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The Representations on the Partial Derivatives of
the Extended, Generalized Gamma and Incomplete
Gamma Functions and Their Applications

Aijuan Li, and Huizeng Qin

Abstract—In this paper, some recursive relations of the
derivatives of the gamma function I'(«r) and incomplete
gamma function I'(«, z) are obtained for complex number
a # 0,—1,—2,---. Moreover, the recurrence relation of the
derivative of the k—gamma function I'y(z) are also given.
Thus, the partial derivative %B(u7 ) of the Beta function
B(v, 1) can also be represented for p,¢g =0,1,2,---. Based on
these results, the partial derivatives of the extended, general-
ized complete and incomplete gamma functions are obtained.
Furthermore, the partial derivative of confluent hypergeometric
function is also considered.

Index Terms—incomplete gamma function, gamma function,
confluent hypergeometric function, Digamma function.

I. INTRODUCTION

HE gamma function I'(«) and incomplete gamma func-
tion I'(«v, z) were defined by the following integrals in

(1]

I(a) = / t*te~tdt, Re(a) >0, (1)
0

v(a, z) = / t*le7tdt, o,z € C, |arg(z)| <m, z#0,
0
(2)

and

I, 2) = / t*tetdt, a,z € C, |arg(z)| <m, z#0,
’ (3)

where o can be extended to all complex numbers except non-
positive integers and C' denotes a complex set. These func-
tions were found to be useful in heat conduction, probability
theory and in the study of Fourier and Laplace transforms in
[1]. Moreover, the gamma distribution which is formulated
in terms of the gamma function is used in statistics to
model a wide range of processes. For example, the time
between occurrences of earthquakes in [2]. Furthermore,
these functions can be expanded. For example, the extended
complete and incomplete gamma functions were defined by
the following integrals in [1,3-5]:

(e, 0:b) = fooo ta—le—t—btfldt

V(e x3b) = [ pa—lo=t=bt"" gy
D(a, z;b) = f;o to‘fleft*brldt,

“)

Manuscript received February 8, 2017; revised April 7, 2017. This work
was supported by National Natural Science Foundation of China under Grant
No. 61379009.

Aijuan Li is with School of Science, Shandong University of Technology,
Zibo, Shandong, 255049, P. R. China.

Huizeng Qin is with School of Science, Shandong University of Technol-
ogy, Zibo, Shandong, 255049, P. R. China. Huizeng Qin is the corresponding
author. (e-mail: qin_hz@163.com(H.Z.Qin))

where a € R,x > 0,b > 0, but not both z = 0,b = 0,
if @« < 0. The function I'(«v, z;b) can be used in closed
form solutions to several problems in heat conduction with
time-dependent boundary conditions. Moreover, the gamma
function I'(«) has played a role in cumulative probability
functions in [1,6,7]. Similarly, the generalized complete and
incomplete gamma functions were also defined by

o0 px—1lg—t ' pa—lg—t
FQ(O[,C) = fO Wdt,’)/ﬁ(a,li,lc)it: 0 Wdt7
Lg(a,z,c) = fx t(t_i_if)ﬁdu
(5)
where « = n+e > 1(n = 1,2,---,0 < e < 1), =
m+9d>0m=12---,-1<§<0)and z,c > 0 in

[8,9]. The generalized gamma functions have been widely
used in the solution of many problems of wave scattering
and diffraction theory in [9-11].

In this paper, we assume that o, z € C, |arg(z)| < 7 and
z # 0 for (1)-(3). Since y(a, z) = I'(a) — I'(«v, 2), we only
consider '™ () and T (o, 2)(n = 0,1,2, - - -), i.e.

dan e
r™(a) = 7 —I'(a) = / t* et In" tdt,
n 0 oo 6)
r (o, 2) = 804"F(a’ z) = /Z to te~tn"™ tdt,

Similarly, we also consider the following derivatives for
(4) and (5), i.e.

