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Axisymmetric Motion of a Proposed Generalized
Non-Newntonian Fluid Model with Shear-dependent
Viscoelastic Effects

Fernando Carapau, Paulo Correia, idM. Grilo and Ricardo Conceap

Abstract—Three-dimensional numerical simulations of non- a subclass of these general fluids of differential type, have
Newtonian fluid flows are a challenging problem due to the peen studied under different geometries and perspectives of
particularities of the involved differential equations leading to flow situations in last years. This work deals with fluids

a high computational effort in obtaining numerical solutions, : . :
which in many relevant situations becomes infeasible. Several of third-grade. Taking into account the work of Truesdell

models has been developed along the years to simulate theand Noll [1], we consider the constitutive equation for
behavior of non-Newtonian fluids together with many different viscoelastic fluids of differential type (also called Rivlin-
numerical methods. In this work we use a one-dimensional Ericksen fluids) with complexityn = 3, i.e., fluids of third-
hierarchical approach to a proposed generalized third-grade grade, given by
fluid with shear-dependent viscoelastic effects model. This ap- '

proach is based on the Cosserat theory related to fluid dynamics T=-pl+TE, @)
and we consider the particular case of flow through a straight where

and rigid tube with constant circular cross-section. With this

approach, we manage to obtain results for the wall shear stress Te = UA1+ 1 As + 02A§+[31A3

and mean pressure gradient of a real three-dimensional flow

by reducing the exact three-dimensional system to an ordinary + Ba(A1A2+ AA7) + Ba(trA2)Ay, )

differential equation. This one-dimensional system is obtained . . .

by integrating the linear momentum equation over the constant Wherep is the pressure;-pl is the spherical part of the stress
cross-section of the tube, taking a velocity field approximation due to the constraint of incompressibility, is the constant
provided by the Cosserat theory. From this reduced system, viscosity of the fluid, "tr” is the trace of the tensé?, and
we obtain the unsteady equations for the wall shear stress and a1, o2, Br, B, B3 are the normal stress coefficients — also

mean pressure gradient depending on the volume flow rate, led vi lasti t The Ki tical first th
Womersley number, viscoelastic coefficients and the flow index called viscoelastic parameters. e kinematical Tirs ree

over a finite section of the tube geometry. Attention is focused Rivlin-Ericksen tensorg\;, A, and Az are defined through
on some numerical simulations for constant and non-constant (see Rivlin and Ericksen [4])
mean pressure gradient using a Runge-Kutta method.

-
Index Terms—One-dimensional model, generalized third- Ar=D9 + (Dﬁ) ’ ®)
grade model, shear-thickening fluid, shear-thinning fluid, d T
Cosserat theory. Ax= a(/-\l) +A109 + (09) Ay, 4)
and
I. INTRODUCTION A d A ) Ao - |:|19)TA )
N the last seventy years, the mathematical models related 3= dt( 2) T A2 ( 2

to non-Newtonian fluids have been studied extensivelyherd 9 (x,t) = g is the three-dimensional velocit¥ field
due to their relevance in several physical, biological, engiz o fluid, 09 is the spatial velocity gradien{s)" is
neering and industrial applications (see e.g. Truesdell transpose of19 and g(.) denotesthe material time
Noll [1], Schowalter [2], and Bird et al. [3]). Amongst thederivative given by dt
many models that have been used in the scientific literature In '
recent decades to describe the behavior of the non-Newtonian E ( ) _ ﬂ() +9-0(). (6)
fluids, the models associated with fluids of differential type of dt ot
complexityn (see Rivlin and Ericksen [4]) have received speconsidering equation$l) and (2) with a; = ap = B; =
cial attention. Fluids of second- and third-grade, which forrp2 = 33 = 0, we recover the constitutive equation related to
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level both in theoretical and numerical point of view. Thélow model associated with the constitutive law proposed in
thermodynamigssues of the fluids related to the constitutivg10). The case& = a2 =0 in (10) was studied by Carapau
equation(1) with constraint(2) had been studied in detailet al. [16], and this work is an extension of the referenced
by Fosdick and Rajagopal [5], who showed that if the fluigroceeding. The numerical simulation of this kind of flow can
is to be compatible with thermodynamics in the sense thiag relevant in several physical, biological, engineering and
all motions of the fluid meet the Clausius-Duhem inequalityndustrial applications. The mathematical three-dimensional
and the assumption that the specific Helmholtz free energyudy associated with the constitutive equat{@f) relating
of the fluid is a minimum in equilibrium, then to an incompressible fluid is a complex and difficult problem,
and computationally demanding. A possible simplification to
20, 120, |on+0z|<v24ups (") the three-dimensional modgl0) for an incompressible fluid
and inside a domain is to consider the evolution of average flow
BPr=p=0, Bs3=0. (8) quantities using simpler one-dimensional models. Usually,
) » ) _in the case of laminar flow in a tube, the classical one-
Furtherm_ore, when thg inequalities are s_trlct the flu!d Fimensional models are obtained by imposing additional as-
asymptotically at rest, i.e., the rest state is asymptotically,ntions and integrating both the equations of conservation
stable. A detailed discussion about conditidi@$— (8) can ¢ |inear momentum and mass over the cross section of
be found in the works of Fosdick and Rajagopal [5], anghe tybe, Here, we introduce an alternative one-dimensional
Dunn and Rajagopal [6]. Usingl) with (2) and (7) - (8) model based on the hierarchical director approach (also
Fosdick and Rajagopal [5] showed that for an incompresgjieq Cosserat theory) related to fluid dynamics developed

