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Abstract—For globally solving sum of linear ratios problem
(SLRP), this paper presents a new branch-and-bound method.
In this method, a new linear relaxation technique is proposed
firstly; then, the initial problem SLRP is solved by a sequence
of linear programming problems. Meanwhile, to improve the
convergence speed of our algorithm, two accelerating techniques
are presented. The proposed algorithm is proved to be conver-
gent, and some experiments are provided to show its feasibility
and efficiency.
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I. INTRODUCTION

THIS paper considers the following sum of linear ratios
problem (SLRP):

SLRP

 v = min Φ(x) =
p∑

i=1

δi(x)
θi(x)

s.t. Ax ≤ b,

where p ≥ 2, A ∈ Rm×n, b ∈ Rm are arbitrary real

numbers, δi(x) =
n∑

j=1

cijxj + di, θi(x) =
n∑

j=1

eijxj + fi

are affine functions, D = {x ∈ Rn | Ax ≤ b} is bounded
with intD ̸= ∅, and for ∀x ∈ D, δi(x) ≥ 0, θi(x) ̸= 0, i =
1, · · · , p. In fact, if we use the method of [1] to preprocess
problem SLRP, we also only request θi(x) ̸= 0, i = 1, · · · , p.

Among fractional programming, the problem SLRP is
a special class of optimization problems. Since its initial
development, it has attracted the interest of practitioners and
researchers for many years. There are two main reasons.
One reason is that it frequently appears in a wide variety of
applications, such as financial optimization [2], portfolio op-
timization [3,4], microeconomics [5], plant layout design [6],
transportation problems [7], layered manufacturing problems
[8,9], and so on. Another reason is that, it is well-known the
problem SLRP is NP-hard [10,11], that is, it generally posses
multiple local optima, many of which fail to be globally
optimal.

During the past years, many algorithms have been devel-
oped to solve special cases of problem SLRP. For example,
for x ∈ D, under the assumption that δi(x) ≥ 0, θi(x) > 0,
by using variable transformation, Charnes and Cooper [12]
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put forward an efficient elementary simplex method with
p = 1. Based on the work of [12], Konno et al. [13]
proposed a similar parametric elementary simplex method
with p = 2, which can be used to solve large scale problem.
When p = 3, Konno and Abe [14] developed a heuristic
algorithm. When p ≥ 3, by using the characteristics of
exponential and logarithmic functions, Wang et al. [15]
presented a double linearization technique. By using an
equivalent transformation and a linearization technique, Shen
and Wang [16] proposed a branch and bound algorithm for
solving a sum of linear ratios problem with coefficients.
Through solving an equivalent concave minimum problem of
the original problem, Benson [17] put forward a new branch
and bound algorithm. Depetrini and Locatelli [18] proposed
a fully polynomial time approximate scheme (FPTAS) for the
case where p is fixed. Through using suitable transformation,
Benson [19] proposed a method, which has a potential to
solve SLRP by some well known techniques. By using
the theory of monotonic optimization, Hoaiphuong and Tuy
[20] presented a unified method to solve a wider class
of fractional programming problems. Under the assumption
that δi(x) ≥ 0, θi(x) ̸= 0, Ji et al. [21] developed a
branch and bound algorithm. Under the assumption that
θi(x) > 0, Carlsson and Shi [22] proposed a linear relaxation
algorithm for solving the sum-of-linear-ratios problem with
lower dimension. Under the assumption that θi(x) ̸= 0, three
global optimization algorithms were developed [1,23,24]. In
the case that δi(x) and θi(x) are nonlinear functions, several
algorithms have been proposed [25-27].