I (a,0;0) = LT (a, 0;0) = [ o le=t=bt"" In" ¢4,

da™
'™ (a,2;b) = %F(a,x; b) = ffo tae—le=t=bt" Iyt
(N
and
n,m n+m
Fg )(a,c) = agniaﬁmrﬁ(a’_f)_t
= (1 [ e s g

nm ntm
Fg )(a,x,c) :WF/@(O&,%,C)
m o0t te "t In™ tIn™ (t4c
==/, (t+0)P et
(®)

for n,m=0,1,2,---.

The structure of this paper is organized as follows. In
Section 2, some recursive relations of the derivatives of the
gamma function and k—gamma function are derived. Thus,

'™ (a) = 2L T(a) (f(a) = ﬁ) and partial derivative

da™

%B(y, ) of the Beta function B(v, i) can also be rep-

resented for p,q = 0,1,2,---. In Section 3, some recursive
relations of the partial derivatives of the incomplete gamma
function are established. In Section 4, using the results of
Section 2 and 3, we consider series expansions of (7) and (8).
Moreover, the partial derivative of confluent hypergeometric
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function is also considered. The conclusion is given in the
last section of the paper.

II. THE RECURSIVE FORMULAS OF THE DERIVATIVES OF
THE GAMMA FUNCTION

Theorem 2.1 Let n > 1 be an integer. Then the recurrence

relation of '™ (a) (e # 0, —1,—2,---) can be expressed as
follows,
L0 (o) = Hy ()T (a), ©)
where
b — 1/1
H{@) =1 Hi@) = H@,
Hy (o) = ¢ D(a),
and
n—1
w0 = ("7 )@@, gy
n:2,3,-~, 1=1,2,---.

where t(«) is the Digamma function defined by

o= 1- 25 (3 ).

and ~ denotes Euler’s constant.

Proof. The Digamma function (a) and its k—order
derivatives ¢ *)(a)(k = 1,2,---) can be expressed as
follows,

d 1 /1 1
¥(0) = () = —y - -+ 3 (l —Ha), (12)
=1

13)

for a #0,—1,—2,--+, and

v(a) = dakw ) = k(-

k+1 Z

where + denotes Euler’s constant. From (12), we have
Fl(a) = 1b(oz)]‘—‘(a% « 7& 07 _]-7

Calculating (n — 1)(n = 2,3, - - -)-order derivatives on « for
(14) by using the Leibniz’s derivation rule, we get

- k
k=0

for a« # 0,—1,—2,---. Repeated use of this recursive

formula we can see that (9)-(11) hold.

Remark 2.1 K. S. Kolbig considered the following
Laplace (or Mellin) integral in [12]

k+1 ’

(14)

r0(a) ) BB ® (), (15)

R (p,v) :/ t'“te M In™ tdt, Rep,Rev >0, (16)
0

and gave a recurrence formula
Gk(/j/a V) = %Gk—l(ua V) + Gl (:’-/’7 V)Gk—l(/j/a V)a
Go(p,v) =1,G1(p,v) =¢(v) —Inp,
where R, (u,v) = F}EZ) G (p,v). By the variable substitu-
tion for (16) we have

Ro(p,v) = u‘”/ e dt = pm VT (v),
0

a7

(18)

Moreover, using the Leibniz’s derivation rule on v for (18),
we have

Ry(p,v) =4 Ro( V)
w3 () (o ® ),
=0\ k
(19)
Thus, R,,(u,v) can also be calculated by Theorem 2.1.

Moreover, the k—gamma function T'y(z) is the general-
ization of T'(x) and it was given by the following integral in
[13]

o0 tk
Ty (x) :/ t*“le=wdt, x,k>0, (20)
0
and I'(z) = ' (z).
Through variable substitution we obtain that I'y(z) =

kJCTko(%) and

di(a) = (InTh(2)) = & (nk + p(2)) .

Corresponding to Theorem 2.1, we have the following theo-
rem.