ible thermodynamically compatible fluid of third-grade the,, caulk and Naghdi [17]. This hierarchical director theory

constitutive equation becomes consists in integrating the linear momentum equation over the
2 2 constant circular cross-section of the tube, where the three-

T=-pi+ (M +Bg(trA1))A1+alA2+azA1, © dimensional velocity field? (x,t) = ;g is approximated by
where the quantity inside big parenthesis can be thoughttbfe Cosserat theory as follows
as an effective shear-dependent viscoelasticity (see Mansultti K
and Rajagopal [7] and Mansultti et al. [8]), which is a relevant 9 =v+ ; Xg, - - XouWo, 6y (14)
feature in many real fluids. Therefore, in order to be able to =1
obtain the shear-thinning or shear-thickening behavior of tﬂﬁth
flow, we propose a specific modified constitutive equation o i
for a third-grade fluid, given by v=u@e, We.a =W q(2t)a. (15

n-1 In condition (14),v denotes the velocity along the axis

T=—pl+ (H+33(UA%)) Ar+aiAz+02A7,  (10) of symmetryz at time t, xo,...xg, are the polynomial
weighting functions with ordek, and the vector&Vg, g,
are the director velocities which are symmetric with respect
to their indices. We remark that the numbleridentifies
the order in the hierarchical theory and is related to the
number of directors. In some applications these director
cities are associated with specific physical characteristics
he fluid. Considering the velocity field approximation
(14) with nine-directors, i.e.k =3 in (14) we can predict
Hsg = U+ Ba(trA?). (11) some of the main properties of the three-dimensional fluid
problem. In particular, some advantages of applying the

The standard second-grade fluid, given (®) with 33 = h - the th ; Il
0, was studied by Carapau and Sequeira [9], [10] and lé:osseratt eory are: the theory incorporates all components

. 4 B the linear momentum equation; it is a hierarchical theory,
Carapau [11], [12], [13] an_d [14] m_dlfferent geomet”esallowing to increase the accuracy of the model; there is no
and dnfferen_t type:_; of analysis. In particular a stu_d_y relate_d ﬁ%ed to include extra assumptions to close the system; the
numerical simulations of perturbed flows and swirling MOUOR, Aterial invariance principle is satisfied at each order and

was developed. Moreover, equatigD) can be considered wall shear stress enters directly in the formulation as a

i i d o
as an extension of a generalized second-grade fluid mo Ebendent variable. A detailed discussion about the Cosserat

