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Abstract—There are a lot of nanomaterials and related to a real number. In the past four decades, inspired by appli-
chemical substances synthesized in the laboratory every year, cations from the chemical engineering, many degree-based,
which makes the test of their performance has become a ghaciral-pased or distance-based indices were introduced,

hard work. The theory of nanoscience from the perspective - L .
of graph theory provides an excellent idea, characteristics of such as Zagreb index, atom-bond connectivity index, Wiener

the nanomaterials can be obtained by calculating topological index, Harary index, Szeged index, Pl index, eccentric con-
indices in their corresponding molecular graphs, and have nectivity index, harmonic index, Zagreb index and so on.
attracted the attention of scholars in the field of nanoscience. In Moreover, there are several advancements on distance-based,
this paper, we learn the characteristics of nanostructures from - g ctrg)-hased, degree-based indices of special nanomaterial
mathematical point of view. Some important nanomaterials are | I truct hich b f dto R d
selected and their multiplicative atom-bond connectivity indices molecular structures which can be rejerred 10 kamane an
are determined by edge set divided trick. These theoretical Jummannaver [13], Zhao and Wu [14], Sardar [15], Gao and
results can be considered as a guideline in nanoengineering.Wang [16], [17], Gao et al. [18], [47], [48], Gao and Siddiqui
[21], Abdo et al. [22], Basavanagoud [23], Sunilkumar et al.
Index Terms—theoretical nanoscience, multiplicative atom- [24], and Guirao and de Bustos [25].
bond connectivity index, nanotubes, nanotori dendrimer, nanos-  Estrada and Torres [26] introduced a new topological index
tar. called the atom-bond connectivity index (in short, thBC
index) which reflect the properties of alkanes. The atom-bond
I. INTRODUCTION connectivity index of a molecular gragii can be stated as

VER the years, the theoretical nanoscience has at-

tracted more and more attention of scholars, the com- ABC(G) = Z d(u) +d(v) — 2
putational results are applied to nanoscience, biological, and - d(u)d(v)
pharmaceutical science fields. One of the important research weB(G)
branch of theoretical nanoscience can be stated as fono‘ﬁ%hghan-Zadeh et al. [27] determined the first and second
the nanostructures related molecular structure is expres%giximum values of the atom-bond connectivity index of
by graphs, by calculating the topological index we capyracyclic graphs with vertex. Ashrafi and Dehghan-Zadeh
get the properties of the corresponding nanostructures. Ttﬁg] studied the first and the second maximum values of
technology can obtain effective results in the absence ABC index of cactus graphs with fixed vertex number.
experimental conditions, which is interested by the scholags, pko et al. [29] raised a counterexample for the previous
from developing countries and regions. Gradually, as thencjusion. Husin et al. [30] researched th&C index of
development computing tricks, it has become an importag, families of nanostar dendrimers. Dehghan-Zadeh and
branch in the field of theoretical nanoscience, and concerngg i [31] derived theABC index of quasi-tree graphs.
by scientists from various fields (see Balaban [1], Mgntearmmitrov [32] proposed an efficient computation approach
et al. [2], Buscema et al. [3], Gao et al. [3], [4], Sirimullayt yrees with the smallest atom-bond connectivity index. The

et al. [6], Bodlaj and Batagelj [7], Nadeem and Shaker [8L,ctral characters of trees with a mininddBC index were
Nistor and Troitsky [9], Arockiaraj et al. [10], Khakpoor and.,nsidered [35], [33], [34], [36], [37].

Keshe [11], and_lvanquc [12] for more details). As a variant of the ABC index, the first multiplicative
We only consider simple nanostructure related mOIeCUI%fom-bond connectivity index is formulated by

graph (each vertex represents as an atom and each edge

expresses as a chemical bond) in our paper. &ebe a d(u) + d(v) — 2

molecular graph with vertex séf(G) and edge seE(G). ABCII(G) = H - 7

For each vertexw, the degreed(v) of v is the number of wEE(G) d(u)d(v)

vertices adjacent to. A topological index can be regarded as

a real functionf : G — R which maps each molecular graphvhich was defined in Kulli [38]. In Kulli's work, he deter-

mined the first multiplicative atom-bond connectivity index
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Fig. 2. The structure o€, .

