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Abstract—In this paper, we first provide semi-convergence
analysis for a special GPIU(Generalized Parameterized Inexact
Uzawa) method with singular preconditioners for solving sin-
gular saddle point problems. We next provide a methodology of
how to choose nearly quasi-optimal parameters of the special
GPIU method. Lastly, numerical experiments are carried out
to examine the effectiveness of the special GPIU method with
singular preconditioners by comparing its performance with
that of other existing iterative methods for solving singular
saddle point problems.

Index Terms—singular saddle point problem, GPIU method,
semi-convergence, singular splitting, Moore-Penrose inverse.

I. INTRODUCTION

WE consider the following large sparse augmented
linear system(

A B
−BT 0

)(
x
y

)
=

(
f
−g

)
, (1)

where A ∈ Rm×m is a symmetric positive definite matrix,
and B ∈ Rm×n is a rank-deficient matrix with m ≥ n.
In this case, the coefficient matrix of (1) is singular and so
the problem (1) is called a singular saddle point problem.
This type of problem appears in many different scientific
applications, such as constrained optimization problems [13],
[18], [30], the finite element approximation for solving the
Navier-Stokes equation [10], the constrained least squares
problems and generalized least squares problems [1], [24],
and so on.

In case of B being of full rank, many relaxation it-
erative methods have been proposed for solving the aug-
mented linear system (1), e.g., SOR-like method [11],
GSOR (Generalized SOR) method [2], PIU (Parameterized
Inexact Uzawa) method [3], GPIU (Generalized Parame-
terized Inexact Uzawa) method [7], the modified SOR-like
method [16], SSOR-like method [8], the modified SSOR-like
method [17], Uzawa-SAOR method [21], GSSOR (Gener-
alized SSOR) method [25], and MIAOR (Modified inexact
AOR) method [22].

Recently, several authors have presented semi-convergence
analysis of relaxation iterative methods for solving the
singular saddle point problem (1). Zheng et al [28] stud-
ied semi-convergence of the PU (Parameterized Uzawa)
method with nonsingular preconditioners, Li and Huang [14]
examined semi-convergence of the GSSOR method with
nonsingular preconditioners, Zhang et al. [26] provided semi-
convergence analysis of the inexact Uzawa method with
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nonsingular preconditioners, Zhang and Wang [27] stud-
ied semi-convergence of the GPIU method with nonsin-
gular preconditioners, Chao and Chen [6] provided semi-
convergence analysis of the Uzawa-SOR method with non-
singular preconditioners, Zhou and Zhang [29] studied semi-
convergence of the GMSSOR (Generalized Modified SSOR)
method with nonsingular preconditioners, Yun [23] studied
acceleration of one-parameter relaxation methods with non-
singular preconditioners, Liang and Zhang [15] presented
semi-convergence analysis of the Uzawa-SAOR method with
singular or nonsingular preconditioners, Yang et al. [20] pre-
sented semi-convergence analysis of the Uzawa-HSS method
with singular preconditioners, Yang et al. [19] presented
semi-convergence analysis of the PIU method with singular
preconditioners, and so on.

The purpose of this paper is to provide performance
analysis of a special case of the GPIU method with singular
preconditioners for solving the singular saddle point prob-
lem (1). This paper is organized as follows. In Section 2, we
provide preliminary results for semi-convergence analysis of
the basic iterative methods. In Section 3, we provide semi-
convergence results for a special case of the GPIU method
with singular preconditioners. In Section 4, we first provide
a methodology of how to choose nearly quasi-optimal pa-
rameters of the special GPIU method, and then we provide
numerical experiments in order to examine the effectiveness
of the special GPIU method with singular preconditioners.
Lastly, some conclusions are drawn.

II. PRELIMINARIES FOR SEMI-CONVERGENCE ANALYSIS

For simplicity of exposition, some notation and definitions
are presented. For a vector x, x∗ denotes the complex
conjugate transpose of the vector x. λmin(H) and λmax(H)
denote the minimum and maximum eigenvalues of the Her-
mitian matrix H , respectively. For a square matrix G, R(G)
denotes the range space of G, N(G) denotes the null space
of G, σ(G) denotes the set of all eigenvalues of G, and ρ(G)
denotes the spectral radius of G.

Let us recall some useful results on iterative methods for
solving singular linear systems based on matrix splitting. For
a matrix E ∈ Rn×n, the smallest nonnegative integer k such
that rank(Ek) = rank(Ek+1) is called the index of E, and
denoted by k = index(E). In other words, index(E) is the
size of the largest Jordan block corresponding to the zero
eigenvalue of E. For a square matrx T , the pseudo-spectral
radius ν(T ) is defined by

ν(T ) = max{|λ| | λ ∈ σ(T )− {1}}

where σ(T ) is the set of eigenvalues of T .
The Moore-Penrose inverse [4] of a singular matrix E ∈

Rn×n is defined by the unique matrix E† which satisfies the
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following equations

E = EE†E, E† = E†EE†, (EE†)T = EE†, (E†E)T = E†E.

