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Abstract—This paper is concerned with the global uniform
exponential stability for two classes of impulsive Takagi-Sugeno
(T-S) fuzzy systems with uncertainties. We first introduce
impulses into each subsystem of the T-S fuzzy IF-THEN rules
and then present a unified T-S impulsive fuzzy model with
uncertainties for control. Based on the new model, a new control
approach for the stability analysis is proposed. This approach
allows the computation of the bound which characterizes the
exponential rate of convergence of the solutions under some
assumptions on the perturbed term. The common quadratic
Lyapunov function and parallel distributed compensation con-
troller are used to show the exponential stability of solutions
of the impulsive T-S fuzzy systems with uncertainties, provided
that the uncertainties are supposed uniformly bounded by a
known function. A numerical example is given to illustrate the
applicability of the theoretical results.

Index Terms—T-S fuzzy system; Impulse; Uncertainty; Feed-
back controller; Exponential stabilization.

I. INTRODUCTION

THE dynamics of many evolving processes are subject to
abrupt changes such as shocks, harvesting and natural

disasters. These phenomena involve short term perturbations
from continuous and smooth dynamics, whose duration is
negligible in comparison with the duration of an entire evo-
lution. In models involving such perturbations, it is natural
to assume that these perturbations act instantaneously or in
the form of impulses.

Fuzzy systems in the form of the Takagi-Sugeno (T-S)
model [1] have attracted rapidly growing interest in recent
years. T-S fuzzy systems are nonlinear systems described by
a set of IF-THEN rules. It has shown that the T-S model
can give an effective way to represent complex nonlinear
systems by some simple local linear dynamic systems with
their linguistic description, see [2-14].

Within the control theory it is necessary to study the
stationary states of systems with fuzzy control. A lot of
such systems are described by T-S models and can be
mathematically formalized as a locally-linear system of d-
ifferential equations. However, there are many systems that
cannot endure the continuous effects of control inputs but
impulsive control which instantly changes the system’s state
is often an effective way to solve the stability problem for
such systems. Therefore, the theory of impulsive differential
equations has been the subject of many investigations. The
T-S fuzzy model based impulsive control of chaotic systems
and impulsive synchronization for T-S fuzzy model have
been investigated; see, for example, [15,16]. But the existing
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impulsive control theory lacks the unified way for dealing
with different nonlinear systems. It is important to point out
that combining impulsive control with fuzzy modeling for
uncertain system has been rarely discussed until now.

Moreover, the results in [15,16] require both the continu-
ous dynamics and discrete dynamics of the impulsive systems
are stable/stabilizable. In this paper, we shall investigate the
control problem for more general impulsive systems. Differ-
ent from [15,16], we shall divide the impulsive systems into
three classes: the systems with stable/stabilizable continuous
dynamics and unstable/unstabilizable discrete dynamics; the
systems with unstable/unstabilizable continuous dynamics
and stable/stabilizable discrete dynamics; the systems that
both the continuous-time dynamics and the discrete-time
dynamics are stable/stabilizable. The first class of impulsive
systems corresponds to the case that the continuous dynamics
are subject to impulsive perturbations. The second class of
impulsive systems corresponds to the case that the impulses
are employed to stabilize the unstable continuous dynamics.

It is note that the standard methods from the control for
continuous systems are not suitable to the control for the
first and the second class of impulsive systems. Some new
analysis technique will be employed to derive the sufficient
conditions for the control of each class of impulsive systems.

This rest of this paper is organized as follows: Section 2
reviews the conventional T-S fuzzy model and issues about
stability. Section 3 presents the global uniform exponential
stability for impulsive T-S fuzzy uncertain systems at the
origin where some controllers are constructed to ensure
the exponential stability. Section 4 provides an example
to demonstrate the applicability of the proposed approach.
Finally, a conclusion is made in section 5.

