FUNCTION

To construct the normal extended function, we present an
algorithm about how to obtain the corresponding coordinates
on the interface for any point in the extended region. After
acquiring the coordinates, we can get the values at non-
interface point.
Algorithm 1:
Input: any point P (x1, x2) ∈ Ω+ and the interface level-set
function φ(x1, x2).
Output: P0(x0

1, x
0
2) ∈ Γ.

Conditions: −−→P0P‖n, where n is the out normal vector at
P0.

Step 1: find the equation of the line: −−→P0P

x0
1 − x1

φx1(x0
1, x

0
2)

=
x0

2 − x2

φx2(x0
1, x

0
2)
, (20)

where

φx1
(x0

1, x
0
2) =

∂φ(x)

∂x1
|(x0

1,x
0
2),

φx2
(x0

1, x
0
2) =

∂φ(x)

∂x2
|(x0

1,x
0
2).

Step 2: solve the equation (20) with the following one
simultaneously,

φ(x0
1, x

0
2) = 0,

then we can get the corresponding coordinates (x0
1, x

0
2) on

the interface.
Remark 4: In above algorithm, the iterative methods, such
as the fixed point method or Newton iterative method, are
always introduced to solve the nonlinear equations.

V. NUMERICAL EXPERIMENTS

In this section, we will present two typical numerical
examples for normal extended functions when the interface
curves are open and closed, respectively, as solving interface
problem (1). In numerical tests, the linear finite element
method is employed, we only choose some parts of the power
series which are enough to obtain the saturated convergent
order of finite element approximations for interface problem
(1) in our tests.
Example 1 In problem (1), we choose β+ = 1, β− = 2,
Ω = (0, 1)2, the interface x2 − 0.5 = 0 and

u(x) =

{
u+ = 2sin(πx1)sin(πx2)(x2 − 0.5), x ∈ Ω+,
u− = sin(πx1)sin(πx2)(x2 − 0.5) + 2, x ∈ Ω−.

One can see that

[u]|Γ = −2, [un]|Γ = 0.

We choose the interceptive (roundoffed) normal extended
function ũ(x) = −2 in this problem and carry on with
the numerical tests as follows. Numerical results are shown
as Tab. 1, where ‖ · ‖ς , ς = 0, 1,∞ denote the norms
L2, H1, L∞, and γ denotes the ratio of the errors u − uh
between the step sizes h and h

2 . From the results in this table,
one can see that the errors of uh in norms L2, H1, L∞ are
saturated-convergence orders, respectively.

TABLE I
THE ERRORS OF uh IN NORMS L∞, L2, H1 FOR THE OPEN INTERFACE

CURVE.

N1 ×N2 ‖u− uh‖0 γ ‖u− uh‖∞ γ ‖u− uh‖1 γ
8× 8 3.3005e-3 6.95e-2 2.55

16× 16 8.7057e-4 4.00 2.23e-2 3.12 1.32 1.93
32× 32 2.2394e-4 4.00 5.69e-3 3.92 6.69e-1 1.97
64× 64 5.6827e-5 4.00 1.43e-3 3.98 3.39e-1 1.97

Example 2 In problem (1), we choose (as reference
[2]) β+ = β− = 1, the interface x2

1 + x2
2 = r2

0 , r0 = 0.5,
Ω = (−1, 1)2 and

u(x) =

{
2r3 + 5, φ(x) ≤ 0,
r3, φ(x) > 0, r =

√
x2

1 + x2
2.

One can see that

[u]|Γ = −(r3
0 + 5), [un]|Γ = −3r2

0.

We choose the interceptive (roundoffed) normal extended
function is

ũ(x) = −(r3
0 + 5)− 3r2

0

r2 − r2
0

2r
,

in this example and carry on numerical tests as follows.
Numerical results are shown as Tab. 2 . From the results
in this table, one can see that the errors of uh in norms
L2, H1, L∞ are saturated-convergence orders, respectively.

VI. SUMMARY AND CONCLUSIONS

In this paper, we construct the normal extended correction
function in the form of power series which are helpful to
theoretical analysis, for open and closed interface curves,
respectively. A simple but basic and efficient algorithm
is designed to obtain the extended function value of
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TABLE II
THE ERRORS OF uh IN NORMS L∞, L2, H1 FOR THE CLOSED

INTERFACE CURVE.

N ‖u− uh‖0 γ ‖u− uh‖∞ γ ‖u− uh‖1 γ
64 3.989e-5 1.636e-4 1.506e-1
128 1.204e-5 3.23 4.779e-5 3.43 7.533e-2 1.99
256 2.872e-6 4.19 1.162e-5 4.11 3.767e-2 1.99
512 7.261e-7 3.95 2.973e-6 3.91 1.884e-2 1.99
1024 1.769e-7 4.10 7.327e-7 4.06 9.421e-3 1.99

any non-interface point projected to the interface in the
direction of normal direction. We apply the extended
function to some interface problems and carry on some
numerical experiments. Numerical results confirm the
validity of normal extended functions and the efficiency of
the algorithm. In the future, we will consider the following
two problems: one is how to reconstruct the corresponding
first and second order derivatives by the normal extended
function values, the other is how to construct the normal
extended function for some interface curves which are not
convex. For the second one, maybe we can only design
some algorithm for some neighbor region near the interface
curve or else the projected interface point can not uniquely
be determined. These are main tasks in the future.
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