A. Examples on computing of first multiplicative atom-bond
connectivity index Fig. 4. The structure of(n,m).

Now, we present some of the examples about the calculat-
ing process of the first multiplicative atom bond connectivity

index.

Example 1. W, = K; Vv C,_; is called wheel
graph. By simple computation, we haveBCII, (W,) = Example 4.Let W, ,,, be a graph constructed from two
(2)" Y m)"*1. wheel graphsiV,, and ,,, with one common vertex (see

Example 2.Letn andm be two positive integers. The webFigure 3 as an instance).

graphW (n,m) is constructed from the Cartesian product of ] . ) .
cycle C,, and pathP,, (see Figure 1 as an example). According to its graph structure analysis, we obtain

By analyzing the structure of web grap¥i(n, m), if m =
2, it easy to get

3+3-2 2.
ABCIL (W (n,m)) = <\/T>3” =)™
If m > 2, then the first multiplicative atom bond connectivity
index of web grapHV (n,m) is _ 3 -;33 metn—6 6 4—633 2.4

ABCIL (W (n,m)) (n—1) +3—2n2 —1 +3—2
_ (\/3+3_2)27z(\/4+4_2)n(2nz—5) n—l
3-3 4-4
3149 " n=1)+6—-2 [(m—1)+6—2
X(\/T)Qn (n—1)-6 (m—1)-6
_ 2 2n \/6 n(2m—>5) 5 2n — 2 m+n—6 l 4 L n—2
= ) W)™ = (3 (/1) 3(n—1))
In the following three examples, we show the value of m meo | M+3 m+3
ABCTI; index for three kinds of vertex gluing graphs. x( 3(m — 1)) 6(n—1)\ 6(m—1)

Example 3.Let C, ., be a graph constructed from two
cyclesC,, and C,, with one common vertex (see Figure 2
as an example).

Using the definition of the first multiplicative atom bond
connectivity index, we get

ABCTL (C Example 5.Let K (n,m) be a graph constructed from two

24+2— 2 ymtn—a( 24+4-2, L pim complete graphd(,, and K,, with one common vertex (see
2.9 2.4 )= 5) * Figure 4 as an instance).
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By means of simple calculation, we yield
ABCIIL (K (n,m))
_ ( (n— 1) + (n — 1) — 2) (n=1)(n-2)
(n—1)-(n—1)

(m—1)+(m—1) =2 m-yim-2)
><(\/ -1 m=1

(m=1)-(m+n-—2)
(n_1)+(m+n_2)_2n—1
><(\/ -1 (min-2
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_ (\/Qn—4)(n—1>2<n—2>(\/2m—4)%
N n—1 m—1

2m+n—>5 m—1
x<\/(m—1)(m+n—2)) ﬁ

X (\/( n+m—35 )”*1, Fig. 5. The structure of V-phenylenic nanotube® H X [m, n].

n—1)(m+n—2)
II. MAIN RESULTS AND PROOFS myo

In this section, we present the main results and their det%ié. 6. The structure of \V-phenylenic nanotords®HY [m, n].
proofs. The trick to get these conclusions is followed by edge ’
set dividing technology.

X(\/(m—1)+(m+n—2)—2)m1

B. Organization of the rest paper

So far, there have been numerous theoretical results abot
ABC index, but on the degree-based multiplication of ABC
index is also very small. As a variable of the original ABC -
index, degree-based multiplication ABC indices have a broad
application prospect, it is worthy of further study. This
motivates us to calculate some important chemical moleculal
structure of ABC multiplication index.

The rest of paper is organized as follows: first, we deter-
mine the fourth multiplication ABC index of V-phenylenic
nanotubes and nanotori; then, the first multiplication ABC
index of TUC,Cjs[p, q] and otherC4Cs net are considered;
next, the first multiplication ABC index ofV.S;[n] and
two classes of dendrimer nanostars; (i) and Ds[n]) are
computed; at last, the first multiplication ABC index of
carbon nanocone§),[n] are calculated.