II. T-S FUZZY CONTROL SYSTEM

The T-S fuzzy model with impulses is given by:
Plant Rule i:

If {z1(t) is Fi1} and {z2(t) is Fi2} · · · and {zp(t) is Fip},
then{

ẋ = Aix+Biu+ fi(t, x), i = 1, 2, · · · , r, t ̸= tn,

∆x = Cnx, t = tn,
(1)

where x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the
control input vector; Ai ∈ Rn×n and Bi ∈ Rn×m are
constant matrix; fi(i = 1, 2, · · · , r) are time-varying func-
tions, represent the uncertainties of each fuzzy subsystem,
r is the number of fuzzy rules; Fik(k = 1, 2, · · · , p) is
the fuzzy set; z(t) = (z1(t), · · · , zp(t))T is the premise
variable vector associated with the system states and inputs;
∆x(tn) = x(t+n ) − x(t−n ) is the impulse at the moment tn,
and x(t−n ) = x(tn), {tn} is a sequence of real number such
that 0 < t1 < t2 < · · · < tn → +∞ as n → +∞; Cn is a
constant matrix.
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By the center of gravity defuzzification method, it follows
from the first equation of fuzzy system (1) that

ẋ =

r∑
i=1

ωi(z)(Aix+Biu+ fi(t, x))

r∑
i=1

ωi(z)
,

where ωi(z) = Πp
k=1Fik(zk) and Fik(zk) denotes the grade

of the membership function Fik, corresponding to zk(t).
Let

ηi =
ωi(z)
r∑

i=1

ωi(z)
,

then the fuzzy system (1) has the state-space form ẋ =
r∑

i=1

ηi(Aix+Biu+ fi(t, x)), t ̸= tn,

∆x = Cnx, t = tn.

(2)

Clearly,
r∑

i=1

ηi = 1 and ηi ≥ 0 for i = 1, 2, · · · , r.

Throughout this paper, the pairs (Ai, Bi), i = 1, 2, · · · , r
are controllable, that is, the nominal fuzzy system is locally
controllable. Based on this assumption, a state feedback
control gain Ki can be obtained by pole placement design
or Ackerman’s formula, such that each local dynamics is
stably controlled. The representation of the global control
input matrix, denoted by B, is in the form

B =

r∑
i=1

ηiBi.

This means that the global control input matrix dominates
the control performance. The design of the fuzzy controller
can be taken as a linear state feedback control for system (1)
which can be defined as:
Plant Rule i:

If {z1(t) is Fi1} and {z2(t) is Fi2} · · · and {zp(t) is Fip},
then

u(t) = Kix(t), i = 1, 2, · · · , r,

where Ki is the local state feedback gain.
Consequently, the defuzzified result is

u(t) =
r∑

i=1

ηiKix(t).

III. CONTROL OF FUZZY SYSTEMS

Assume that the functions fi(i = 1, 2, · · · , r) in system
(1) satisfy

(H1) ∥fi(t, x)∥ ≤ ρi(x)∥x∥, ∀t ≥ t0, x ∈ Rn, i =
1, 2, · · · , r, where ρi are some nonnegative continuous
functions with ρi(t0) = 0. Let ρ : Rn → R+,

ρ(x) =

[ r∑
i=1

ρ2i (x)

] 1
2

,

then ρ is a bounded positive continuous function, and
ρ(t0) = 0.

Applying the fuzzy controller

u(t) =

r∑
j=1

ηjKjx(t) (3)

to system (2), then the closed-loop system is given by

ẋ =
r∑

i=1

ηi

(
Aix+Bi

r∑
j=1

ηjKjx

)

+
r∑

i=1

ηifi(t, x),

∆x = Cnx, t = tn.

(4)

Since
r∑

j=1

ηj = 1, then
r∑

i=1

ηiAix =
r∑

i=1

r∑
j=1

ηiηjAix. Thus,

ẋ =

r∑
i=1

r∑
j=1

ηiηj(Ai +BiKj)x+

r∑
i=1

ηifi(t, x)

=

r∑
i=1

η2iGiix+ 2

r∑
i<j

ηiηjGijx+

r∑
i=1

ηifi(t, x),

where

Gii = Ai +BiKi,

Gij =
1

2

(
Ai +BiKj +Aj +BjKi

)
.