The purpose of this paper is to develop a reliable and
effective method for globally solving problem SLRP with
lower dimension. In this method, firstly, by utilizing the char-
acteristic of the problem SLRP, we present a new lineariza-
tion technique, which can be embedded within a branch-and-
bound algorithm. After that, two accelerating techniques are
presented, which can be used to improve the convergence
speed of our algorithm. Finally, numerical experiments show
that the proposed algorithm is feasible and effective, and the
computational advantages are demonstrated. Compared with
[15,17,22], the model considered in this paper has a more
general form; compared with [1,24], our algorithm is easier
to implement, and does not need to add new variables and
constraints.

This paper is organized as follows. In Section 2, the new
linear relaxation technique is presented, which can be used to
obtain the relaxed linear program (RLP) for problem SLRP.
In order to improve the convergence speed of our algorithm,
two accelerating techniques are presented in Section 3. In
Section 4, the global optimization algorithm is described, and
the convergence of this algorithm is established. Numerical
results are reported to show the feasibility and efficiency of
our algorithm in Section 5.
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II. RELAXED LINEAR PROGRAM (RLP)

In problem SLRP, for ∀x ∈ D, since θi(x) ̸= 0, by the
intermediate value theorem, we have θi(x) > 0 or θi(x) < 0.
For convenience in expression, let

I+ = {i | θi(x) > 0, i = 1, · · · , p},
I− = {i | θi(x) < 0, i = 1, · · · , p}.

To solve problem SLRP, the principal task is the con-
struction of lower bound for this problem and its partitioned
subproblems. A lower bound of problem SLRP and its
partitioned subproblems can be obtained by solving a relaxed
linear program (RLP). For generating the problem RLP,
the strategy proposed by this paper is to underestimate the
objective function Φ(x) with a linear function.

Towards this end, we first solve 2n linear programming
problems l0j = min

x∈D
xj , u0

j = max
x∈D

xj(j = 1, · · · , n), and

construct a rectangle H0 = {x ∈ Rn | l0j ≤ xj ≤ u0
j , j =

1, · · · , n}. Then, the problem SLRP can be rewritten as the
following form:

SLRP


v = min Φ(x) =

p∑
i=1

δi(x)
θi(x)

s.t. Ax ≤ b,
x ∈ H0.

Let H = {x | l ≤ x ≤ u} be the initial box H0 or
modified box as defined for some partitioned subproblem in
a branch and bound scheme. Now, we demonstrate how to
derive the problem RLP for problem SLRP over H .

Compute ξ
i

=
n∑

j=1

min{cij lj , cijuj} + di, ξi =

n∑
j=1

max{cij lj , cijuj} + di, η
i
=

n∑
j=1

min{eij lj , eijuj} +

fi, ηi =
n∑

j=1

max{eij lj , eijuj} + fi, obviously, we have

ξ
i
≤ δi(x) ≤ ξi, η

i
≤ θi(x) ≤ ηi, i = 1, · · · , p.

To derive the problem RLP of problem SLRP over H , we
first consider the term δi(x)

θi(x)
, i = 1, · · · , p .

For i ∈ I+, since ηini(x)− ξ
i
θi(x) ≥ 0, θi(x)− ηi ≤ 0,

we have

(ηini(x)− ξ
i
θi(x))(θi(x)− ηi) ≤ 0,

that is

ηini(x)θi(x)− η2i δi(x)− ξ
i
d2i (x) + ξ

i
ηidi(x) ≤ 0.

Furthermore, we have

η2i δi(x) ≥ ηini(x)θi(x)− ξ
i
d2i (x) + ξ

i
ηidi(x). (1)

Since ηiηidi(x) > 0, dividing inequality (1) by ηiηθi(x), we
have

δi(x)

θi(x)
≥ δi(x)

ηi
−

ξ
i

η2i
θi(x) +

ξ
i

ηi
. (2)

In addition, since ηini(x) − ξ
i
θi(x) ≥ 0, θi(x) − η

i
≥ 0,

we have

(ηini(x)− ξ
i
θi(x))(θi(x)− η

i
) ≥ 0,

that is

ηini(x)θi(x)− ηiηini(x)− ξ
i
d2i (x) + ξ

i
η
i
di(x) ≥ 0. (3)