1 2

Ashrafi et al. [42], Bahrami and Yazdani [43], Ghorbani et
A. Fourth multiplication ABC index of V-phenylenic nanal. [44], Moradi and Baba-Rahim [45], Farahani [46] and
otubes and nanotori Gao et al. [47], [48], [49] and [50]. The main computing

The aim of this section is to determine the fourth multiconclusion is formulated as follows.
plication ABC index of V-phenylenic nanotube and nanotoril heorem 1Letn andm be two positive integers. The fourth
The novel phenylenic and naphthylenic lattices consist offaultiplication ABC index of V-phenylenic nanotubes and
square net embedded on the toroidal surface. As polycydiianotori are
conjugated molecules, phenylenes are composed of squ Loam, T oms 9 v 4 omn_om
and hexagons in which each 4-membered ring is adjacent}%cgc‘*H(VPHX[m’n]) =GR G )
two 6-membered cycles, and no two 6-membered rings a{gq
adjacent mutually. We denote V-phenylenic nanotube and V- ABC,II(VPHY [m, n]) = (ﬁ
phenylenic nanotorus a8 PH X [m,n| and VPHY [m,n], 9
respectively. The representation of these two kinds of nand%oof. The proof is followed by edge set dividing approach in
tructures are manifested in Figure 5 and Figure 6, respaehich the edge set is separated into several subsets according
tively. to the value ofS(u) and S(v).

Foregone results on V-phenylenic nanotubes and nanotorBy analysis the molecular structure of V-phenylenic nan-

can refer to Yousefi-Azari et al. [40], Alamian et al. [41]potubesV PH X [m, n], we see that its edge set can be divided

)9mn.

(Advance online publication: 17 November 2017)
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into the following four parts:

e ¢ = (u,v): S(u) = 6 and S(v) = 8, and there ardm 1 2 p
such edges;

o ¢ = (u,v): S(u) = S(v) = 8, and there ar&m such

edges;

e e = (u,v): S(u) = 8 and S(v) = 9, and there ar&m

such edges; 2

o ¢ = (u,v): S(u) =S(v) =9, and there ar®mn — 9m

such edges.

In light of the definition of the fourth multiplication ABC
index, we have

ABCLII(VPHX[m,n))

[ Sy + Sy —2
H SuSv

wweE(VPHX[m,n])

_ (\/6+8_2)4m(\/8+8_2)2m(\/8+9_2)2m q
B 6 %8 8 x 8 8x9
9+9-2 Imn—9m
x(\) =) Fig. 7. The structure of 2-D Lattic€,Cs[4, 4].
9x9
_ 1 4m l 2m E 2m % Imn—9m G G S S
= MG 5P P, - - _ _
1 2 p

For V-phenylenic nanotoriV PHY [m,n|, this is a 3-
regular molecular graph withi(v) = 3 for eachv €
V(VPHY[m,n]), and thusS(v) = 9 for vertexwv. In view — —
of the definition of the fourth multiplication ABC index, we — T — —

get 2 | ] - | L
9+9—2 4 ]
ABCLII(VPHY = () ———==)"m" = (=)¥mn, | |
AU(VPHY [mon)) = (|| =55 = (5)
Hence, we obtain the desired results. O : || || | | -
B. The first multiplication ABC index of nanostructures S — — —
q
The aim of this section is to yield the first multiplication — = —\_/—