21

Theorem 2.2 Let n > 1 be an integer. Then the recurrence
relation of I‘,(Cn) (x)(xz #0,—1,—2,---) can be expressed as

follows,
(" () = Hy* ()T, (x), (22)
where
n—1
HY* () =1, HY*(z) = Y- HY5(2),n = 1,2,
1=0 ’
HY5(x) =y V(2),n=1,2,--
()
— nfl n—1—1i .
Zl< ) VT @) HYE (@) n=2,3,- .
1 x
)y t(mk+9(§), n=0,
v (x)_{ T A
(23)

Similarly, according to the proof of Theorem 2.1, the
recurrence relation of I'"™)(a)(ar # 0,—1,—2,---) can be
obtained .

Theorem 2.3 Let n > 1 be an integer and I'(a) = ﬁ
Then the recurrence relation of I'™ (o) (v # 0, =1, =2, - -)
can be expressed as follows,

[ (a) =HY (a)T(a) (24)
where
~ n—1 ~
HY(0) =1, HY()= S HY (o),
0(a) - n(a) ZZ:O n,l( ) (25)
HY (@) = "= D(a)
and
~ n—1 —1 ~
) =S ("7 )P @), g
n=23--, 1=1,2,--.
and zZ:—z/)(a).

Moreover, we note that the Beta function is defined by

1
B(v,pu) = / t"~1(1 — t)*~1dt, Rev, Rep > 0.
0
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Its partial derivatives B, (v, ) = %B(zx, w)(p,q =
0,1,2,---) have been discussed for v,pu,v + p #
0,41,42, - in [14,15].

Furthermore, by
L(v)L(n)
I'(v+p)

and Leibniz’s derivation rule we have the following theorem.
Theorem 2.4 Let p, ¢ > 0 be integers. Then

Blv,p) = — D)D) (v + )

Bp,q(lﬂ 1)
P q -
-z ( t ) 2 ( T )Ttk oy @)
k=0 =0
« D) ()00 (),
for v, p, v+ pu #0,+1,42, -, where I (v + p) = o

By (27), we notice that the partial derivatives of the Beta
function can also be calculated by Theorem 2.1 and Theorem
2.3.

Note that

T(n) = (n—1)!,T(n — §) = ZeoB0/E,
1 (=" /7 (28)
F(E —-n)= @n-1)>
and
¢(n) = Hn_l -7 (29)
Y(n—3)=—-v—2m2+2Hs, o — H,
and
C(S n) C(S)an—l,sa
C(Sa n— 7) (25 - I)C(S) - 25H2n—2,s + Hn—l,s
(30)
n
forn=1,2,---, where H, ZlandHns—Zlb.Us-

=
ing (9), (24) and (27), we obtain that '™ (a), F(”)( )(n =
1,2,--) and B, 4(a, 8)(p,¢ = 0,1,2,---) exist the close

forms for o, = k,k + 3 and k = 0,41,£2,---. For
Pochhammer symbol (z),,, i.e. (), =z(x+1)--- (x+n—
1), we have the following result: [(z),] = (z), > wik.

According to the method to prove Theorem 2.1 anéC 5?4, we
easily get the following recurrence formula.

Corollary 2.5 Let n,m > 1 be integers and =z #
0,—1,—2,--- be a complex number. Then

(m—k)
(x)glm) =(m—1)! Z (=n* (%)m , iI)n 1,6 (z) (31)
and
—(m) TS (S H g (@) Ty (k)
@), =%m—mkoﬁﬁji%%mn ,
(32)
where (z), = ﬁ,Hn,p(x) =X (m_&k)p,(x)glm)
m ( ) mo oo
#( ) and( ) - ddzm (x)n o
However, the derivatives of (x), and (x), can also be

calculated by the following method.
Since (z), = > (=1)"Fs(n,k)z* and (z), = -+ =

I 1), Z cl ;+ we have

@ =mt £ () ottt 6y
k=m

and

n—1(zFRym¥T - (34

n—1
(@) = G S ok Gk
k=0
where s(n, k) is the Stirling number of the first kind and
nm=12---
In the following section, the partial derivatives of the
incomplete gamma function are given.