Let A = M−N be a splitting of a singular matrix A, where
M is singular. Then an iterative method corresponding to this
singular splitting for solving a singular linear system Ax = b
is given by

xi+1 = (I −M†A)xi +M†b for i = 0, 1, . . . . (2)

Definition 2.1: The iterative method (2) is semi-
convergent if for any initial guess x0, the iteration sequence
{xi} produced by (2) converges to a solution x∗ of the
singular linear system Ax = b.

Notice that a matrix T is called semi-convergent if
lim
k→∞

T k exists, or equivalently index(I − T ) = 1 and
ν(T ) < 1 [4].

Theorem 2.2 ([5]): The iterative method (2) is semi-
convergent if and only if index(M†A) = 1, ν(I −M†A) <
1, and N(M†A) = N(A), i.e., I−M†A is semi-convergent
and N(M†A) = N(A).

III. SEMI-CONVERGENCE ANALYSIS OF A SPECIAL GPIU
METHOD

In this section, we provide semi-convergence analysis for a
special case of the GPIU method with singular precondition-
ers for solving the singular saddle point problem (1). Notice
that Chen and Jiang [7] presented convergence analysis of
the GPIU method for nonsingular saddle point problems, and
Zhang and Wang [27] provided semi-convergence analysis of
the GPIU method with nonsingular preconditioners for the
singular saddle point problem (1).

Assume that the coefficient matrix A of (1) is split as

A =

(
A B

−BT 0

)
= D − L− U , (3)

where

D =

(
P 0
0 Q

)
, L =

(
0 0
BT 0

)
, U =

(
P −A −B

0 Q

)
, (4)

where P ∈ Rm×m is a symmetric positive definite (SPD)
matrix which approximates A, and Q ∈ Rn×n is a singular
symmetric positive semi-definite matrix which approximates
the approximated Schur complement matrix BTP−1B. Let
s be a real parameter and Q be chosen as Q = BTM−1B,
where M is a SPD matrix which approximates P . Then a
special case of the GPIU method with the singular precon-
ditioning matrix Q, which is called the SGPIU method, is
defined by(

xk+1

yk+1

)
= H4(s)

(
xk

yk

)
+M4(s)

(
f
−g

)
, k = 0, 1, 2, . . . , (5)

where

H4(s) = I − (D + (s− 1)L)†A
M4(s) = (D + (s− 1)L)†.

By some manipulation, one obtains

M4(s) =

(
P−1 0

(1− s)Q†BTP−1 Q†

)
(6)

and

H4(s) =

(
Im − P−1A −P−1B

Q†BT (Im + (s − 1)P−1A) In + (s − 1)Q†BTP−1B

)
.

(7)

From (5), (6) and (7), the SGPIU method with the singu-
lar preconditioner Q for solving the singular saddle point
problem (1) can be rewritten as

Algorithm 1: SGPIU method with singular Q

Choose s and initial vectors x0, y0
For k = 0, 1, . . . , until convergence

xk+1 = xk + P−1(f −Axk −Byk)
yk+1 = yk +Q†(BTxk+1 − g − sBT (xk+1 − xk))

= yk +Q†(BT ((1− s)xk+1 + s xk)− g )
End For

If s = 0, P is replaced by 1
ωP with ω ∈ (0, 2) and Q is

replaced by 1
τQ with τ > 0, then the SGPIU method reduces

to the PIU method. In particular, if s = 0, P = 1
ωA and Q

is replaced by 1
τQ, then the SGPIU method reduces to the

PU method.
Assume that the rank of B is r, i.e., r = rank(B) < n.

Let

B = WΣV ∗ and Σ =

(
Σr 0
0 0

)
∈ Rm×n (8)

be the singular value decomposition of B, where W and
V are unitary matrices, Σr = diag(σ1, σ2, . . . , σr) and
σi’s are positive singular values of B. Let W and V be
partitioned into W = (W1,W2) and V = (V1, V2) with
W1 ∈ Cm×r, W2 ∈ Cm×(m−r), V1 ∈ Cn×r, V2 ∈
Cn×(n−r), respectively. Let us define an (m+n)× (m+n)
unitary matrix P as

P =

(
W 0
0 V

)
. (9)

Let Ĥ4(s) = P∗H4(s)P . If we define P̂ = W ∗PW , Â =
W ∗AW , and Q̂ = V ∗QV . Since Q = BTM−1B and B =
WΣV ∗, one can obtain

Q̂ = V ∗QV =

(
Q̂1 0
0 0

)
, (10)

where Q̂1 = ΣrW
∗
1M

−1W1Σr is an r×r SPD matrix. Thus

Q̂† = V ∗Q†V =

(
Q̂−1

1 0
0 0

)
(11)

and

Ĥ4(s) =

(
Im − P̂−1Â −P̂−1Σ

Q̂†ΣT (Im + (s − 1)P̂−1Â In + (s − 1)Q̂†ΣT P̂−1Σ

)
.