(see for example Carapau et al. [15]) with shear-depend?ﬁ ory related to fluid dynamics can be found in Caulk and

viscoelasticity given by Naghdi [17], Green and Naghdi [18], [19] and Green et al.
. n-1 20]. This Cosserat theory approach was validated on the
= A2)) . 12) 20 >Ory: app .
Ky (u+B3(tr 1)> (12) special case of a straight tube of constant circular cross-
The case of the generalized second-grade fluid model sgction for Newtonian fluids (see Caulk and Naghdi [17])
tained from(10) with shear-dependent viscosity of the powe&nd for non-Newtonian fluids (see Carapau and Sequeira [9],

where the positive parameteis called the flow index. When
n < 1, the fluid presents a shear-thinning behavior and
shear-thickening behavior whem> 1. Moreover, ifn=2
we recover the constitutive equati¢®) which is associated
with the shear-thickening case. The constitutive equgt®n
can also be considered as a generalization of the stand‘é?
second-grade fluid model, with an effective viscosity 0

law type, i.e., [21]). Moreover, this theory was validated in the case of a
linearly tapered tube for non-Newtonian fluids (see Carapau
p(yD) = plvi™t, v= /}Al “A; (13) [14]). The steady case for swirling motion was studied and

) 2 . k)

validated for a straight tube of constant circular cross-section
wherey is a scalar measure of the rate of shear, was studied Newtonian fluids (see Caulk and Naghdi [17]). Regarding
by Carapau et al. [15]. In this work, we want to study th€arapau and Sequeira [21], the authors considered for blood
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flow the following constitutive equation Qx(0,T) by
. 09
T=—pl +u(lyDAs ae) | p(G+o09)=0T,

wherep(|y|) is the shear-dependent viscosity function. Itis | U9 =0,
known that in small vessels, blood exhibits hon-Newtonian -
p_h_enomenon due to shgar thmmng-wsco&_ty and viscoelas; T = _p| + (u+[33(trA§)) A1+ a1Az+ 0oA2,
ticity effects. In the mentioned work, numerical results were
presented with the viscosity function given by both a power

law type (13) and a Carreau-Yasuda law type, i.e., tw=T-1, (19)
where equation(19); represents the balance of linear mo-
N Ho — Heo is th tant fluid density. Equatidth9
= U+ : 7 17) mentum andp is the constant fluid density. Equatidf9),
M) = u (1+K2|y|2)(-m/2 an defines the incompressibility condition, equatid®)s is the

proposed constitutive equatigiiO) and in equation(19),,

where k is a positive material constanyy and L., are t, denotes the stress vector on the surface with outward unit
asymptotic viscosities. In particular, the power law typaormaln given by
solution, found using the Cosserat theory, was compared X1 %o
with the exact solution (see Bird et al. [3]) and it was found n=—e+—ée. (20)
guantitative agreement for the blood flow index. ¢ ¢

The aim of the present work is to apply the nine-director%ince equation .(18) defir_les a material. _surface, the velocity
theory to the proposed constitutive equatidi®) in order field & must satisfy the kinematic condition
to obtain the unsteady equations for the wall shear stress d . 0, 5 5
and mean pressure gradient both depending on the volume a(‘ﬂz—xl—xz) = E((P —Xl—Xz)
flow rate, Womersley number, viscoelastic coefficients and +9-0(@P - —x3) =0
flow index, over a finite section of the tube geometry with 172 ’
constant circular cross-section. Attention is focused on somg |
numerical simulation for constant and non-constant mean
pressure gradient using a Runge-Kutta method to solve the
differential equation. on the boundary (18). Averaged quantities such as volume
flow rate and pressure are needed to study one-dimensional
models. Conside®(zt) a generic axial section of the tube at
timet defined by the spatial variab# bounded by the circle
defined by(18), and letA(zt) be the area of this section.
Then, the volume flow rat® and the pressurp are defined,
respectively, by

X191 + X292 =0, (22)

II. EQUATIONS OFMOTION

De
l :L‘ZA Q(th) :/ 793(X17X27Zat)da (22)
7'1‘, S(th)
noY j 0 . and .
,,,\‘ 77777777777777777777777777 p(zt) = / X1,%2,2,t)da. 23
" FT p(zt) Azt) Jszn P(X1,X2,Zt) (23)
ST Using the directors approach (14) wikh= 3, it follows

from Caulk and Naghdi [17] that the approximation of the

Fig. 1.  Fluid domainQ with normal and tangential components of the\/elocity field with nine-directors is given by
surface traction vectope and 11, T2 with constant circular cross-section

along the axis of symmetry. The boundarydQ is composed by the 5 5 5 5
proximal cross-sectiofiy, by the distal cross-sectidi, and by the lateral I (X,t) = {Xl(f +0(XT+X5)) —Xo(w—+ P(XT+X5)) }el
wall of the tuber .