III. THE PARTIAL DERIVATIVES OF THE INCOMPLETE
GAMMA FUNCTION

Theorem 3.1 Let n be a non-negative integer. Then

F(") (o, 2)
k Shta (_1)j In™" 7
= (a+ k) (n =)t
(35)

_ F(n)

_nlz

for a £ 0, -1, -2,
Proof. For the incomplete gamma function I'(a, 2), we
have

oo (_1)k:zk:+oc
P(a72)—r(a)—’;m, 04750,—1,
(36)
Calculating n-order partial derivatives on « for (36) by using
the Leibniz’s derivatives rule, we can obtain (35).
Note that

F(OZ,Z) _ Ilatlz)—z%"~

«a
o F(oz+2,z)—z°‘+lefz _ 2% 7
- ala+1) «a
_ Dlatmz) _ = i gkt
() m =1 (o) (37)
a+m z j
DT Z e
L jatk—1 k=1 —1)7
J
21 )! Z Ck 1 a+]
: j_

By using Leibniz’s derivation rule on « for (37), we have

N -0 1)7+!
'™ (a, z) *H'Zm Z T 1#)l+1
— UL 2okl n ln" L2
—nle™ X Teor X o
k—1 - =0
-1 . 1yt
X Z() C]Jc_lﬁ'
=

(38)
However, I'(a, z) and I'(a) are not defined for o = 0.
Thus, we give their complementary definitions. According
to the neutrix limit in [16] we have
L™ 0) =N —lim. [t le t In" tdt
—L_e—epnt! E)

- n+1€
+N — lim._g (ﬁ faoo e tIn" 1 tdt

1 1

L pi(g)

et tdt =
(39)

=N — 1im5_>0

_%ﬂfo
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and

1)k Rt J In"7 2
N_hmaﬁo Z SO k! Z (a+k)1+1(n J)!

’ln" Iy e

=N — llma_m Z

(n IR
j=

1 E (—1) "I 2 Lk
Z (= ) Z (= )n L Zk3+1
n 7ln” Iy yitl (40)
; (n Dt G+
OO —1 1)7 ln" Ty Lk
Z |) E ( ) l KT
ln"+1 (= 1)k = (71)j In" =9 2 2k
= Ty + Z D I S

j=0

Let « — —m in (38), we have the following theorem.
Theorem 3.2 Let n > 0 and m > 1 be integers. Then

'™ (—m,2)
. n F(n«#l—l)(lyz)ie—zlnn+1—l (—1)i~ 1
= TG i Z 1 Ty
B emtk-1 O _q)i-1
—nle™ 3 gy )v Z Cl_ I(En ;)Hl

k=1

(41)

In the following section, the applications of the partial

derivatives of the complete and incomplete gamma functions
are given.

IV. APPLICATIONS OF THE PARTIAL DERIVATIVES OF
COMPLETE AND INCOMPLETE GAMMA FUNCTIONS

A. The partial derivatives of generalized complete and in-
complete gamma functions

The series expansions for generalized complete and in-
complete gamma functions were given in [14] as follows:

Fﬁ(aa C)
(e iy(a+4,) + ¢Tla —i — B,c)

o

x(_iﬁ), for B—a+i<0,

cPin(a i e) + TPy yia(©))

x(_f), for B—a+i>0.

(42)
and

Ty, c)
freo-2(7)
= ( 7 >cir(a—ﬁ—i,x),

I'la+i)—T'(a+i,z .
Mt fesia) g, o,

for x> c.

(43)
where Eg(c) is the exponential integral function defined by

Eg(c) = [Tt Pe

However, if we calculate I'3(«v, ¢) and T'g (e, z, ¢) by using
(42)-(44), then the error is caused by the relatively large.
In particular, when c¢ decreases, the error becomes more

—etdt (44)

prominent. The reason for the error is using the following
series expansion of (42) and (43).

z+1) tt

1 z< A ] < el
i = 45)
(t+c)? 1+1 ct (
2< I e > e,

The convergence speed of the series (45) is very slow at near
c.