(12)

If we let B1 =

(
Σr

0

)
∈ Rm×r, then using (10) to (12)

Ĥ4(s) =

 Im − P̂−1Â −P̂−1B1 0

Q̂
−1
1 BT

1 (Im + (s − 1)P̂−1Â Ir + (s − 1)Q̂
−1
1 BT

1 P̂−1B1 0

0 0 In−r


(13)

and Q̂1 = BT
1 (W

∗M−1W )B1. If we let

H̄(s) =

(
Im − P̂−1Â −P̂−1B1

Q̂−1
1 BT

1 (Im + (s − 1)P̂−1Â Ir + (s − 1)Q̂−1
1 BT

1 P̂−1B1

)
,

(14)

then H̄(s) is the iteration matrix of the SGPIU method
applied to the following nonsingular saddle point problem(

Â B1

−BT
1 0

)(
x̂
ẑ

)
=

(
f̂
−ĝ

)
(15)

with the preconditioning matrix Q̂1 and P̂ as an approxima-
tion of Â.
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Before proceeding to semi-convergence analysis of the
SGPIU method for solving the singular saddle point prob-
lem (1), we first consider convergence of the SGPIU method
for solving the nonsingular saddle point problem (15) whose
iteration matrix is H̄(s). Note that B1 has full column rank
r. From the convergence analysis described in [7], [27], one
can easily obtain the following three lemmas.

Lemma 3.1: Let λ be an eigenvalue of H̄(s) and
(
x̂
ẑ

)
be

the corresponding eigenvector. Then λ ̸= 1 and x̂ ̸= 0.

Lemma 3.2: Let λ be an eigenvalue of H̄(s) and
(
x̂
ẑ

)
be

the corresponding eigenvector. Then λ satisfies the following
quadratic equation

λ2 +
β̂ − 2α̂+ (1− s)γ̂

α̂
λ+

α̂− β̂ + sγ̂

α̂
= 0,

where α̂ = x̂∗P̂ x̂
x̂∗x̂ , β̂ = x̂∗Âx̂

x̂∗x̂ and γ̂ =
x̂∗B1Q̂

−1
1 BT

1 x̂
x̂∗x̂ .

Lemma 3.3: Let λ be an eigenvalue of H̄(s) and
(
x̂
ẑ

)
be

the corresponding eigenvector. Then |λ| < 1 if and only if

γ̂ − 4α̂+ 2β̂ < 2sγ̂ < 2β̂ and γ̂ > 0,

where α̂ = x̂∗P̂ x̂
x̂∗x̂ , β̂ = x̂∗Âx̂

x̂∗x̂ and γ̂ =
x̂∗B1Q̂

−1
1 BT

1 x̂
x̂∗x̂ .

Theorem 3.4: Let λ ̸= 1 be an eigenvalue of H4(s) and(
x
y

)
be the corresponding eigenvector. Then |λ| < 1 if and

only if

γ − 4α+ 2β < 2sγ < 2β and γ > 0,

where α = x∗Px
x∗x , β = x∗Ax

x∗x and γ = x∗BQ†BT x
x∗x .

Proof: Since H4(s) and Ĥ4(s) are similar, λ is an
eigenvalue of Ĥ4(s). Since λ ̸= 1, from (13) and (14) λ is

also an eigenvalue of H̄(s). Let
(
x̂
ŷ

)
be an eigenvector of

Ĥ4(s) corresponding to the λ. Then
(
x̂
ẑ

)
is an eigenvector

of H̄(s) corresponding to the λ, where ẑ is the subvector
consisting of the first r components of ŷ. From the relation
Ĥ4(s) = P∗H4(s)P , it is easy to show that x̂ = W ∗x
and ŷ = V ∗y. From Lemma 3.3, |λ| < 1 if and only if
γ̂ − 4α̂ + 2β̂ < 2sγ̂ < 2β̂ and γ̂ > 0. Since x̂ = W ∗x,
α̂ = α and β̂ = β are immediately obtained. On the other
hand,

x∗BQ†BTx = x∗BV Q̂† V ∗B∗x = x∗WΣ Q̂† ΣTW ∗x

= x∗WB1 Q̂
−1
1 BT

1 W
∗x = x̂∗B1 Q̂

−1
1 BT

1 x̂.
(16)

From (16), γ̂ = γ is also obtained. Therefore, the proof is
complete.