Dividing inequality (3) by ηiηidi(x), we can obtain

δi(x)

θi(x)
≤ δi(x)

η
i

−
ξ
i

ηiηi
θi(x) +

ξ
i

ηi
. (4)

For i ∈ I−, since η
i
ni(x)− ξ

i
θi(x) ≤ 0, θi(x)− ηi ≤ 0,

we have

(η
i
ni(x)− ξ

i
θi(x))(θi(x)− ηi) ≥ 0,

that is

η
i
ni(x)θi(x)− η

i
ηini(x)− ξ

i
d2i (x) + ξ

i
ηidi(x) ≥ 0. (5)

Since ηiηidi(x) < 0, dividing inequality (5) by ηiηidi(x),
we have

δi(x)

θi(x)
≥ δi(x)

ηi
−

ξ
i

ηiηi
θi(x) +

ξ
i

η
i

. (6)

Meanwhile, since η
i
ni(x)− ξ

i
θi(x) ≤ 0, θi(x)− η

i
≥ 0,

we can derive

(η
i
ni(x)− ξ

i
θi(x))(θi(x)− η

i
) ≤ 0,

Furthermore, we get

η
i
ni(x)θi(x)− η2

i
δi(x)− ξ

i
d2i (x) + ξ

i
η
i
di(x) ≤ 0. (7)

Dividing inequality (7) by ηiηidi(x), we have

δi(x)

θi(x)
≤ δi(x)

η
i

−
ξ
i

η2
i

θi(x) +
ξ
i

η
i

. (8)

From (2),(4),(6) and (8), we have the following relations:

Φ(x) =
p∑

i=1

δi(x)
θi(x)

=
∑
i∈I+

δi(x)
θi(x)

+
∑

i∈I−

δi(x)
θi(x)

≥
∑
i∈I+

[ δi(x)ηi
− ξ

i

η2
i
θi(x) +

ξ
i

ηi
]

+
∑

i∈I−

[ δi(x)ηi
− ξ

i

ηiηi

θi(x) +
ξ
i

η
i

] = Φl(x),

Φ(x) =
p∑

i=1

δi(x)
θi(x)

=
∑
i∈I+

δi(x)
θi(x)

+
∑

i∈I−

δi(x)
θi(x)

≤
∑
i∈I+

[ δi(x)η
i

− ξ
i

ηiηi

θi(x) +
ξ
i

ηi
]

+
∑

i∈I−

[ δi(x)η
i

− ξ
i

η2
i

θi(x) +
ξ
i

η
i

] = Φu(x),

From the above discussion, the following relaxed linear
program (RLP) can be established as follows:

RLP

 min Φl(x)
s.t. Ax ≤ b,

x ∈ H.

This problem provides a lower bound for the optimal value
of problem SLRP over H .

Theorem 1 For all x ∈ H , let ∆x = u − l, consid-
er the functions Φl(x), Φ(x) and Φu(x). Then, we have
lim

∆x→0
(Φ(x)− Φl(x)) = lim

∆x→0
(Φu(x)− Φ(x)) → 0.
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Proof We first prove lim
∆x→0

(Φ(x)−Φl(x)) → 0. By the

definitions Φ(x) and Φl(x), we have

| Φ(x)− Φl(x) |
=|

∑
i∈I+

[( δi(x)θi(x)
− ( δi(x)ηi

− ξ
i

η2
i
θi(x) +

ξ
i

ηi
)]

+
∑

i∈I−

[ δi(x)θi(x)
− ( δi(x)ηi

− ξ
i

ηiηi

θi(x) +
ξ
i

η
i

)] |

≤|
∑
i∈I+

[( δi(x)θi(x)
− ( δi(x)ηi

− ξ
i

η2
i
θi(x) +

ξ
i

ηi
)] |

+ |
∑

i∈I−

[ δi(x)θi(x)
− ( δi(x)ηi

− ξ
i

ηiηi

θi(x) +
ξ
i

η
i

)] |

≤
∑
i∈I+

[| δi(x)( 1
θi(x)