ABC index of TUC4Cs[p,q|, where ¢ is the number of — — —

rows andp is the number of columns. Then we determingy g The structure of 2-D graph &4 Cs[4, 4] nanotube.
this topological index for its nanotubes. At last, the first

multiplication ABC index of TUC4Cs|p, q] (can be seen in

Figure 7) is yielded. In this subsection, we always assunigjex, we infer

p,q € N.
~Theorem 2 Let G = TUC4Cs[p, q] be the two dimen- ABCLII(G) = dy +do —2
sional molecular lattice structure depicted in Figure 7. Then, e B(C) dydy
ABCLI(G) = (L2 By srsass, S A FE A i = e A
o . - « (1) 23 =2 12p0-8(p+a)+4
Proof. By analysis its structure, its edge set can be divided 3x3
into three subsets: 1 1 9
e ¢ = (u,v): d(u) = d(v) =2, and there ar@€p + 2¢ + 4 = 5)2p+2q+4( 5)4p+4q_8(g)lzpq_g(p+q>+4.
such edges;
e e = (u,v): d(u) = 2 andd(v) = 3, and there ardp + Hence, the formula in the theorem is correct. O
4q — 8 such edges; Theorem 3 Let G be the two dimensional’,Cs|p, ¢
e ¢=(u,v): d(u) =d(v) =3, and there aré2pq — 8(p + nanotube described in Figure 8. Then,
q) + 4 such edges. 1 2
In term of the definition of the first multiplication ABC ABGCLIII(G) = (5)3”(5)12’)‘1_8”-

(Advance online publication: 17 November 2017)
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Fig. 10. The molecular structure &S [1].

Fig. 9. The structure of 2-D graph @f4Cs[4, 4] nanotorus.

Proof. Similarly, its edge set can be divided into three

subsets:

e ¢ = (u,v): d(u) = d(v) = 2, and there ar@p such edges;
u,v).

e ¢ = (u,v): d(u) =2 andd(v) = 3, and there ardp such
edges;

e e = (u,v): d(u) = d(v) = 3, and there ard2pq — 8p
such edges.

By virtue of the definition of the first multiplication ABC
index, we deduce

24+2-2 24+3-2 i
ABCLTI(G) = (\/ + )Qp(\/ + ) Fig. 11. The molecular structure @¥5:[2).

2 X2 2x3
< /343 — 2)12pq_8p
3x3
_ 1 2p 1 4p 2 12pq—8p
= (G PFE
Therefore, we verify the expected conclusion. O

Theorem 4 Let G be the two dimensional’,Cs|p, q]
nanotori described in Figure 9. Then,
ABCII(G) = (%)1219‘1.

Proof. Since C4Csg[p, ¢] nanotori is a 3-regular molecular
graph with12pg edges. We directly get the result O

C. The first multiplication ABC index a¥ S [n]

In this part, we raise the first multiplication ABC index of a
an infinite class ofV.S; [n] (as examples, the basic structures
of NSi[n] can be seen in Figure 10, Figure 11 and Figure

12).
Theorem 5Let n € N be the step number of growth. The
first multiplication ABC index of N 'Sy [n] is given by Fig. 12.  The molecular structure ¢¥5(3].
ABCTINS; ) = L2 Lo [l
in this subset;
Proof. By analysisE(N S;[n]), we have four separate sub-e e = (u,v): d(u) = d(v) = 2, and there ar@-2" + 3 such
sets listed as follows: edges;

e e = (u,v): d(u) =1 andd(v) = 4, and there one edgee e = (u,v): d(u) = 2 and d(v) = 3, and there are

(Advance online publication: 17 November 2017)



TAENG International Journal of Applied Mathematics, 47:4, [JAM 47 4 04

18 - 2" — 12 such edges; oS / )~
e ¢ = (u,v): d(u) = 3 andd(v) = 4, and there are three —~ ’\N) G VA
such edges. (o J [ O
Hence, using the definition of the first multiplication ABC N LS ” ) N
index, we derive N Qg =
du dv -2 / \ /
ABCIII(NS [n)) =[] Gu ¥ v — 2 vy
weE(NS: [n]) ufv Pa\ 1
~ J LR
_ (\/1 +4— 2)(\/2 +2— 2)9,2n+3 A \ :
1x4 2% 2 A N