Corollary 3.5: Let λ be an eigenvalue of H̄(s) and
(
x
y

)
be an eigenvector of H4(s) corresponding to the eigenvalue
λ. Then |λ| < 1 if and only if

γ − 4α+ 2β < 2sγ < 2β and γ > 0, (17)

where α = x∗Px
x∗x , β = x∗Ax

x∗x and γ = x∗BQ†BT x
x∗x .

Proof: Since λ ̸= 1 from Lemma 3.1, this corollary
follows from Theorem 3.4.

The following theorem shows that the condition γ > 0 in
(17) can be omitted.

Theorem 3.6: Let λ be an eigenvalue of H̄(s) and
(
x
y

)
be an eigenvector of H4(s) corresponding to the eigenvalue
λ. Then |λ| < 1 if and only if

γ − 4α+ 2β < 2sγ < 2β, (18)

where α = x∗Px
x∗x , β = x∗Ax

x∗x and γ = x∗BQ†BT x
x∗x .

Proof: From Theorem 3.4, it was shown that α̂ = α > 0,
β̂ = β > 0 and γ̂ = γ ≥ 0. If γ = 0 (i.e., x ∈ N(BT )), then
Lemma 3.2 implies that λ satisfies the following quadratic
equation

λ2 − (2− β

α
)λ+ 1− β

α
= 0.

Since λ ̸= 1 from Lemma 3.1, λ = 1 − β
α is obtained.

|λ| = |1− β
α | < 1 is equivalent to β < 2α, which is exactly

the same condition as the inequality (18) for γ = 0. Hence
this theorem follows from Corollary 3.5.

Theorem 3.7: Assume that 2P −A is symmetric positive
definite. Then ρ(H̄(s)) < 1 if the following inequality holds

1

2
− λmin(2P −A)

ρ(BQ†BT )
< s <

λmin(A)

ρ(BQ†BT )
.

Proof: Since 2P − A is symmetric positive definite,
2α > β and thus the inequality (18) is true for all s when
γ = 0. Suppose that γ > 0. Then the inequality (18) is
equivalent to

1

2
− 2α− β

γ
< s <

β

γ
. (19)

Hence, this corollary follows from Theorem 3.6 and the
inequality (19).

Now we provide semi-convergence result for the SGPIU
method for solving the singular saddle point problem (1).

Theorem 3.8: Assume that 2P −A is symmetric positive
definite. Let Q = BTM−1B be a singular preconditioning
matrix, where M is a SPD matrix which approximates P .
Then the SGPIU method with the singular Q for solving the
singular saddle point problem (1) is semi-convergent if the
following inequality holds

1

2
− λmin(2P −A)

ρ(BQ†BT )
< s <

λmin(A)

ρ(BQ†BT )
.

Proof: By Theorem 3.7, ρ(H̄(s)) < 1. From (13) and
(14), it is clear that the matrix Ĥ4(s) is semi-convergent.
Since Ĥ4(s) = P∗H4(s)P , H4(s) is also semi-convergent.
Notice that H4(s) = I − (D + (s − 1)L)†A. From The-
orem 2.2, we need to show that N(A) = N((D + (s −
1)L)†A). Hence, it is sufficient to show that N((D + (s −
1)L)†A) ⊂ N(A). Suppose that

(
x
y

)
∈ N((D + (s −

1)L)†A). Then

P−1(Ax+By) = 0 and −Q†BT x+(1−s)Q†BTP−1(Ax+By) = 0.

From these equations, Ax + By = 0 and −Q†BTx = 0.

Since QQ†BT = BT , one obtains
(
x
y

)
∈ N(A). Therefore,

the proof is complete.
Corollary 3.9: Let P̂ be a SPD matrix which approx-

imates A, P = 1
ω P̂ , Q̂ = BTM−1B and Q = 1

τ Q̂,
where 0 < ω < 2, τ > 0 and M is a SPD matrix
which approximates P . Assume that 2P − A is symmetric
positive definite. Then the SGPIU method with the singular
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Q for solving the singular saddle point problem (1) is semi-
convergent if the following inequality holds

1

2
−

λmin(
2
ω P̂ −A)

τ ρ(BQ̂†BT )
< s <

λmin(A)

τ ρ(BQ̂†BT )
.