− 1
ηi
) | + | ξ

i

ηi
( θi(x)ηi

− 1) |]

+
∑

i∈I−

[| δi(x)( 1
θi(x)

− 1
ηi
) | + | ξ

i

η
i

( θi(x)ηi
− 1) |]

=
∑
i∈I+

[| δi(x)ηi−θi(x)
ηidi(x)

| + | ξ
i

ηi

θi(x)−ηi

ηi
|]

+
∑

i∈I−

[| δi(x)ηi−θi(x)
ηidi(x)

| + | ξ
i

η
i

θi(x)−ηi

ηi
|]

≤
∑
i∈I+

[ξi
ηi−η

i

ηiηi

+
ξ
i

ηi

ηi−η
i

ηi
] +

∑
i∈I−

[ξi
ηi−η

i

ηiηi

+
ξ
i

|η
i
|
ηi−η

i

|ηi|
]

=
∑
i∈I+

[ξi
ηi−η

i

ηiηi

+
ξ
i

ηi

ηi−η
i

ηi
] +

∑
i∈I−

[ξi
ηi−η

i

ηiηi

+
ξ
i

|η
i
|
ηi−η

i

|ηi|
].

By the definitions of η
i

and ηi, we know that, ∆s =
ηi−η

i
→ 0 as ∆x → 0. From the above inequality, we have

lim
∆x→0

(Φ(x)− Φl(x)) = 0.

Similarly, we can prove lim
∆x→0

(Φu(x) − Φ(x)) = 0, and
the proof is complete.

From Theorem 1, it follows that Φl(x) and Φu(x) will
approximate the function Φ(x) as ∆x → 0.

III. ACCELERATING TECHNIQUES

As is well known, accelerating techniques are important
for improving the convergence speed of an algorithm [26].
So, this section presents two accelerating techniques, which
can be used to eliminate the region in which the global
optimal solution of problem SLRP does not exist.

The accelerating techniques are derived as in the following
theorems.

Theorem 2 Assume that UB is the current known upper
bound of the optimal value v of the problem SLRP over
H ⊆ H0. If there exists some index k ∈ {1, 2, · · · , n} such
that αk > 0, then there is no globally optimal solution of
problem SLRP over H1; if αk < 0 for some k, then there
is no globally optimal solution of problem SLRP over H2,
where

H1 = (H1
j )n×1 ⊆ H, with H1

j =

{
Hj , j ̸= k,
( γk

αk
, uk]

∩
Hk, j = k,

H2 = (H2
j )n×1 ⊆ H, with H2

j =

{
Hj , j ̸= k,
[lk, γk

αk
)
∩
Hk, j = k,

αk =
∑
i∈I+

( cikηi
− ξ

i

η2
i
eik) +

∑
i∈I−

( cikηi
− ξ

i

ηiηi

eik),

Λ1 =
∑
i∈I+

( di

ηi
+

ξ
i

ηi
− ξ

i

η2
i
fi) +

∑
i∈I−

( di

ηi
+

ξ
i

η
i

− ξ
i

ηiηi

fi),

γk = UB −
n∑

j=1,j ̸=k

min{αj lj , αjuj} − Λ1.

proof Consider the kth component xk of x. From xk ∈
( γk

αk
, uk], it follows that

γk
αk

< xk ≤ uk.

Since αk > 0, we have γk < αkxk. For all x ∈ H1, by the
above inequality and the definition of γk, it implies that

UB −
n∑

j=1,j ̸=k

min{αj lj , αjuj} − Λ1 < αkxk,

that is

UB <
n∑

j=1,j ̸=k

min{αj lj , αjuj}+ αkxk + Λ1

≤
n∑

j=1

αjxj + Λ1 = Φl(x).