+ [xl(er WOE +33)) +%2(E + 0 (X +x3)) ]ez

L_et us_c_on3|de_r a homogeneous ﬂUId moving _Wlthln a +{v3+y(x§+x§)}e3, (24)
straight, rigid and impermeable tubewith constant circular
cross-section contained &° (see Fig. 1), where the constantvhereé, w, y, o, i are scalar functions of the spatial variable
surface functionp = ctsis related to the cross-section of thez and timet. The physical significance of these scalar
tube by functions is the followingy is related to transverse shearing
motion, w and ¢ are related to rotational motion (also
called swirling motion) abougs, while £ and o are related
to transverse elongation. We use nine-directors because it
The three-dimensional equations governing the axisymmetisc the minimum number for which the incompressibility
motion of an incompressible third-grade fluid related to theondition and the kinematic boundary conditions on the
constitutive equatior(10), without body force, is given in lateral surface of the tube are satisfied pointwise. Using the

=X +X5. (18)
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velocity approach (24), the kinematic condition (21) on the / [D.Tfp(@Jrg . Dﬁ)]xel..-XeNda: 0, (36)
lateral boundary reduces to S(zt) ot
2 whereN = 1,2 3. Using the divergence theorem and a form
- =0 25 Lo ” : .
P& +e0) (25) of Liebnitz rule, equation$35) and (36) for nine-directors,
and the incompressibility condition given by equation g19)can be reduced to the following vector equations:

becomes an
5 9 —+f=a (37)
(V3)z+28 + (X +%3)(Vz +40) =0, (26) 0z

where the subscripted variable denotes partial differentiatioff‘{?OI ImPL--6n
For equation (26) to hold at every point in the fluid, the 97

velocity coefficients must satisfy the separate conditions
wheren, k-0 m@L-8 gre resultant forces defined by

1000 — OB BB (38)

(v3);+26 =0, y+40=0. (27)
_ 0 _
Hence the boundary condition (21) and the incompressiblity n= Szt) Tada, k%= S(Z‘t)Teda, (39)
condition given by equation (19)are satisfied exactly by ' '
the velocity field (24) if we impose the conditions (25) and L :/ (TeXp +TBX6>da7 (40)
(27). On the wall boundary of the rigid tube we impose a S(zt)

no-slip boundary condition requiring that the velocity field 08
(24) vanishes identically on the surface (18). Thus, it follows k"Y' = /S(Lt) (TeXpr+TBXer+TyX9XB)da (41)
that

) ) and
§+¢70=0, w+¢PY=0, vs+¢’y=0. (28 mPs-6n :/ TaXg, .. Xg da. (42)
Therefore, equation (25) is satisfied identically and the two )
incompressiblity conditions (27) can be rewritten as The quantitiesa andb® % are inertia terms defined by
(v3)+28 =0, (¢v3),=0. (29) a= P (Q +3- Dz?)da, (43)
S(zt) ot

Considering the flow in a rigid tube with constant circular

cross-section given by surface (18) without swirling motion 6.6y _ 54 _

(ie., w— W= 0), and conditions (22), (24), (28) and (29), ° .~ Jszu P ( at? Dﬁ)xel'“x@Nda (44)
S(zt)

then the volume flow rat® is just a function of time, given o ) i i
andf, 19O which arise due to surface traction on the lateral

by
m boundary, are defined b
Q) = 5 FPws(z). (30) ! ’
Consequently, the velocity field (24) can be now rewritten as f= /dS(z,t) tw ds, (45)
2Q(t) X5+ %5 o '
I(x,t) = 1— . 31 61O — tw X, . .. Xg dS. 46
=" (1272 )es (31) Sy 7015 (46)

It is convenient to resolve the stress vedtgron the lateral The equation for the mean pressure gradient and wall shear
surface in terms of its outward unit normal vectgrand stress will be obtained using the resulting quantities from
in terms of the components of the surface traction vectof89) to (46) on equationg37)— (38). On equations (45)

Ty, T2, and pe in the form (46) we will apply the stress vectdy, given by (34).