Corollary 3.10: Let P = 1
ωA, Q̂ = BTM−1B and Q =

1
τ Q̂, where 0 < ω < 2, τ > 0 and M is a SPD matrix
which approximates P . Then the SGPIU method with the
singular Q for solving the singular saddle point problem (1)
is semi-convergent if the following inequality holds

1

2
−
(
2

ω
− 1

)
λmin(A)

τ ρ(BQ̂†BT )
< s <

λmin(A)

τ ρ(BQ̂†BT )
.

Proof: Since 0 < ω < 2, 2P −A is symmetric positive
definite. Hence this corollary follows from Corollary 3.9.

IV. NUMERICAL RESULTS

In this section, we first provide a methodology of how
to choose nearly quasi-optimal parameters of the special
GPIU method, and then we provide numerical experiments
in order to examine the effectiveness of the SGPIU method
with singular preconditioners for solving the singular saddle
point problem (1). Performance of the SGPIU method with
singular preconditioners is compared with that of the SGPIU
method with nonsingular preconditioners and the PU or PIU
methods with singular or nonsingular preconditioners.

In Tables II to V, Iter denotes the number of iteration
steps, and CPU denotes the elapsed CPU time in seconds
excluding the computational time of Q† for the singular
case of Q or the Cholesky factorization time of Q for
the nonsingular case of Q. In all experiments, the right
hand side vector (fT ,−gT )T ∈ Rm+n was chosen such
that the exact solution of the saddle point problem (1) is
(xT

∗ , y
T
∗ )

T = (1, 1, . . . , 1)T ∈ Rm+n, and the initial vector
was set to the zero vector. All iterations for the singular
saddle point problem are terminated if the current iteration
satisfies RES < 10−6, where RES is defined by

RES =

√
∥f −Axk −Byk∥2 + ∥g −BTxk∥2√

∥f∥2 + ∥g∥2
,

where ∥·∥ denotes the L2-norm.
All numerical tests are carried out on a PC equipped with

Intel Core i5-4570 3.2GHz CPU and 8GB RAM using MAT-
LAB R2014b. For the elapsed CPU time, every experiment is
repeated five times. The best and the worst ones out of 5 CPU
times are discarded, and then the average of the remaining
3 CPU times is reported in Tables II to V.

Example 4.1 ([28]): We consider the saddle point prob-
lem (1), in which

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R2p2×2p2

,

B =
(
B̂ B̃

)
=

(
B̂ b1 b2

)
∈ R2p2×(p2+2),

B̂ =

(
I ⊗ F
F ⊗ I

)
∈ R2p2×p2

, b1 = B̂

(
ep2/2

0

)
,

b2 = B̂

(
0

ep2/2

)
, ep2/2 = (1, 1, . . . , 1)T ∈ Rp2/2,

T =
1

h2
· tridiag(−1, 2,−1) ∈ Rp×p,

F =
1

h
· tridiag(−1, 1, 0) ∈ Rp×p,

with ⊗ denoting the Kronecker product and h = 1
p+1 the

discretization mesh size. For this example, m = 2p2 and
n = p2 + 2. Thus the total number of variables is 3p2 + 2.
Numerical results for this example are listed in Tables II and
III.

Example 4.2: Consider the Stokes equations of the fol-
lowing form: find u and v such that{

−△u+∇w = f in Ω

−∇ · u = 0 in Ω
, (20)

where Ω = (0, 1)× (0, 1), u is a vector-valued function rep-
resenting the velocity, and w is a scalar function representing
the pressure. The boundary conditions are u = (0, 0)T on the
three fixed walls (x = 0, y = 0, x = 1) and u = (1, 0)T

on the moving wall (y = 1). Dividing Ω into a uniform
grid with mesh size h = 1

p and discretizing (20) by using
MAC (marker and cell) finite difference scheme [9], [12],
the singular saddle point problem (1) is obtained, where
A ∈ R2p(p−1)×2p(p−1) is a symmetric positive definite matrix
and B =

(
B̂ B̃

)
∈ R2p(p−1)×p2

is a rank-deficient matrix
of rank(B) = p2 − 1 with B̂ ∈ R2p(p−1)×(p2−1) and
B̃ ∈ R2p(p−1). For this example, m = 2p(p−1) and n = p2.
Thus the total number of variables is 3p2 − 2p. Numerical
results for this example are listed in Tables IV and V.