Thus, for all x ∈ H1, we have Φ(x) ≥ Φl(x) > UB ≥ v,
i.e. for all x ∈ H1, Φ(x) is always greater than the optimal
value v of the problem SLRP. Therefore, there can not exist
globally optimal solution of problem SLRP over H1.

For all x ∈ H2, if there exists some k such that αk < 0,
from arguments similar to the above, it can be derived that
there is no globally optimal solution of problem SLRP over
H2

Theorem 3 Assume that LB is the current known lower
bound of the optimal value v of the problem SLRP over
H ⊆ H0. If there exists some index k ∈ {1, 2, · · · , n} such
that βk > 0, then there is no globally optimal solution of
problem SLRP over H3; if βk < 0, for some k, then there
is no globally optimal solution of problem SLRP over H4,
where

H3 = (H3
j )n×1 ⊆ H, with H3

j =

{
Hj , j ̸= k,
[lk, ρk

βk
)
∩
Hk, j = k,

H4 = (H4
j )n×1 ⊆ H, with H4

j =

{
Hj , j ̸= k,
( ρk

βk
, uk]

∩
Hk, j = k,

βk =
∑
i∈I+

( cikη
i

− ξ
i

ηiηi

eik) +
∑

i∈I−

( cikη
i

− ξ
i

η2
i

eik),

Λ2 =
∑
i∈I+

( di

η
i

+
ξ
i

ηi
− ξ

i

ηiηi

fi) +
∑

i∈I−

( di

η
i

+
ξ
i

η
i

− ξ
i

η2
i

fi),

ρk = LB −
n∑

j=1,j ̸=k

max{βj lj , βjuj} − Λ2.

proof Consider the kth component xk of x. By the
assumption and the definitions of βk and ρk, we have

lk ≤ xk <
ρk
βk

.

Note that βk > 0, we have ρk > βkxk. For all x ∈ H3, by
the above inequality and the definition of ρk, it implies that

LB >
n∑

j=1,j ̸=k

max{βj lj , βjuj}+ βkxk + Λ2

≥
n∑

j=1

βjxj + Λ2 = Φu(x) ≥ Φ(x).

Thus, for all x ∈ H3, we have v ≥ LB > Φ(x). Therefore,
there can not exist globally optimal solution of problem
SLRP over H3.

For all x ∈ H4, if there exists some k such that βk < 0,
from arguments similar to the above, it can be derived that
there is no globally optimal solution of problem SLRP over
H4
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IV. ALGORITHM AND ITS CONVERGENCE

In this section, based on the former results, we present
the branch and bound algorithm to solve problem SLRP. In
order to find a global optimal solution, this method needs
to solve a sequence of relaxed linear programming problems
over partitioned subsets of H0.

A. Branching rule

During each iteration of the algorithm, the branching
process is a critical element in guaranteeing convergence,
which can be used to create a more refined partition that
cannot yet be excluded from further consideration in search-
ing for a global optimal solution for problem SLRP. This
paper chooses a simple and standard bisection rule, which is
sufficient to ensure convergence since it drives the intervals
shrinking to a singleton for all the variables along any infinite
branch of the branch and bound tree.

Consider any node subproblem identified by rectangle
H = {x ∈ Rn | lj ≤ xj ≤ uj , j = 1, · · · , n} ⊆ H0.
The branching rule is as follows:

(i) let k = argmax{uj − lj | j = 1, · · · , n};
(ii) let πk = (lk + uk)/2;
(iii) let

H1 = {x ∈ Rn | lj ≤ xj ≤ uj , j ̸= k, lk ≤ xk ≤ πk},
H2 = {x ∈ Rn | lj ≤ xj ≤ uj , j ̸= k, πk ≤ xk ≤ uk}.
Through using this branching rule, the rectangle H is

partitioned into two subrectangles H1 and H2.