The controller synthesis initially considers the stability of
the local fuzzy dynamics. That is, the stable feedback gains
are determined for each subsystem.

(H2) Suppose that there exists a symmetric and positive def-
inite matrix P , and some matrices Ki, i = 1, 2, · · · , r,
such that the following stability conditions

GT
iiP + PGii < −Qi, i = 1, 2, · · · , r

hold, where Qi is a positive definite matrix.
Based on (H2), each subsystem is locally controllable and

a stable feedback gain is obtained.

Theorem 1. Assume that (H1)− (H2) hold. If the function
ρ(x) satisfies

ρ(x) <
1

2||P ||
1

(
∑r

i=1 η
2
i )

1
2

(
inf

i=1,··· ,r
λmin(Qi)

r∑
i=1

η2i

−2µ− ln ζ

β
λmax(P )

)
(5)

with

µ <
1

2
inf

i=1,··· ,r
λmin(Qi)

r∑
i=1

η2i ,

where β > 0 is a constant, ζ = λ̃
λmin(P ) , λ̃ = max{λ1,

λ2, · · · , λn} > 0, and λ1, λ2, · · · , λn be the eigenvalues of
(I + Cn)

TP (I + Cn), then
(i) If ζ > 1, and inf

n
{tn− tn−1} ≥ β > 0, then the closed-

loop system (4) is globally uniformly exponentially
stable;

(ii) If ζ ∈ (0, 1), and 0 < sup
n
{tn − tn−1} ≤ β, then the

closed-loop system (4) is globally uniformly exponen-
tially stable;
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(iii) If ζ = 1, then the closed-loop system (4) is globally
uniformly exponentially stable.

Proof: Let V (t) = xTPx. Calculate the derivative of
V (t) along the trajectories of the closed-loop system (4) with
t ∈ (tn, tn+1), we have

V̇ (t) =

r∑
i=1

η2i x
T (GT

iiP + PGii)x

+2
r∑

i<j

ηiηjx
T (GT

ijP + PGij)x

+2xTP

r∑
i=1

ηifi(t, x).

Since each matrix (GT
ijP + PGij), 1 ≤ i < j ≤ r, is

symmetric, then

λmin(G
T
ijP + PGij)||x||2

≤ xT (GT
ijP + PGij)x ≤ λmax(G

T
ijP + PGij)||x||2,

where λmin(·)(resp. λmax(.)) denotes the smallest (resp. the
largest) eigenvalue of the matrix.

Let µ = maxi,j λmax(G
T
ijP +PGij), 1 ≤ i < j ≤ r, then

r∑
i<j

ηiηjx
T (GT

ijP + PGij)x ≤ µ||x||2.

In fact,
r∑

i<j

ηiηjx
T (GT

ijP + PGij)x

≤
r∑

i<j

ηiηjλmax(G
T
ijP + PGij)||x||2

≤
r∑

i<j

ηiηj max
i,j

λmax(G
T
ijP + PGij)||x||2

≤ µ
r∑

i<j

ηiηj ||x||2 ≤ µ||x||2.

From the above analysis and (H2), we have

V̇ (t) ≤ −
r∑

i=1

η2i λmin(Qi)||x||2 + 2µ||x||2

+2||P ||
r∑

i=1

ηiρi(x)||x||2.

By using Cauchy-Schwartz inequality, then

V̇ (t) ≤ −
r∑

i=1

η2i λmin(Qi)||x||2 + 2µ||x||2

+2||P ||[
r∑

i=1

η2i ]
1
2 [

r∑
i=1

ρ2i (x)]
1
2 ||x||2

≤
(
− inf

i=1,··· ,r
λmin(Qi)

r∑
i=1

η2i + 2µ

+2||P ||ρ(x)[
r∑

i=1

η2i ]
1
2

)
||x||2.