For the SGPIU method, the symmetric positive definite
matrices P are chosen as P = 1

ω P̂ with a positive parameter
ω ∈ (0, 2) in three different ways. The first choice is
P̂ = A, the second choice is P̂ = (E − F )E−1(E − F )T ,
where A = E − F − FT is a splitting of the symmetric
positive definite matrix A with E a diagonal matrix and
F a strictly lower triangular matrix, and the third choice
is P̂ = L0L

T
0 , where A = L0L

T
0 − R0 is a splitting of

A obtained by an incomplete Cholesky factorization of A
with no fill-in. The singular or nonsingular preconditioning
matrices Q are chosen as Q = 1

τ Q̂ with a positive parameter
τ , where the matrices Q̂ are chosen as in Table I. In Table
I, Diag(B̂T Â−1B̂, B̃T B̃) denotes a block diagonal matrix
consisting of two submatrices B̂T Â−1B̂ and B̃T B̃. The
SGPIU algorithm for the nonsingular case of Q is the same
as that for the singular case of Q except that Q−1 is used
instead of Q†.

For these choices of P and Q, the SGPIU method with s =
0 reduces to the PU method for P = 1

ωA or the PIU method
for other two choices of P . For s = 0, the parameters ω
and τ are chosen as the optimal or quasi-optimal parameters
which are computed using the formulas given in [28] or [19],
respectively (see data reported in the first line of Tables II -
V for each case of P̂ ). For s ̸= 0, the parameters are chosen
in two different ways: One choice is that ω and τ are chosen
first as the optimal or quasi-optimal parameters and then s
is chosen as the best one by tries (see data reported in the
second line of Tables II - V for each case of P̂ ), and the other
choice is the experimentally chosen optimal parameters s, ω
and τ (see data reported in the third line of Tables II - V for
each case of P̂ ). For singular matrix Q, Q† is computed only
once using the Matlab function pinv with a drop tolerance
10−13, and then it is stored for later use. For nonsingular
matrix Q, the Cholesky factorization of Q is computed only
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TABLE I
CHOICES OF Q̂ FOR SINGULAR OR NONSINGULAR PRECONDITIONING MATRICES Q = 1

τ
Q̂

Case Number Q̂ Description Property of Q
I BTM−1B M = diag(A) singular
II BTM−1B M = tridiag(A) singular
III Diag(B̂T Â−1B̂, B̃T B̃) Â = diag(A) nonsingular
IV tridiag

(
Diag(B̂T Â−1B̂, B̃T B̃)

)
Â = tridiag(A) nonsingular

TABLE II
PERFORMANCE OF SGPIU METHOD WITH P = 1

ω
P̂ AND SINGULAR Q = 1

τ
Q̂ FOR EXAMPLE 4.1

Case I of Q̂ Case II of Q̂
m n P̂ s ω τ Iter CPU s ω τ Iter CPU

0 0.2488 0.1423 131 0.138 0 0.3307 0.1985 90 0.096
A 0.002 0.2488 0.1423 96 0.102 0.002 0.3307 0.1985 70 0.076

-0.04 0.26 0.12 90 0.096 -0.02 0.33 0.19 68 0.074
0 1.7657 0.0626 219 0.040 0 1.8654 0.0588 232 0.041

1152 578 (E − F )E−1(E − F )T -0.35 1.7657 0.0626 108 0.024 -0.01 1.8654 0.0588 226 0.040
-0.35 1.65 0.12 71 0.016 -0.30 1.65 0.12 108 0.022

0 1.3236 0.0910 176 0.031 0 1.4733 0.0811 174 0.032
L0LT

0 -0.25 1.3236 0.0910 81 0.017 -0.30 1.4733 0.0811 127 0.025
-0.25 1.20 0.15 58 0.013 -0.30 1.35 0.15 81 0.017

0 0.1956 0.1084 174 0.365 0 0.2635 0.1519 120 0.264
A 0.004 0.1956 0.1084 137 0.296 0.002 0.2635 0.1519 94 0.206

-0.04 0.21 0.09 117 0.255 -0.05 0.25 0.14 93 0.204
0 1.8494 0.0377 332 0.224 0 1.9177 0.0347 360 0.250

2048 1026 (E − F )E−1(E − F )T -0.35 1.8494 0.0377 159 0.113 -0.01 1.9177 0.0347 360 0.250
-0.35 1.65 0.12 77 0.060 -0.35 1.65 0.12 117 0.087

0 1.4259 0.0568 250 0.140 0 1.5389 0.0489 259 0.145
L0LT

0 -0.25 1.4259 0.0568 114 0.068 -0.30 1.5389 0.0489 191 0.112
-0.25 1.20 0.15 64 0.042 -0.30 1.35 0.15 87 0.055