B. Branch and bound algorithm

Based upon the results and operations given above, this
subsection summarizes the basic steps of the proposed algo-
rithm.

Let LB(Hk) be the optimal function value of RLP over
the subrectangle H = Hk, and xk = x(Hk) be an element
of the corresponding argmin.

Algorithm statement
Step 1. Choose ϵ ≥ 0. Find an optimal solution x0 =

x(H0) and the optimal value LB(H0) for problem RLP with
H = H0. Set LB0 = LB(H0), and UB0 = Φ(x0). If
UB0 − LB0 ≤ ϵ, then stop: x0 is an ϵ-optimal solutions of
problem SLRP. Otherwise, set Q0 = {H0}, F = ∅, k = 1,
and go to Step 2.

Step 2. Set UBk = UBk−1. Subdivide Hk−1 into two
subrectangles Hk,1, Hk,2 via the branching rule. Set F =
F
∪
{Hk−1}.

Step 3. Set t = t + 1. If t > 2, go to Step 5. Otherwise,
continue.

Step 4. If LB(Hk,t) > UBk, set F = F
∪
{Hk,t}, and

go to Step 3. Otherwise, let UBk = min{UBk,Φ(x
k,t)}. If

UBk = Φ(xk,t), set xk = xk,t, go to Step 3.
Step 5. Set

F = F
∪
{H ∈ Qk−1 | UBk ≤ LB(H)},

Qk = {H | H ∈ (Qk−1

∪
{Hk,1,Hk,2}), H /∈ F}.

Step 6. Set LBk = min{LB(H) | H ∈ Qk}. Let Hk

be the subrectangle which satisfies that LBk = LB(Hk). If
UBk−LBk ≤ ϵ, then stop: xk is a global ϵ-optimal solution
of problem SLRP. Otherwise, set k = k + 1, and go to Step
2.

C. Convergence analysis

In this subsection, we give the global convergence prop-
erties of the above algorithm.

Theorem 4 The above algorithm either terminates finite-
ly with a globally ϵ-optimal solution, or generates an infinite
sequence {xk} of iteration such that any accumulation point
is a globally optimal solution of problem SLRP.

Proof If the algorithm terminates finitely, then it ter-
minates at some step k ≥ 0. Upon termination, by the
algorithm, it follows that

UBk − LBk ≤ ϵ. (9)

Furthermore, from Step 4 and (9), the following relation
holds

Φ(xk)− LBk ≤ ϵ. (10)

By Section 2, we have

LBk ≤ v. (11)

Meanwhile, since xk is a feasible solution of problem SLRP,

Φ(xk) ≥ v. (12)

From (10)-(12), it implies that

v ≤ Φ(xk) ≤ LBk + ϵ ≤ v + ϵ.

So, xk is a global ϵ-optimal solution of the problem SLRP
over H0 in the sense that

v ≤ Φ(xk) ≤ v + ϵ.

If the algorithm terminates infinitely, then an infinite
sequence {xk} will be generated. Since the feasible region
of SLRP is bounded, there exists a convergence subsequence
in {xk}. Without loss of generality, this subsequence is still
represented by {xk} and set lim

k→∞
xk = x∗. By the algorithm,

we have

lim
k→∞

LBk ≤ v. (13)

Since x∗ is a feasible solution of problem SLRP,

v ≤ Φ(x∗). (14)

From (13) and (14), we have

lim
k→∞

LBk ≤ v ≤ Φ(x∗). (15)

On the other hand, by the algorithm and the continuity of
Φl(x), we have

lim
k→∞

LBk = lim
k→∞

Φl(xk) = Φl(x∗). (16)

By Theorem 1, we have

Φ(x∗) = Φl(x∗). (17)

Therefore, from (16) and (17), we have v = Φ(x∗), that is
x∗ is a global optimal solution of problem SLRP.
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V. NUMERICAL EXPERIMENTS

To validate the performance of the proposed algorith-
m, some examples taken from the optimization literatures
[1,15,16,23,29,30] were solved. Numerical results are re-
ported, and compared with that of these references. The
algorithm is implemented in Matlab 7.1, and all test problems
are carried out on a Pentium IV (3.06 GHZ) microcomputer.
The linear relaxation programming problems are solved by
using simplex method.