\/§ L o7.9mn g )
- W W)k
The proof is completed. O

243 -2 1g0n 19, [3+4 24 oW \ N O N ) /) A

D. The first multiplication ABC index of dendrimer nanos-
tars D;[n] and D3[n]

Here, we discuss the first multiplication ABC index of '9- 13
dendrimer nanostard;[n] and Ds[n], where these two
molecular structures are widely appeared in the chemical , . )
compounds, drugs, and nanomaterials. In'this subseF, n

Theorem 6 Let n € N be the number of steps Ofr;uceh:ed(gé;)')- d(u) = d(v) = 2, and there ard2- 2" — G

rowth, then the first multiplication ABC index of dendrim ’
ga%otst:';sgl[:l]eis si;teg tal?s catio C index of dend e e= (u,v): d(u) = 2 andd(v) = 3, and there are4 -

2™ — 12 such edges;
2,1 g.9n e ¢ = (u,v): d(u) = d(v) =3, and there ar@-2" — 6 such
ABClﬂ(Dl[nD: \/;(2)9-2 76. edges'( ’ ) ( ) ( )

Hence, using the definition of the first multiplication ABC

index, we derive

The example oD3[n]: n = 3.

Proof. Its edge set can be divided into three subsets:
e e = (u,v): d(u) =1 andd(v) = 3, and there one edge

in this subset; dy +d, —2
e e = (u,v): d(u) = d(v) = 2, and there aré - 2" — 2 such ABCII(Ds[n]) = ] \/T
) uUrv

edges; wveE(Ds[n]
o ¢ = (u,v): d(u) =2 andd(v) = 3, and there ard2 - 143—230n, [242—2 199n 4
2" — 10 such edges. = 1x3 )7 2 % 2 )

Hence, according to the definition of the first multiplica- 5
. . +3—2 gq0n_ 3+3—-2 gon_
tion ABC index, we get x(4/ W)M Y W)g 2o
dy +dy, —2 2 aon, |1 acon 10,2 gon_
ABCLII(Dy[n]) = H MW _ (\/;)32 (\/;)362 18(§)92 6

wv€E(D1[n])
\/1 ¥3-2 \/2 +2-2 4on s We complete the proof. O
= 1x3 I 2 x 2 )
< 2+3 - 2)12_2n,10 E. The first multiplication ABC index of carbon nanocones
2x3 Now, we compute the first multiplication ABC index of
_ 2, 14g9n 19 carbon nanocone§ NC,,[n] = C,,[n] (see Figure 14 as an
= ~(1/ =) .
3°V 2 example of carbon nanocone).
The desired result is obtained. O Theorem 8Letm > 3 andn > 1 be two positive integers,
AS an instance, the molecular Structurel@£ [3] is pre- then the first multiplication ABC index of carbon nanocones
sented in Figure 13. Ci[n] can be expressed as

Theorem 7 Let n € N be the number of steps of 1 9 iani
growth, then the first multiplication ABC index of dendrimer ABCLIN(Cyn[n)]) = (1] 2)2mmtm( )=
nanostarsDs[n] is stated as 2 3

Proof. By analysis the molecular structure of carbon
ABC,II(D3[n]) = ( 2)3-2"(1)18-2"79(2)9'2"*6, nanocone<’,,[n], we found that its edge set can be divided
3 2 3 into three parts:
Proof. The setF (N .S3[n]) can be divided into following four e e = (u,v): d(u) = d(v) = 2, and there aren such edges;
parts: o ¢ = (u,v): dlu) =2 andd(v) = 3, and there ar&mn

e e=(u,v): d(u) =1andd(v) = 3, and there3 - 2" edges such edges;

(Advance online publication: 17 November 2017)
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Fig. 15.

The structure oV A}}, nanotubes nanotube.

Fig. 14. The example of carbon nanocafig, [n].

o ¢ = (u,v): d(u) = d(v) = 3, and there aré”(?’”z—%r”)

such edges.