Since

ol = (¢ 4+ )t Y Ugpkige
=0

2 (I (46)

we give a slightly different form power series expansion as
follows:

Is(a,c) JortetitleTtat

= "¢ _
i fcolo(t_’_c)afﬁ—ifleftdt

[e.e]

+ Z (lfz)ic
=0

_ § (=1)*(8), (I (a+i)~T(a+i,c1))

ilcitB

(47)

T oo i .
tet Z% (1=a)ic F((Zl—ﬂ—mﬂl)
=

and

i": (—1)'(8), (N (a+i,2)~T(ati,c1))

ilcith

i=0
00 )
- (A—a)ic'T(a—B—icte)
+et Z:O * 1
Ogi(lfa)cil—‘(afﬁfi ctx)

6C Z i 5 5

I'g(a,z,¢) =

,|Jf‘ S ‘Cl‘v

s 2l > el

(48)

where ¢; = §(Values suggest that the best such how to
choose), a, 8, ¢, z can be complex numbers satisfying ¢ >
0 or I m ¢ # 0, Re x > 0. By numerical experiment, we find

1 'L
that Z (z,% Joteti=te~tdt has a good convergence
1=0

rate when || < 55 and Z (1=a)ict O‘)l [ (te)o Pt dt

also has better convergence rate when |;{| < 2
When a =1,2,---, (46) becomes

a—1

ot =5 ( i (49)

=0

) ooy,

Therefore, we have

=y ( O‘Zfl ) (—¢)'T(a— B —i,¢) (50)
=0
and

Igla,z,c) = ecz_: ( a;l ) (—c)T(a— B —i,c+x).
1=0 (5])

It follows from (50) and (51) that T'g(«, ¢) and T'g(a, z, ¢)
have finite linear combinations of I'(«, c).

In the following, the results of computing I'g(c,c) are

(Advance online publication: 23 August 2017)
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given in Table I-III by different methods.

Table I The results of computing I'g(a, c)
by using (47) or (50)

B a ¢ a using (47) or (50) TEZTC:Z:E
1 I 3 35 0.0986075675030 - - 10~
I 5 2 2 0.6135473689567 - - - 10-10
5 4 5 2 0.0001329445251- - 10-8
10 13 84 21 6.97537804---x 10" 2 1032
10 13 10 5  0.0000399525536 - - - 10-%
T I 5 2 0.0016220475288 - - 10-10
Table II The results of computing T'g(a, c) by using (42)

B8 [ using (42) rziit;:e
1 2 B 3 0.0986075676782 - - - 1079
1 2 2 > 0.6148162192735- - 10-2
5 4 5 2 2.0049305783581 - *
10 13 84 21 6.97537808---x 102 1078
10 13 10 5  2.250843430--- 105 *
T I 5 2 0.0208284837555 - -

Table III The real values of T'g(a,c)

B« c c1 walues of T'g(a,c)

11 3 3 0.0986075675031 - -

I 5 2 2 0.6135473690055- - -

5 2 5 5 0.0001329445244 - -

10 13 84 21 6.975378---x 10 12

10 13 10 5 0.0000399525536 - -

T I 5 2 0.0016229475288- -

Now the results of computing I'g(c, x,c) are given in
Table IV-VI by different methods.

Table IV The results of computing I'g(a,x,c)
by using (48) or (51)

B a ¢ z «a using (48) or (51) rzl:;ntoz:e
17 2 2 3 0.00215450226 - - - 10-14
1 2 21 2 0.06652798250 - - - 10~ 1
5 ¢+ 5 2 % 0.00006039480 - - - 10-10
10 13 84 10 21 6.97537804---x10 ™7 1032
10 13 10 2 5  0.0000399525536 - - - 1032
T T 3 2 % 0.0016229475288- - 10~ 10
Table V The results of computing I'g(a, x, c) by using (43)
B a ¢ T using (43) Tilgﬁ:e
12 B 2 35 0.00215450243 - - 10-7
I 2 2 1 2 0.06754729288 - - 10-2
5 2 5 2 5 374875444829 .- *
10 13 84 10 21  4.765912--- %10~ 12 108
10 13 10 2 5 2.250843430 - * 10° x
T I 3 2 3 0.5652668755473 - *
Table VI The real values of I'g(a,x,c)
B« c x  c1 walues of T'g(a,z,c)
1 7 B 53 0.00215450226 - - -
1 - 2 1 2 0.06652798255 -
5 5 5 2 2 0.00006039480 - -
10 13 84 10 21 4.765912--- %107
I0 13 10 2 5 _ 0.00003995069 -
T 3 2 3 0.00043577030 -