The results of problems 1-7 are summarized in Table I,
where the following notations have been used in row headers:
ϵ: convergence error; Iter: number of algorithm iterations.

For Examples 1-7, we also used two algorithms to solve
them, which are the algorithm (named Algorithm 1) proposed
by this paper and the algorithm proposed by this paper
but without using pruning techniques(named Algorithm 2),
respectively. The comparison results are given in Table II. In
Table II, Time denotes execution time in seconds. For this
test, ϵ is set to 1e− 5.

Table III summarizes our computational results of Exam-
ple 8. For this test problem, ϵ is set to 1e − 2. In Table
II, Ave.Iter represents the average number of iterations;
Ave.Time stands for the average CPU time of the algorithm
in seconds, which are obtained by randomly running our
algorithm for 10 test problems.

Example 1[1]

max 0.9× −x1 + 2x2 + 2

3x1 − 4x2 + 5
+ (−0.1)× 4x1 − 3x2 + 4

−2x1 + x2 + 3
s.t. x1 + x2 ≤ 1.5,

x1 − x2 ≤ 0,
0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

Example 2[1,15,30]

max
4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
+

3x1 + 4x3 + 50

4x1 + 4x2 + 5x3 + 50

+
x1 + 2x2 + 5x3 + 50

x1 + 5x2 + 5x3 + 50
+

x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50
s.t. 2x1 + x2 + 5x3 ≤ 10,

x1 + 6x2 + 3x3 ≤ 10,
5x1 + 9x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≤ 10,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Example 3[30]

min
−x1 + 2x2 + 2

3x1 − 4x2 + 5
+

4x1 − 3x2 + 4

−2x1 + x2 + 3
s.t. x1 + x2 ≤ 1.5,

x1 − x2 ≤ 0,
0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

Example 4[29,30]

max
3x1 + 5x2 + 3x3 + 50

3x1 + 4x2 + 5x3 + 50
+

3x1 + 4x2 + 50

4x1 + 3x2 + 2x3 + 50

+
4x1 + 2x2 + 4x3 + 50

5x1 + 4x2 + 3x3 + 50
s.t. 6x1 + 3x2 + 3x3 ≤ 10,

10x1 + 3x2 + 8x3 ≤ 10,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Example 5[16]

max
63x1 − 18x2 + 39

13x1 + 26x2 + 13
+

13x1 + 26x2 + 13

37x1 + 73x2 + 13

+
37x1 + 73x2 + 13

13x1 + 13x2 + 13
+

13x1 + 13x2 + 13

63x1 − 18x2 + 39
s.t. 5x1 − 3x2 = 3,

1.5 ≤ x1 ≤ 3.

Example 6[16]

max
3x1 + 4x2 + 50

3x1 + 5x2 + 4x3 + 50
− 3x1 + 5x2 + 3x3 + 50

5x1 + 5x2 + 4x3 + 50

−x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50
− 4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
s.t. 6x1 + 3x2 + 3x3 ≤ 10,

10x1 + 3x2 + 8x3 ≤ 10,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Example 7[23]

max
37x1 + 73x2 + 13

13x1 + 13x2 + 13
+

63x1 − 16x2 + 39

13x1 + 26x2 + 13
s.t. 5x1 − 3x2 = 3,

1.5 ≤ x1 ≤ 3.