Since ρ(x) satisfies (5), then there exists a sufficient small
positive constant σ > 0 such that

V̇ (t) ≤ −(
ln ζ

β
+ σ)λmax(P )||x||2.

Moreover, V (t) = xTPx ≤ λmax(P )||x||2, then

V̇ (t) ≤ −ξV (t), (6)

where ξ = ln ζ
β + σ. Let t ∈ (tn, tn+1], from (6), we have

V (t) ≤ V (t+n )e
−ξ(t−tn), t ∈ (tn, tn+1]. (7)

On the other hand, if t = tn, n = 1, 2, · · · , then x(t+n ) −
x(t−n ) = Cnx(tn), that is

x(t+n ) = (I + Cn)x(tn),

then

V (t+n ) = xT (t+n )Px(t+n )

= xT (tn)(I + Cn)
TP (I + Cn)x(tn).

Let S = (I + Cn)
TP (I + Cn). Since S is symmetric, then

there exist an orthogonal matrix U and a diagonal matrix
Λ = diag(λ1, λ2, · · · , λn), such that

UTΛU = S,UTU = I.

Therefore,

V (t+n ) = (Ux(tn))
TΛ(Ux(tn)) ≤ λ̃(Ux(tn))

T (Ux(tn))

= λ̃xT (tn)x(tn) ≤ ζV (tn), (8)

where λ̃ = max{λ1, λ2, · · · , λn} > 0, ζ = λ̃
λmin(P ) .

It follows from (7) and (8) that

V (t) ≤ ζne−ξ(t−t0)V (t0), t ∈ (tn, tn+1]. (9)

If inf
n
{tn− tn−1} ≥ β, set n ≤ t−t0

β ; If sup
n
{tn− tn−1} ≤

β, set n ≥ t−t0
β −1; From (9), for arbitrarily t ≥ t0, we have

V (t) ≤



exp

(
(
ln ζ

β
− ξ)(t− t0)

)
V (t0),

ζ > 1, inf
n
{tn − tn−1} ≥ β;

1

ζ
exp

(
(
ln ζ

β
− ξ)(t− t0)

)
V (t0),

ζ ∈ (0, 1), sup
n
{tn − tn−1} ≤ β.

Notice that ln ζ
β − ξ = −σ < 0, then the closed-loop system

(4) is globally uniformly exponentially stable under the two
cases (i) and (ii).

Next, we consider the case (iii). If ζ = 1, then (9) can be
written as

V (t) ≤ e−σ(t−t0)V (t0), t ≥ t0,

that is, then the closed-loop system (4) is globally uniformly
exponentially stable. This completes the proof.

Furthermore, we consider the following impulsive T-S
fuzzy model with uncertainties:
Plant Rule i:

If {z1(t) is Fi1} and {z2(t) is Fi2} · · · and {zp(t) is Fip},
then{

ẋ = Aix+Biu+Bifi(t, x), i = 1, 2, · · · , r, t ̸= tn,

∆x = Cnx, t = tn.
(10)
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Assume that the functions fi(i = 1, 2, · · · , r) in system
(10) satisfy

(H3) ∥fi(t, x)∥ ≤ ρ̃(x), ∀t ≥ t0,∀x ∈ Rn, where ρ̃ is a
nonnegative continuous function, such that ρ̃(t0) = 0.