TABLE III
PERFORMANCE OF SGPIU METHOD WITH P = 1

ω
P̂ AND NONSINGULAR Q = 1

τ
Q̂ FOR EXAMPLE 4.1

Case III of Q̂ Case IV of Q̂
m n P̂ s ω τ Iter CPU s ω τ Iter CPU

0 0.2489 0.1423 131 0.138 0 0.5622 2.9447 44 0.047
A 0.002 0.2489 0.1423 96 0.105 0.003 0.5622 2.9447 39 0.041

-0.04 0.25 0.13 91 0.096 -0.01 0.52 3.10 38 0.040
0 1.7657 0.0626 219 0.050 0 0.9617 1.8293 238 0.039

1152 578 (E − F )E−1(E − F )T -0.35 1.7657 0.0626 108 0.028 0.01 0.9617 1.8293 238 0.039
-0.35 1.65 0.12 71 0.021 0.35 1.30 0.95 160 0.028

0 1.3236 0.0910 176 0.041 0 0.7849 1.8970 177 0.028
L0LT

0 -0.25 1.3236 0.0910 81 0.022 0.01 0.7849 1.8970 177 0.028
-0.25 1.20 0.15 58 0.018 0.40 1.0 1.1 119 0.021

0 0.1956 0.1084 174 0.324 0 0.5115 3.3270 52 0.099
A 0.004 0.1956 0.1084 137 0.259 0.002 0.5115 3.3270 44 0.081

-0.04 0.21 0.09 117 0.221 -0.02 0.49 3.30 41 0.075
0 1.8494 0.0377 332 0.128 0 0.9580 1.8482 318 0.075

2048 1026 (E − F )E−1(E − F )T -0.35 1.8494 0.0377 159 0.065 0.01 0.9580 1.8482 318 0.075
-0.35 1.65 0.12 77 0.036 0.30 1.35 0.98 207 0.053

0 1.4259 0.0568 250 0.097 0 0.7844 1.9042 236 0.056
L0LT

0 -0.25 1.4259 0.0568 114 0.048 0.01 0.7844 1.9042 236 0.056
-0.25 1.20 0.15 64 0.030 0.40 1.0 1.1 163 0.043

once using the Matlab function chol, and then it is stored for
later use.

For singular Q, Q† b is computed using matrix-times-
vector operation after constructing Q† explicitly, which is
very time-consuming. For nonsingular Q, Q−1 b is com-
puted using the forward and backward substitutions after
constructing the Cholesky factorization of Q explicitly. As
can be seen in Tables II to V, P = 1

ωL0L
T
0 provides better

performance and faster convergence rate than other two cases
of P . From Tables II to V, it can be also seen that the
SGPIU method with an appropriately chosen number s and
optimal or quasi-optimal parameters ω and τ performs better
than the PU or PIU methods with optimal or quasi-optimal
parameters ω and τ (i.e., the SGPIU methods with s = 0).

More specifically, when P = 1
ωA, SGPIU method with

an appropriately chosen number s corresponding to optimal
parameters ω and τ of the PU method performs significantly
better than PU method with the optimal parameters ω and τ
for all types of preconditioners Q used in this paper. When
P = 1

ω (E − F )E−1(E − F )T or 1
ωL0L

T
0 , SGPIU method

with an appropriately chosen number s corresponding to
quasi-optimal parameters ω and τ of the PIU method per-
forms much better than PIU method with the quasi-optimal
parameters ω and τ for the preconditioners Q of types I and
III. Clearly, the SGPIU method with experimentally chosen
optimal parameters s, ω and τ performs best. However, we
do not have a formula for finding optimal parameters of the
SGPIU method, which should be done in the future work.
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TABLE IV
PERFORMANCE OF SGPIU METHOD WITH P = 1

ω
P̂ AND SINGULAR Q = 1

τ
Q̂ FOR EXAMPLE 4.2

Case I of Q̂ Case II of Q̂
m n P̂ s ω τ Iter CPU s ω τ Iter CPU

0 0.2442 0.1392 132 0.136 0 0.3246 0.1939 89 0.096
A 0.002 0.2442 0.1392 96 0.099 0.002 0.3246 0.1939 73 0.082

-0.04 0.27 0.11 88 0.092 -0.04 0.32 0.18 69 0.075
0 1.7489 0.0672 239 0.042 0 1.8550 0.0634 255 0.044

1104 576 (E − F )E−1(E − F )T -0.35 1.7489 0.0672 99 0.023 -0.05 1.8550 0.0634 229 0.041
-0.35 1.65 0.12 67 0.017 -0.35 1.65 0.12 110 0.024

0 1.3034 0.0971 197 0.034 0 1.4599 0.0871 196 0.037
L0LT

0 -0.25 1.3034 0.0971 75 0.018 -0.30 1.4599 0.0871 106 0.022
-0.25 1.20 0.15 56 0.014 -0.30 1.30 0.15 76 0.018