tw = T1A — pen + T2€9, (32)
IIl. ONE-DIMENSIONAL RESULTS

whererT; is the wall shear stress, whileandeg are the unit Using the velocity field(31) and the stress vectd4)

tangent vectors defined by in equations(39) to (46), we can explicitly calculate the
5= _ 33) forcesn, kOO mOL-& the inertia terms, %+ and the
=1 x€s, €= (Xa/P)€pes, (33)  surface tractions, 19~ Hence, plugging these solutions

- . . . . : . into equationg(37)— (38) and using equatiorf23), we get

with €1 = & =0 andey; = —€; = 1. Using conditions . unsteady equation for the non-dimensional mean pressure
(20) and (33), the expression for the stress vector (32) cgfndient over a finite section of the tube with< z,, given

be rewritten in terms of its rectangular Cartesian componerip

2 _ Fat) - plz.)
1 1 Gt = -2
tw= ?0(—pexl —T2Xz)e1+ 5(—pexZ + Tox)€2 + T1€3. (34) 24 -
2 1— <1+833Q2(t))
Now, instead of the momentum equatiti9); be verified =376 (1+6a1)Qu(t) + 16B2Q3(t)(n? +n)
pointwise in the fluid, we impose the following integral NP no1
conditions (n-1)(1+8BQ20) 4Q()(1+8BQ%0))
+ + :
a9 B 2B3Q(t) (N2 +n) (n+1)
/Sm) [0:1-p(5 +9-09)]da=0,  (5) a7

(Advance online publication: 17 November 2017)



TAENG International Journal of Applied Mathematics, 47:4, [JAM 47 4 01

We also get the unsteady equation for the non-dimensional 1254
wall shear stress G
n-1
T (zt)—iw2(1+24a )Qt(t)+1_<1+8B3Q2(t)) ]
ney = 1270 ! 3282Q3(t)(n2+n)
n—1 n-1 1.154
(n-1)(1+86Q%1)  2Q()(1+8BQA(1))
QU in) (1) ’
(48) '
where #, = @\/pan/u"1 is the Womersley numberaf 105
is the characteristic frequency for unsteady floy}, and
a; are the non-dimensional viscoelastic coefficients aiigl
the positive flow index. In the test cases considered below MO ;

o]
]
=
r

we want to simulate a pulsatile flow reason why we use
the dimensionless numbeds which 'S, ,the mast commanly Fig. 2. Non-constant mean pressure gradient given by (51).
used parameter to reflect the pulsatility of the flow. Usually
the dimensionless numbemr; is called the Weissenberg N,
number. Taking into account the appropriate non-dimensional 0 N
variables on equatiof31), we obtain the non-dimensional NG
velocity field 081 ~

9(x,1) = QM) (1- (€ +:) s (49) —eien

In the following, for a given mean pressure gradient, we
will compare the volume flow rate solution given by (47),
which was obtained by the proposed generalized third-grade
constitutive equation (10), with the solution 021

2 3n45 t

G(t) = S #Z(1+601)Q(t) +272 Q"(t),  (50) 0 : : ,

3 0 0.5 1 1.5

obtainedby Carapau et al. [15], considering on that work the [—ai=05s—-ai=1"" ol =15
generalized second-grade constitutive equation

0.4

(a) Generalized third-grade fluid3§ = 0.25, n=
T =—pl +uly" AL+ a1Az + apAZ, 05).

where the shear-dependent viscosity function is the type of Q IW
power law given by (13). Moreover, we will illustrate the
behavior of the wall shear stress (48). The time interval 7
was set t0[0,1.5] in the case of constant mean pressure |
gradient and it was set t®,4] in the case of non-constant 06k
mean pressure gradient, and the solutions start from rest. We 1
solve the equation (47) considering a constant mean pressure 041
gradientG(t) = Gp = 1 and a non-constant mean pressure |
gradient given by (see Fig. 2) \
sm:t(t)’ (51) 0 \\‘;_ __ _ :
which shows an interesting behavior. More specifically it l

shows a strong variation in the initial stage and after the
initial transient phase has small fluctuations, which tend (b) Generalized second-grade fluid=0.5).
to decrease with time. Fl_na”Y’ we will furt_her IIIUStrateFig. 3. Unsteady volume flow rate (47) and (50) with constant mean
the behavior of the velocity field (49) by circular crosspressure gradier(t) = Go =1 whereQ(0) =1, # = 0.3, a1 = 0.5, a; = 1
section for specific time parameters. In Fig. 3 and Fig. ahda; = 1.5 for shear-thinning fluid.