Let

u(t) =
r∑

j=1

ηjKjx+ ũ, (11)

where ũ is related to the uncertainties, which is chosen in
the following form− BTPxρ̃(x)

||BTPx||+ ε||x||2
, x ̸= 0,

0, x = 0,

for a certain ε > 0.
By using the same analysis methods of system (1), the

closed-loop system of (10) is given by

ẋ =
r∑

i=1

ηi

(
Aix+Bi

r∑
j=1

ηjKjx+Biũ

)

+
r∑

i=1

ηiBifi(t, x),

∆x = Cnx, t = tn,

(12)

and

ẋ =

r∑
i=1

ηi

(
Aix+Bi

r∑
j=1

ηjKjx+Biũ

)

+
r∑

i=1

ηiBifi(t, x)

=

r∑
i=1

ηi

(
Aix+Bi

r∑
j=1

ηjKjx

)
+Bũ

+
r∑

i=1

ηiBifi(t, x)

=

r∑
i=1

η2iGiix+ 2

r∑
i<j

ηiηjGijx+Bũ

+
r∑

i=1

ηiBifi(t, x).

Theorem 2. Assume that (H2)− (H3) hold. If the function
ρ̃(x) satisfies

ρ̃(x) <
1

2ε

(
inf

i=1,··· ,r
λmin(Qi)

r∑
i=1

η2i − 2µ

− ln ζ

β
λmax(P )

)
(13)

with ε > 0 and

µ <
1

2
inf

i=1,··· ,r
λmin(Qi)

r∑
i=1

η2i ,

where β > 0 is a constant, ζ = λ̃
λmin(P ) , λ̃ = max{λ1,

λ2, · · · , λn} > 0, and λ1, λ2, · · · , λn be the eigenvalues of
(I + Cn)

TP (I + Cn), then
(i) If ζ > 1, and inf

n
{tn− tn−1} ≥ β > 0, then the closed-

loop system (12) is globally uniformly exponentially
stable;

(ii) If ζ ∈ (0, 1), and 0 < sup
n
{tn − tn−1} ≤ β, then the

closed-loop system (12) is globally uniformly exponen-
tially stable;

(iii) If ζ = 1, then the closed-loop system (12) is globally
uniformly exponentially stable.

Proof: Let V (t) = xTPx. Calculate the derivative of
V (t) along the trajectories of the closed-loop system (12),
we have

V̇ (t) =
r∑

i=1

η2i x
T (GT

iiP + PGii)x

+2
r∑

i<j

ηiηjx
T (GT

ijP + PGij)x

+2xTPBũ+ 2xTP
r∑

i=1

ηiBifi(t, x).

Thus, for x ̸= 0, we have

V̇ (t) ≤ −
r∑

i=1

η2i λmin(Qi)||x||2 + 2µ||x||2

+2||xTPB||ρ̃(x)− 2
xTPBBTPxρ̃(x)

||BTPx||+ ε||x||2

≤ − inf
i=1,··· ,r

λmin(Qi)
r∑

i=1

η2i ||x||2 + 2µ||x||2

+2
||BTPx||ρ̃(x)ε||x||2

||BTPx||+ ε||x||2

≤ − inf
i=1,··· ,r

λmin(Qi)
r∑

i=1

η2i ||x||2 + 2µ||x||2

+2ρ̃(x)ε||x||2

≤
(
− inf

i=1,··· ,r
λmin(Qi)

r∑
i=1

η2i + 2µ+ 2ρ̃(x)ε

)
×||x||2.

Since ρ̃(x) satisfies (13), then there exists a sufficient small
positive constant δ > 0 such that

V̇ (t) ≤ −(
ln ζ

β
+ δ)λmax(P )||x||2.

Similar to the proof in Theorem 1, the closed-loop system
(12) is globally uniformly exponentially stable. This com-
pletes the proof.

Remark 1. When ζ > 1, the impulses can potentially
destroy the stability, so we require that they not happen
too frequently; When ζ ∈ (0, 1), the continuous flow can
potentially destroy the stability, so we require the flows to
be persistently interrupted by the impulses with stabilizing
effects.