TABLE I: Computational results of Examples 1-7

Example ϵ Methods Optimal solution Optimal value Iter
1 1e-9 [1] (0.0, 1.0) 3.575 1

1e-9 ours (0.0, 1.0) 3.575 1
2 1e-9 [1] (1.1111, 0.0, 0.0) 4.0907 1289

1e-6 [15] (1.1111, 1.365e-5, 1.351e-5) 4.081481 39
1e-5 [30] (0.0013, 0.0, 0.0) 4.087412 1640
1e-9 ours (1.1111, 0.0, 0.0) 4.0907 18

3 1e-8 [30] (0.0, 0.283935547) 1.623183358 71
1e-8 ours (0.0, 0.283935547) 1.623183358 47

4 1e-5 [29] (0.0, 1.6725, 0.0) 3.0009 1033
1e-8 [30] (0.0, 3.3333, 0.0) 3.00292 119
1e-8 ours (0.0, 3.3333, 0.0) 3.00292 50

5 1e-6 [16] (3.0, 4.0) 3.2917 9
1e-6 ours (3.0, 4.0) 3.2917 8

6 1e-6 [16] (-1.838e-16, 3.3333, 0.0) 1.9 8
1e-6 ours (0.0, 3.3333, 0.0) 1.9 6

7 1e-4 [23] (3.0, 4.0) 5.0 32
1e-4 ours (3.0, 4.0) 5.0 17

TABLE II: Computational results of Algorithm 1 and Algo-
rithm 2 for Examples 1-7

Example Methods Optimal solution Optimal value Iter Time
1 Algorithm 1 (0.0, 1.0) 3.575 1 0.016

Algorithm 2 (0.0, 1.0) 3.575 1 0.016
2 Algorithm 1 (1.1111, 0.0, 0.0) 4.0907 9 0.281

Algorithm 2 (1.1111, 0.0, 0.0) 4.081481 20 0.672
3 Algorithm 1 (0.0, 0.283935547) 1.623183358 31 1.0

Algorithm 2 (0.0, 0.283935547) 1.623183358 50 1.719
4 Algorithm 1 (0.0, 3.3333, 0.0) 3.0009 40 1.328

Algorithm 2 (0.0, 3.3333, 0.0) 3.00292 77 2.562
5 Algorithm 1 (3.0, 4.0) 3.2917 8 0.187

Algorithm 2 (3.0, 4.0) 3.2917 10 0.203
6 Algorithm 1 (0, 3.3333, 0.0) 1.9 5 0.172

Algorithm 2 (0.0, 3.3333, 0.0) 1.9 28 0.922
7 Algorithm 1 (3.0, 4.0) 5.0 19 0.568

Algorithm 2 (3.0, 4.0) 5.0 35 1.253

From Table I, it can be seen that, for Examples 1-7,
our algorithm can determine the global optimal solution
effectively than that of the references [1,15,16,23,29,30].

The comparison results of Table 2 show that the pruning
techniques are very good at improving the convergence speed
of our algorithm.
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Example 8

min
p∑

i=1

n∑
j=1

cijxj+di

n∑
j=1

eijxj+fi

s.t. x ∈ D = {x ∈ Rn | Ax ≤ b},

where the elements of the matrix A ∈ Rm×n, cij , ei,j ∈ R
are randomly generated in the interval [0,1]. All constant
terms of denominators and numerators are the same number,
which randomly generated in [50,100]. The elements of b ∈
Rm are equal to 1. This agrees with the way random numbers
are generated in [22].

From Table III, the computational results show that our
algorithm performs well on the test problems, and can solve
them in a reasonable amount of time.

The results in Tables I-III show that our algorithm is both
feasible and efficient.

TABLE III: Computational results of Example 8

(p,m, n) Ave.Time Ave.Iter
(2,20,20) 0.0264 1
(2,20,30) 0.029 1
(5,20,20) 0.6154 9.7
(5,30,20) 0.6389 10.22
(7,20,20) 2.2765 14.5
(7,30,20) 4.3327 18.8
(10,20,20) 31.1031 61.8
(10,30,20) 38.4108 95.3
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