we can observe the behavior of the unsteady volume flow

rate solution obtained using a Runge-Kutta method, with

constant mean pressure gradient, for generalized third-gradethe stationary solution, being this convergence more
fluid (47) and for generalized second-grade fluid (50) in th@ronounced in the case of generalized second-grade fluid.
case of shear-thinning and shear-thickening fluid, for specifitoreover, we can see from these results that increasing the
parameters. In the case of generalized third-grade fluid th&lue of the flow indexn (passing from shear-thinning to
volume flow rate behavior in the initial transient phaseshear-thickening case) the volume flow rate solution requires
increasing the Weissenberg number is smoother comparedetss initial transient phase to achieve the stationary solution
the case of generalized second-grade fluid and beyond thgtchanging the limit where we can check the influence of
the volume flow rate in both situations tends to converghe parametefs at the generalized third-grade fluid (47), in

0241|

G(t) =1+

al=05—-al=1""" al=15]
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Fig. 4. Unsteady volume flow rate (47) and (50) with constant medfig. 5. Unsteady volume flow rate (47) and (50) with non-constant mean
pressure gradier(t) = Go =1 whereQ(0) =1, #,=0.3,01 =05,a1=1 pressure gradient (51) whe@(0) =1, #; =03, a; =05, a; =1 and
and a; = 1.5 for shear-thickening fluid. oy = 1.5 for shear-thinning fluid.

comparison with generalized second-grade fluid (50) wheoé the initial transient phase is smaller in comparison with
B3z = 0. Also, if we are not interested in the behavior durinthe case of shear-thinning fluid. Fig. 7 and Fig. 8 displays
the initial transient phase, the steady asymptotic value of tthee unsteady wall shear stress given by (48) for increasing
volume flow rate can be obtained directly from (47) and (5@alues of the power index, passing from a shear-thinning to
setting Q(t) = 0, since at constant mean pressure gradieatshear-thickening fluid, for a given constant mean pressure
the expressiorf) (t) converges to zero asgoes to infinity. gradient and non-constant mean pressure gradient given by
Now, considering the general situation of imposing a timg1), for specific fixed parameters. Here we just consider
dependent mean pressure gradient, we will see the behaviwr wall shear stress related to the generalized third-grade
of the volume flow rate (47) and (50) obtained from differerftuid. In the case of shear-thinning fluid and during the
fluid models, applying a Runge-Kutta method. In this caseitial transient phase the wall shear stress solution features
we consider the specific mean pressure gradient (51), whizlsmooth behavior and as expected after the transient phase
presents an interesting behavior during and after the initihle solution tends to stabilize. In opposition to a shear-
transient phase (see Fig. 2). In Fig. 5 and Fig. 6 it ihinning fluid, in the case of a shear-thickening fluid we
shown the behavior of the volume flow rate obtained usingptice that the wall shear stress solution presents a very
a Runge-Kutta method, with non-constant mean presswsfgarp behavior in the transient phase. Also, as in the case of
gradient (51), for generalized third-grade fluid (47) and fahear-thinning fluid, the solution stabilizes to the stationary
generalized second-grade fluid (50) in the cases of sheswiution beyond the transient phase. We can conclude that
thinning and shear-thickening fluid, for given parameterthe wall shear stress solution passing from a shear-thinning
In both cases, the volume flow rate tends to follow th® a shear-thickening fluid, by increasing the value of the
behavior of the given non-constant mean pressure gradigrawer index, presents a very sharp and strong behavior
Furthermore, we can see that the behavior of the voluméth accentuated sensitivity. Solved the one-dimensional
flow rate associated to the equation (47), compared witnoblem we can get relevant information regarding to the
the one from equation (50) is smoother during the initidhree-dimensional problem, using for that the volume flow
transient phase. In the case of shear-thickening fluid, trete solution. Therefore, Fig. 9, Fig. 10, Fig. 11 and Fig. 12
peaks of the graphics are less intense and the time railgestrate the three-dimensional velocity field (49) on the tube
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(a) Generalized third-grade fluidB§ = 0.25, n = (a) Constant mean pressure gradien=(@.5).
15).
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(b) Constant mean pressure gradient=(f.5).
(b) Generalized second-grade fluidnl.5).
Fig. 7. Unsteady wall shear stress (48) with constant mean pressure gradient
Fig. 6. Unsteady volume flow rate (47) and (50) with non-constant megiven byG(t) = Go = 1 whereQ(0) =1, %, = 0.3, a1 = 0.25 andf; = 0.25
pressure gradient (51) whef@(0) =1, #, =0.3, a1 =05, a1 =1 and for shear-thinning and shear-thickening fluid.
a1 = 1.5 for shear-thickening fluid.