IV. NUMERICAL EXAMPLE

Consider the following dynamic system:

ẋ1(t) = x2(t),

ẋ2(t) = 1.96 sin(x1(t))− 2x3(t)− 2x4(t),

ẋ3(t) = 4x4(t),

ẋ4(t) = 7.84 sin(x1(t))− 16x3(t)− 16x4(t)

− 4u(t),

(14)
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One can represent exactly the system by the following
four-rule fuzzy model:

Rule 1: If z1 is F11 and z2 is F12 then

ẋ(t) = A1x(t) +B1u(t) +B1f1(t, x)

Rule 2: If z1 is F21 and z2 is F22 then

ẋ(t) = A2x(t) +B2u(t) +B2f2(t, x)

Rule 3: If z1 is F31 and z2 is F32 then

ẋ(t) = A3x(t) +B3u(t) +B3f3(t, x)

Rule 4: If z1 is F41 and z2 is F42 then

ẋ(t) = A4x(t) +B4u(t) +B4f4(t, x)

with

z1 =

{
sin x1

x1
, x1 ̸= 0

0, x1 = 0
and z2 = sinx1,

where

A1 =


0 1 0 0

−1.96 0 −2 −2
0 0 0 4
0 0 −16 −16

 ,

B1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −4

 ,

A2 =


0 1 0 0

−1.96 0 −2 −2
0 0 0 4
0 0 −16 −16

 ,

B2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −4

 ,

A3 =


0 1 0 0

1.96 0 −2 −2
0 0 0 4
0 0 −16 −16

 ,

B3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −4

 ,

A4 =


0 1 0 0

1.96 0 −2 −2
0 0 0 4
0 0 −16 −16

 ,

B4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −4

 ,

f1(t, x) =


0
0
0

−1.96

 , f2(t, x) =


0
0
0

1.96

 ,

f3(t, x) =


0
0
0

−1.96

 , f4(t, x) =


0
0
0

1.96

 .

We have to choose a positive definite matrix Q, take Q =
I , and to solve the equation in (H2) to find P . Let ε =
0.125, ρ̃(x) ≤ 0.1, using Matlab2014a, we get the following
solutions, for K1,K2,K3,K4 and P :

K1 =


20.3146
12.8371
0.2267
0.9033

 ,K2 =


20.3146
12.8371
0.2267
0.9033

 ,

K3 =


20.3146
12.8371
0.2267
0.9033

 ,K4 =


20.3146
12.8371
0.2267
0.9033

 ,

P =


0.0503 0.0228 −0.0035 −0.0059
0.0228 0.0154 −0.0011 −0.0036
−0.0035 −0.0011 0.0027 0.0004
−0.0059 −0.0036 0.0004 0.0021

 .

Consider system (14) with impulses
∆x1(t)
∆x2(t)
∆x3(t)
∆x4(t)

 = C4


x1(t)
x2(t)
x3(t)
x4(t)

 , (15)

where C4 is a 4× 4 constant matrix.
By Theorem 2, we get the following results:
If C4 = O, by a direct calculation, ζ = 1, then the closed-

loop system is globally uniformly exponentially stable.
If C4 = P , by a direct calculation, ζ = 1.1284 and β =

0.76. Since ζ > 1, the impulses can potentially destroy the
stability, so we require that they not happen too frequently.
Let inf

n
{tn − tn−1} ≥ β > 0, the closed-loop system is

globally uniformly exponentially stable.
If C4 = P − 2I , by a direct calculation, ζ = 0.8794

and β = 0.21. Since ζ ∈ (0, 1), the continuous flow can
potentially destroy the stability, so we require the flows to
be persistently interrupted by the impulses with stabilizing
effects. Let 0 < sup

n
{tn−tn−1} ≤ β, the closed-loop system

is globally uniformly exponentially stable.

V. CONCLUSION

The design problems of feedback controller for two types
of impulsive T-S fuzzy systems with uncertainties have been
studied. Our methods are helpful to improve the existing
technologies used in the analysis and control for uncertain
impulsive systems. The application of the main results have
been done on a dynamic physical model. It is important to
notice that the methods used in this paper can be extended
to other types of dynamic models; see, for example, [17-20].
Future work will include systems modeling and analysis.
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