0 0.1895 0.1047 177 0.382 0 0.2555 0.1466 119 0.260
A 0.004 0.1895 0.1047 137 0.294 0.003 0.2555 0.1466 97 0.212

-0.04 0.21 0.08 118 0.259 -0.05 0.24 0.14 93 0.205
0 1.8410 0.0399 368 0.212 0 1.9127 0.0369 399 0.234

1984 1024 (E − F )E−1(E − F )T -0.40 1.8410 0.0399 137 0.083 -0.05 1.9127 0.0369 373 0.217
-0.35 1.65 0.12 69 0.048 -0.35 1.65 0.12 116 0.072

0 1.4146 0.0599 301 0.180 0 1.5321 0.0517 293 0.172
L0LT

0 -0.30 1.4146 0.0599 102 0.066 -0.35 1.5321 0.0517 150 0.093
-0.30 1.20 0.15 55 0.039 -0.30 1.35 0.15 78 0.052

TABLE V
PERFORMANCE OF SGPIU METHOD WITH P = 1

ω
P̂ AND NONSINGULAR Q = 1

τ
Q̂ FOR EXAMPLE 4.2

Case III of Q̂ Case IV of Q̂
m n P̂ s ω τ Iter CPU s ω τ Iter CPU

0 0.2442 0.1392 132 0.136 0 0.0949 22.49 452 0.419
A 0.002 0.2442 0.1392 96 0.099 0.001 0.0949 22.49 347 0.320

-0.04 0.27 0.11 88 0.092 -0.01 0.09 23.00 276 0.260
0 1.7489 0.0672 239 0.054 0 0.3201 7.7888 792 0.107

1104 576 (E − F )E−1(E − F )T -0.35 1.7489 0.0672 99 0.026 0.01 0.3201 7.7888 792 0.107
-0.35 1.65 0.12 67 0.020 0.20 1.89 0.083 263 0.041

0 1.3034 0.0971 197 0.044 0 1.6239 0.0391 462 0.064
L0LT

0 -0.25 1.3034 0.0971 75 0.021 0.05 1.6239 0.0391 441 0.063
-0.25 1.20 0.15 56 0.017 0.06 1.57 0.10 202 0.033

0 0.1895 0.1047 177 0.333 0 0.0707 29.94 630 1.036
A 0.004 0.1895 0.1047 137 0.257 0.001 0.0707 29.94 487 0.811

-0.04 0.21 0.08 118 0.223 -0.01 0.07 29.00 411 0.682
0 1.8410 0.0399 368 0.137 0 0.3091 8.1193 1262 0.243

1984 1024 (E − F )E−1(E − F )T -0.35 1.8410 0.0399 144 0.058 0.01 0.3091 8.1193 1262 0.243
-0.35 1.65 0.12 69 0.031 0.10 1.89 0.083 425 0.089

0 1.4146 0.0599 301 0.115 0 1.6380 0.0221 982 0.197
L0LT

0 -0.30 1.4146 0.0599 102 0.044 0.09 1.6380 0.0221 771 0.159
-0.30 1.20 0.15 55 0.027 0.02 1.57 0.10 321 0.070

V. CONCLUSION

In this paper, we provided semi-convergence analysis of
the SGPIU method with singular preconditioners for solv-
ing singular saddle point problems. Numerical experiments
show that the SGPIU method with an appropriately chosen
number s and optimal or quasi-optimal parameters ω and τ
performs better than the PU or PIU methods with optimal or
quasi-optimal parameters ω and τ . More specifically, when
P = 1

ωA, SGPIU method with an appropriately chosen
number s corresponding to optimal parameters ω and τ
of the PU method performs significantly better than the
PU method for all types of preconditioners Q used in this
paper. When P = 1

ω (E − F )E−1(E − F )T or 1
ωL0L

T
0 ,

SGPIU method with an appropriately chosen number s
corresponding to quasi-optimal parameters ω and τ of the
PIU method performs about twice faster than the PIU
method for the preconditioners Q of types I and III. It means
that the methodology of choosing an appropriate value of s
corresponding to the optimal or quasi-optimal parameters ω
and τ of the PU or PIU methods works quite well for the
SGPIU method.

It is clear that the SGPIU method with experimentally cho-

sen optimal parameters s, ω and τ performs best. So, further
research for finding optimal parameters of the SGPIU method
will be done in the future work. The SGPIU method with
singular preconditioners performs rather well as compared
with that with nonsingular preconditioners. However, the
SGPIU method with singular preconditioners Q requires the
computation of Q†b for a given vector b, which is very time-
consuming. Future work will also include how to compute
Q†b efficiently for a given vector b.
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