L . . stability. Let us consider a uniform perturbation of magnitude
cross-section in time, based on the one-dimensional vqurpeFOr cache > 0. defining the quantities
flow rate solutionQ(t) obtained by (47) with mean pressure™ ' 9 q '

gradient G(t) = Gp = 1 for specific parameters, in both GH(t) = (1+£)G(t), G;(t)=(1—&)G(t) (52)
situations of shear-dependent viscoelastic effects, i.e., shear- * ’ ¢ ’

thinning and shear-thickening fluid. Finally, Fig. 13, Fig. 14ye denote byQi and Q; the perturbed volume flow
Fig. 15 and Fig. 16 illustrate the cross-section of the thregstes corresponding t6; and G;, respectively. Taking
dimensional velocity field (49) in the case of shear-thinningito account the complexity and difficulty of the solution
and shear-thickening fluid considering specific parametquy7) it is not possible to deduce exact expression for the
at the ordinary differential equation (47), with non-constarerturbed volume flow rate with constant and non-constant

mean pressure gradient (51). mean pressure gradient. However, we can compute the time
evolution of the perturbation volume flow ra@f for both
IV. PERTURBED FLOWS cases. Here, we just study the general case of the perturbed

The theoretical study of the three-dimensional model agslume flow rate with non-constant mean pressure gradient,
sociated to the constitutive equatiéh0), namely existence, the case of constant mean pressure gradient being similar.
unigueness and regularity of classical and weak solutionsNow, considering the perturbatio®; = (1 4+ £)G(t),
with any p,a1,02, B3 and flow indexn, still poses some whereG(t) is the non-constant mean pressure grad(gty,
difficulties. In many industrial applications involving fluidwe can use the characterization of the unsteady solidh
flows in specific domains it is important to determine thand explicitly compute the perturbed volume flow r&g,
changes in flow characteristics induced by perturbations see Fig. 17, where the perturbed volume flow rate forming a
the initial or boundary data, body forces or pressure drop. $trip aroundQ(t) containing all perturbations of magnitude
fact, since it is virtually impossible to maintain an exactlyess or equal t@ = 0.1 and we realize that the stability of the
constant pressure drop, one should be able to predict hsalution exists and increases as the flow index increases. Fig.
much a perturbation of given magnitude in pressure drop wilB shows the amplitude of this strip arou@dt) for several
affect the volume flow rate. Therefore, we want to perturb thelues ofn, showing that increasing the flow indexeduces
solution(47) obtained by the Cosserat theory and analyze is&nsitivity to perturbations. Considering other values#gr
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Fig. 10. Velocity field (49) where the volume flow rate is obtaitgd(47)
with mean pressure gradieBft) = Go = 1. In the illustration are considered
the following parameters: time £ 0.6,t = 1), Q(0) =1, #,=0.3, a1 =1,

Bs =0.25 andn = 0.5 (shear-thinning fluid).
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Fig. 11. \Velocity field (49) where the volume flow rate is obtailgd(47)
with mean pressure gradieBtt) = Go = 1. In the illustration are considered
the following parameters: time £ 0,t = 0.3), Q(0) =1, #,=0.3, a1 =1,

(b) Non-constant mean pressure gradient(h5).

Fig. 8.
gradient given by (51) wher®(0) =1, #, = 0.3, a1 = 0.25 and3; = 0.25
for shear-thinning and shear-thickening fluid.