If n=0(mod2), then

Then, by means of the definition of the first multiplication 5 2n-1 95— 1.
ABC index, we derive ABGII(NAL) =] H (1/ Zip +p)61_3
i=1p—3n
dy +dy, —2 2
WEE(Cyy[n]) w 4p? + 2p 2p 2p — 1

B [24+42—-2 . [24+3-2,,..
= 2x2 )" ( 2x%3 )

E 2p — 1 (n _1)6i-16)
X
o 3—&-3—2)% H H \/:
3x3

i=5+3 p=2n+1

_ (\/T)2mn+m(2)m(3"2+”) X H H 1/ 2+p 6n7i.
2 3 i=3n+6,j€{0,--- , 5 —1} p=52

Hence, we check the desired result. O o fp= 1(mod4), then

F. The fifth multiplication ABC index a¥ A™, nanotubes ABC;5II(N A7)
5n—1 —

The eccentricityec(u) of vertexu € V(G) is defined as VIp—=2 ° pEAmed) o
the maximum distance betwearand any other vertex i - T H ( P2 )
Gao et al. [51] introduced the fifth multiplicative atom bond =
connectivity index which was stated as 1238 i=1(mod2) 2n—2,p=0(mod2) 51

41
—|— ec(v) — 2 ) 1:[ 1:[+1 ( p? —|—p)
ABCT;(G) =[] T =1 =nl
weB(G) CC(U ngl ,i=0(mod2) 2n—1,p=1(mod2) 2p 1 .

The structure of ofN A}, nanotubes was discussed by x H H ( p2 +p)
Bac et al. [52] as follows: consider the x n quadrilateral =2 p=257
section P with m > 2 hexagons on the top and bottom B2t p=0(mod2) %=1 (o
sides andr > 2 hexagons on the lateral sides cut from the X H (/= )z
regular hexagonal latticé. If we identify two lateral sides p=2n prEp
of P such that we identify the vertices) and u/,, for 5n=3 p=1(mod2)
j=0,1,2,--- 'n, then theN A", nanotubes are obtained. % H ( 212’7_1)71@—1)
The detailed structure a¥ A, nanotubes nanotube can refer p=2n41 p°+p
to Figure 15. In this part, we study A}, nanotube with Bl g 9 =1 (mod2)
n = m and it's fifth multiplication ABC index is determined. y H H ( 2p —

p>+p

Theorem 9 The fifth multiplication ABC index ofN A”,
nanotubes can be expressed as follows:

5n+1

(Advance online publication: 17 November 2017)
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223 i=1(mod2) 3n—1,p=0(mod2)

2p—1 4
< 1 _H (/2
e If n = 3(mod4), then
ABC5II(NA™)
B Mﬁ’pﬁ(m‘)d”( =
= 2

3n+3
2

p=
—1,p=1(mod2)
( [2p — 1)16z’—10
p= 3n+1 p2 er

n+1
4
i=1
2

241 9n,p=0(mod2)

2p — 1. 4,
<IT 1T G
i=1  p_snts petp
2
%,pzl(mmﬂ) 2p
% H ( / 2 — p)rb(7L+1)
p=2n+1
S p=0mod?) 2p — 1, (+)(n=3)
x ( )
H p2 +p

p=2n+2
223 n#£3 3n—2,p=0(mod2)

2p— 1160
=1 p= 57124»3,”#3
"T_Hyn?% 3n—1,p=0(mod2) o) 1
D — 1\8i—4
X —_ .

i=1 _5n+t1
- 2

Proof. The whole proof can be divided into three parts ec(u) = p andec(v)

according to the value of.
Case 1.n = 0(mod2).

In this case, the edge set d¥ A}, nanotubes can be

divided into five parts according to the value af(x) and
ec(v):
. ec(u)

p and ec(v) p + 1 where
p € {2n — Z,---,2n — 1}, and there ar&i — 3 such
edges withi e {1, 2k

e cc(u) = 2p andec(v) = 2p + 1 wherep = n = 0(mod2),
and there ar&n such edges witlh = 0(mod?2);

o ec(u) = ec(v) = 2p+ 1 wherep = n = 0(mod2), and
there are2 such edges;