Seen from Table I - Table VI, the algorithms (47)-(51)
have better accuracy. However, the algorithms (42) and (43)
are not only poor accuracy, but also the numerical results are
away from the true value for small c(see ”*” in Table II and
Table V).

In the following, we consider the partial derivatives of
I's(e, ¢) and T'g(a, z, ¢).

By (47), (48) and Leibniz’s derivation rule, we have

2 (=

Z
0

x> (—1) ( i )(5)5"’]’ In ¢

sy £ g S et

1=0 k=0
#(1— )" TR (0 — B —i e+ 1),
(52)

1)* (T (i) -1 (a+i,c1))
ilci+B

an’m) (o, 0)

and
F("’m) (o, z,0)

m-rn ,C n
(-imee £ 6 -1k
=0
<= ) IO — 5o+ 1)
n f: (=)' (T (a+i,2) —T" (ati,c1))

ilcit+h

=0
xi(?>ewwwﬂm%fwﬂﬁm’
i=0 k=0

xDm+R) (o — B — i, c + ),

for|z| > |01\.

forn,m=0,1,2,---
In the following, the partial derivatives of extended incom-
plete gamma functions are considered.

B. The partial derivatives of extended incomplete gamma
functions

For (4), the following result was given in [1]
D(a, 0;b) = (e, ;3 b)+T (o, 25 0) = 262K, (2VD), b > 0,

(54)
where K, is the modified Bessel function of the second kind.

Moreover, for I'(a, 0; b) we have

I'(a, 0;b) _fowta-l —(t48) gt
f bra—1,—(t+% dt+f po=1=(t+%) gy
= f\/gu a=1o=(ut )du

+ fortetem () g
—_ ba (*b ‘oo ufocfiflefudu
=0
+Z b) f o i—1 7tdt
_baz( b)F( a- Z\[)+2( b)l"(a i,v/b)
=0
(55)

Similarly, the following series expansions of I'(«,x;b) are
obtained

I'(a,z;b) Hat

I P

5 (CWTlazi) 2> i,
=0
- b § (_b)l(P(_a_i’\f)_r(_a_i’%))
=0
+ Z w7 < \/57
1=0

(56)
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For oo £ 0,£1,42, - -- and by (55) and (56), we have

'™ (a,0;0) = L.T(a,0;b)
S S S SYEIL ( AT
i=0 k=0 k
xI®) (—a — i, v/b) + Z —( BT (i vE)
(57)
and
I‘(”)(a x; b) = do:,bf(a,m;b)
i=0
X2 (—b) n n—k
= r ZZ:O ( i!) kz_:0< k > (_l)kln ’ (58)

><<F (—a—i,v/b) — TW)(— a—i,g))
+Z NI
forn=20,1,2,---

In the following, the partial derivatives of confluent hy-
pergeometric functions are obtained.

C. The partial derivatives of confluent hypergeometric func-
tion

The confluent hypergeometric function is analytic on C
and it is defined by the following series expansion
(’/ )nzn

(I)(V,/J,,Z) = ZO (1)nn!