Unsteady wall shear stress (48) with non-constant mean pressu

B3 =0.25 andn= 1.5 (shear-thickening fluid).
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os Fig. 12. \Velocity field (49) where the volume flow rate is obtailgd(47)
0 0 0s with mean pressure gradie@(t) = Go = 1. In the illustration are considered
04 the following parameters: time £ 0.6,;t =1), Q(0) =1, #,=0.3, a1 =1,
05 05 ws  B3=0.25andn= 15 (shear-thickening fluid).
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Fig. 9. \Velocity field (49) where the volume flow rate is obtained(#y) 05 05
with mean pressure gradie@tt) = Go = 1. In the illustration are considered ’
the following parameters: time £ 0,t =0.3), Q(0) =1, #,=0.3, a1 =1,
Bs =0.25 andn= 0.5 (shear-thinning fluid). 0 0
-0.5 -0.5
a1, B3 and flow index we get a similar solution behavior as 4 1

shown in Fig. 17 and Fig. 18. -1 0 1 -
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Fig. 13. \Velocity field (49) where the volume flow rate is obtairtad

(47) with non-constant mean pressure gradient (51). In the illustration are
considered the following parameters: time=(0,t =0.3), Q(0) =1, #, =

The Cosserat theory approach plays an important altém, a; =1, B3 =0.25 andn = 0.5 (shear-thinning fluid).

native process to reduce the number of variables of a three-

dimensional fluid model thus simplifying the study related to

the numerical simulations in terms of computational efforsystem with which it was possible to obtain the unsteady
By applying this approach theory to our proposed generalizeduations for the wall shear stress and mean pressure gradient
third-grade fluid model (19) with shear-dependent viscoeladepending on the volume flow rate, Womersley number,
tic effects allowed us to obtain a one-dimensional ODftscoelastic coefficients and flow index over a finite section

V. CONCLUSION
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Fig. 14. \Velocity field (49) where the volume flow rate is obtairsd t
(47) with non-constant mean pressure gradient (51). In the illustration are 0 T T T T \

considered the following parameters: time=(0.6,t =1), Q(0) =1, #, =
0.3, a1 =1, B3 =0.25 andn = 0.5 (shear-thinning fluid).

n=1.50; t=0.00 ] t=0.30 ! () Flow indexn= 0.5.
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Fig. 15. \Velocity field (49) where the volume flow rate is obtaited | T
(47) with non-constant mean pressure gradient (51). In the illustration are
considered the following parameters: time=(0,t =0.3), Q(0) =1, #, = ¢
0.3, a3 =1, B3 =0.25 andn = 1.5 (shear-thickening fluid). 0 : : ; T \

t=0.60 1 t=1.00 m [~ of.—o 0,
0¢ (b) Flow indexn=15.
0.5 0.5 07
06 Fig. 17. Time evolution of the unperturbed volume flow r&eand
0 0 05 perburbed volume flow rat®F, with magnitudes = 0.1, whereQ(0) =1,
s Wo=1,a;=1andfBz =1.
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02 0.20
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e
0.154 e
Fig. 16. Velocity field (49) where the volume flow rate is obtairad e
(47) with non-constant mean pressure gradient (51). In the illustration are Ve
considered the following parameters: time<(0.6,t =1), Q(0) =1, #, = 7
0.3, a3 =1, B3 =0.25 andn = 1.5 (shear-thickening fluid). 0.10 //
/s
/
of the tube with constant circular cross-section. Based on 0051 // _________
the numerical simulations here presented, we may conclude S
that the generalized third-grade fluid model (19) is better 7 t
suited for a shear-thinning fluid that presents a smoother 0 j > 3 i
behavior with regard to its volume flow rate, for a given mean [—n=05——n=is5 n=135]

pressure gradient, during the initial transient phase. Also,
we F:qnduct?d numerical SImUIaFl_Ons of p_erturbed ﬂowls—lg. 18. Time evolution of perturbatioj@; — Qg | with magnitudes = 0.1,
providing a first step towards stability analysis of the modeknereQ(0) =1, #, =1, a1 =1 andBs = 1.

Possible extensions of this work are the application of this

hierarchical approach theory to the same fluid model (19)

but considering a tube geometry with variable circular cros&Jé€ncia e a Tecnologia. The authors would like to thank the
section along the flow motion axis, and also the coupling é¢ferees for their helpful comments to improve the paper.

Cosserat models in geometrical multi-scale models.
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