D ec(u) = p and ec(v) = p + 1 where
pe{2n+1,--- — 1}, and there aré3 — 1)(3n + 2)
such edges;

e cc(u) = p andec(v) = p+1wherep € {32, ,3n—1},

and there ar&n — ¢ such edges with = 3n + 65 and
je {07 7%_1}'

In terms of the definition of the fifth multiplication ABC
index, we have

ABGC5II(NAT)
H ec(u) + ec(v) —

weE(NA?) ec(u)ec(v)

22n1
613
[T 65

= lp—T”

2

4p —1 H 4p
4p? +2p o (2P —1)2

» H i_.[ 2p—1 )(3-1)(6i-16)
2+p

i=5+3 p=2n+1

II

i=3n+6,5€{0,

3n—1

II ¢«

51} p=3p

2p —1
p2+p

X )ani.

Case 2.n = 1(mod4).

In this case, the edge set d¥ A}, nanotubes can be
divided into eight parts according to the valueeafu) and
ec(v):

e ec(u) = ec(v) = p wherep = n = 0(mod2), and there
only one such edge;

ec(u) ec(v) = p where 2L < p < 522l and
p = 0(mod2), and therex — 1 such edges;

e ec(u) =p andec(v) = p+1 where32 < p < 2n —2
and p 0(mod2), and there arei such edges with
ie{l, -, %3} andi = 1(mod2);

e ec(u) =pandec(v) = p+1 where22t2 <p <2p—1
and p = 0(mod2), and there ar8; — 2 such edges with
i€{2,---, %21} andi = 0(mod2);

e ec(u) =p andec(v) = p+ 1 where2n < p < 521 and

p = 0(mod2), and there arw such edges;

e ec(u) =p andec(v) = p+1 where2n +1 < p < 923
andp = 1(mod2), and there are? — n such edges;

e ec(u) =pandec(v) =p+1 where5”2—+1 <p<3n-2
and p 1(mod2), and there ard6: such edges with
ie{l, -, 21}

=p+1where®t <p<3n-1
and p 0(mod2), and there arei such edges with
ie{l, - ,2%3} andi = 1(mod2).

In view of the definition of the fifth multiplication ABC
index, we get

ABC3II(NA™)
H ec(u) + ec(v) —

weitagy V| el

2

Sn—l p=0(mod2)

V2p—2 T

p p= 317/24-1

223 i=1(mod2) 2n—2,p=0(mod2)

=1(
11 II <
i=1 p=3ntl

221 i=0(mod2) 2n—1,p=1(mod2)

11 11

= 3n+3
1=2 p=%

2p — 1, e43)(nt1)
W =)
pe+p

2p—1
P2 +p

2p—1
P> +p

)4i

2p—1.g;_ o
W/ =5—)
p“+p

%,pEO(mon)
p=2n
5"72’3,1151(m0d2)

p=2n+1
22l 3p—2,p=1(mod2)

11 (

__5n+41
- 2

)n(n—l)

2p—1

)161
p?+p
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223 i=1(mod2) 3n—1,p=0(mod2) =1, 1. CONCLUSION
2
% 1:[1 1;[% ( p2 +p) ' In this paper, we study the degree-based indices multi-
= P="2 plication ABC of several common appeared nanostructures.

_ The exact computational formulas are presented by means
Case 3.n = 3(mod4). of edge set dividing approach. These theoretical results in

In this case, the edge set of A7, nanotubes can be nanoscience, biology, pharmacy and other fields have a wide
divided into seven parts according to the valueeefu) and  gpplication prospect.

ec(v):

e ec(u) = ec(v) = p wherep € {33 ... Sntl} and
theren + 1 such edge; ) )
o cc(u) = p andec(v) = p+1 where 3%t < p < 2p —1 The authors hereby declare that there is no conflict of

andp = 1(mod2) and there aré6i — 10 such edges with interests regarding the publication of this paper.
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ie{l,---, ”Il

e ec(u) = p andec(v) = p+ 1 where 22 < p < 2n ACKNOWLEDGMENT
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e ec(u) =p andec(v) = p+1 where2n +1 < p < 321
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