_ () (=1’
71+n21 L‘(n 1)[ Z —1 HJ,_J ’

(59)

Moreover, the confluent hypergeometric function can also
be represented as the following integral

<I>(V 14 2)
fotVl t)yv=te*tdt,0 < Rev < Rep.
(60)
By analytic continuation, ®(v, u; z) has been defined in
addition to p =0, —1, - from (59).
Moreover, by (60), we have

— I
— T(W)T(u—v)

1, -1,z
Jo tr A =ty teFtde 1)
= By, 1)@ (v, p + v; 2), Rev, Rep > 0,

Using the Leibniz’s derivation rule on v and p for (61),
we have

Syt M1 =t e P EInd (1 — ¢)dt
Efp Y& ([ a

=> > By k,q—1(v, 1)
k=0 k =0 l
L

2 () @k,

for Rev + q, Rep+p > 0.
Moreover, using the Leibniz’s derivation rule on v and p
for (59), we obtain

(62)

(I)p,q(VJrv 1; 2)
_ _orm .
BVPQMQ(I)(V /"67 ()) (63)
) (P) n 1)J
( ) E 'r(L‘ )n 1! -1 (IJ«(+J )q+17
for p,g=0,1,2,

Similarly, using the following identity

F#(Va Z) = ZpliVB(Vnufl/)(I)(VvV“i’l 7:“52) (64)
F0( = @) @(p, 1+ p—v3 2),
we have
.
TP (w,2) = 52T, 2)

50
xT(Pta—k=0(y, _ ) (

l

v=0 \ U

X vk+v(,uvl+,“ viz )+
p

k

S (1) o5 >
<5 (")

k k. Ul Ul
><74/12—:0< u1 >uzz—:0< U2 )

(1) 3 ( ! )(_1)1) Ikt

v=0
XBul—u27l+u2—u(V7 m—= V)’
(65)

for p,g=10,1,2,

Whether computing speed or accuracy, (65) is much better
than (52).

On the other hand, the confluent hypergeometric function
of the second kind is defined by

V(v p;2) = F(V fo t'=H1 +t)yr v Le=#tdt, Rev > 0.
(66)

Through variable substitution, (66) can be written as
Sl-n

V(v pus2) = r(,,) fg Wdt
= 1= “F( op1-u(v, 2),

lI 1_—t

(67)

where I',, (v, z) is one of the generalized incomplete gamma
functions (5). Using the following identities

I'(1—p
U(v,p2) = ﬁ@(u ) )
+#¢(V+ 1—p,2—p32),
for v, pu,1 — p,v — p+1 # 0,—1,—2,--- and Leibniz’s

derivation rule on v, i, we have

orta

Wpq(vsps2) = m‘lf(%uw)

(—1)aglzt—n é( v )f““)(v)

q q=!
q>p7k+u,q7l7u(V+1_.“'72_/L;Z)
x l;) uEO (g—l—u)lu!

(I—v)lo!

=0
P q 1
p (*1) CI:'pf ,q— (Uv ?Z)
(1) 5 e
l (1=v) Dkt (,,
% ZO r (- Z)Fv)w (v+1-— M)

(69)
for p,q=0,1,2,---
Moreover, through variable substitution, (66) can also be
written as

z

F?V)B(u,u,z), Rev > 0.

(v, 1 —p;2) = (70)
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where
B(v,p.z) = [y u " (1 - le Frdu  (71)
is an extension of the Beta function.
By (67) and (70), we have
B(v,p,2) =e *Bv, )@, 1 — ;2) 72)

+e F2MD(=p) @ (v + p, 1+ 45 2)

Therefore, by the Leibniz’ derivation rule on v, y for (72),
we can obtain the following the derivatives of the extension
Beta function B(v, y, 2):

&Mww)—ﬁgq@m)
=X (1 )2( )
X(—l)pr k,q—l(I) lI/ /.L,Z
q—1
')

s (E()

! l
X®p+q—l—v,v(y+u71 +/J/,Z) Z ( U )

u=0
X (=1)er=w) (— ) In" 2, 73

forp7q:O71a27"'

V. CONCLUSION

In this paper, some recursive relations of the derivatives of
the gamma function I'(«) and incomplete gamma function
I'(a, z) are obtained for complex number o # 0, —1, -2, - - -
Thus, the partial derivative %B(% u) of the Beta func-
tion B(v, ) can also be represented for p,q = 0,1,2,---.
Based on these results, the partial derivatives of the extend-
ed, generalized complete and incomplete gamma functions
are obtained. Moreover, the partial derivative of confluent
hypergeometric function is also considered.
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