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Abstract—In this paper we propose the solution concepts for
the fuzzy optimization problems in the quotient space of fuzzy
numbers and the concepts of convexity, quasiconvexity and
pseudoconvexity for fuzzy mappings. Optimizations of convex
and generalized convex fuzzy mappings are derived.
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I. INTRODUCTION

THE uncertainty includes randomness and fuzziness in
the real world. Therefore, imposing the uncertainty

upon the conventional optimization problems becomes an
interesting research topic. The fuzzy set theory was in-
troduced initially in 1965 by Zadeh [29] with a view to
reconcile mathematical modeling and human knowledge in
the engineering science. In 1992, Nanda and Kar [11] in-
troduced the concept of convexity for fuzzy mappings and
proved that a fuzzy mapping is convex if and only if its
epigraph is a convex set. Yan and Xu [28] proposed the
concepts of epigraph and convexity of the fuzzy mappings
and described characteristics of the convex fuzzy mappings
and quasi-convex fuzzy mappings by considering the concept
of ordering due to Goetschel and Voxman [3]. In addition
they discussed the properties of convex fuzzy optimizations.
In [21], Syau introduced the concepts of pseudo-convexity
and pseudo-invexity for fuzzy mappings of one variable and
investigated the relationships among them by using notion of
differentiability and the results proposed by Goetschel and
Voxman [3]. In [22], Syau defined a differentiable fuzzy map-
pings of several variables in ways that parallel the definition,
proposed by Goetschel and Voxman [3], for a fuzzy mapping
of one variable. Wang and Wu [24] proposed the concepts
of directional derivative, differential and subdifferential of
fuzzy mappings from Rn into the set of fuzzy numbers and
discussed the characterizations of directional derivative and
differential.

In [14], Qiu et al. intuitively showed a method of finding
the inverse operation in the quotient space of fuzzy numbers
based on the Mareš equivalence relation [9], [10], which
have the desired group properties for the addition operation
[7], [13], [27]. As an application of the main results, it
is shown that if we identify every fuzzy number with the
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corresponding equivalence class, there would be more differ-
entiable fuzzy functions than what is found in the literature.
In [17], Qiu et al. studied the fuzzy differential equations
in the quotient space of fuzzy numbers. They dealt with the
convergence of successive approximations of the initial value
problem of the fuzzy differential equations. In [15], [18] Qiu
et al. further investigated the differentiability properties of
such functions in the quotient space of fuzzy numbers. In
this paper, optimizations of convex and generalized convex
fuzzy mappings are derived in the quotient space of fuzzy
numbers.

II. PRELIMINARIES

We start this section by recalling some pertinent concepts
and key lemmas from the function of bounded variation,
fuzzy numbers and fuzzy number equivalence classes which
will be used later.

Definition 2.1: [8] Let f : [a, b] → R be a function. f is
said to be of bounded variation if there exists a C > 0 such
that

n∑
i=1

|f(xi−1)− f(xi)| ≤ C

for every partition a = x0 < x1 < x2 < · · · < xn = b on
[a, b]. The set of all functions of bounded variation on [a, b]
is denoted by BV [a, b].

Definition 2.2: [8] Let f : [a, b] → R be a function of
bounded variation. The total variation of f on [a, b], denoted
by V b

a (f) , is defined by

V b
a (f) = sup

p

n∑
i=1

|f(xi−1)− f(xi)|,

where p represents all partitions of [a, b].
Lemma 2.1: [8] Let f, g ∈ BV [a, b], then we have

(1) cf + dg ∈ BV [a, b] and

V b
a (cf + dg) ≤ |c|V b

a (f) + |d|V b
a (g)

for any contents c, d ∈ R.
(2) f · g ∈ BV [a, b] and

V b
a (f · g) ≤ V b

a (f) sup
x∈[a,b]

|g(x)|+V b
a (g) sup

x∈[a,b]

|f(x)| .

Lemma 2.2: [8] Every monotonic function f : [a, b] → R
is of bounded variation and

V b
a (f) = |f(a)− f(b)| .

A fuzzy set x̃ in R is characterized by a membership
function µx̃ : R → [0, 1]. The α-level set of x̃ is denoted
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by [x̃]α = {x ∈ R : µx̃(x) ≥ α} for each α ∈ (0, 1].
The 0-level set [x̃]0 is defined as the closure of the set
{x ∈ R : µx̃(x) > 0}, i.e., [x̃]0 = cl({x ∈ R : µx̃(x) > 0}).
A fuzzy set x̃ is said to be a fuzzy number if it satisfies the
following conditions:

(1) x̃ is normal, i.e., there exists an x0 ∈ R such that
µx̃(x0) = 1;

(2) x̃ is convex, i.e., µx̃(λx1 + (1 − λ)x2) ≥
min{µx̃(x1), µx̃(x2)} for all x1, x2 ∈ R and λ ∈
(0, 1);

(3) x̃ is upper semicontinuous, i.e., the α-level set [x̃]α is
a closed subset of R for all α ∈ [0, 1];

(4) The 0-level set [x̃]0 is a compact subset of R.
Let F be the set of all fuzzy numbers on R. Then

for any x̃ ∈ F , it is well known that the α-level set
[x̃]α = [x̃L(α), x̃R(α)] is a non-empty bounded closed
interval in R for all α ∈ [0, 1], where x̃L(α) denotes the
left-hand end point of [x̃]α and the x̃R(α) denotes the right
one. For any x̃, ỹ ∈ F and λ ∈ R, owing to Zadeh’s
extension principle, the addition and scalar multiplication can
be respectively defined for any x ∈ R by

µx̃+ỹ(x) = sup
x1,x2:x1+x2=x

min{µx̃(x1), µỹ(x2)}

and
µλ×x̃(x) = µλx̃(x) =

{
µx̃(

x
λ ), λ ̸= 0,

0, λ = 0.

We say that a fuzzy number s̃ ∈ F is symmetric [9], if
s̃ = −s̃, i.e., µs̃(x) = µ−s̃(x) = µs̃(−x) for all x ∈ R. We
denote the set of all symmetric fuzzy numbers by S .

Definition 2.3: [14] Let x̃ ∈ F , we define a function x̃M :
[0, 1] → R by assigning the midpoint of each α-level set to
x̃M (α) for all α ∈ [0, 1], i.e.,

x̃M (α) =
x̃L(α) + x̃R(α)

2
.

Then the function x̃M : [0, 1] → R will be called the
midpoint function of the fuzzy number x̃.

Lemma 2.3: [14] For any x̃ ∈ F , the midpoint function
x̃M is continuous from the right at 0 and continuous from
the left on [0, 1]. Furthermore, it is a function of bounded
variation on [0, 1].

Definition 2.4: [4] Let x̃, ỹ ∈ F , we say that x̃ is
equivalent to ỹ, if there exist two symmetric fuzzy numbers
s̃1, s̃2 ∈ S such that x̃ + s̃1 = ỹ + s̃2 and then we denote
this by x̃ ∼ ỹ.

It is easy to verify that the equivalence relation defined
above is reflexive, symmetric and transitive[9]. Let ⟨x̃⟩
denote the fuzzy number equivalence class containing the
element x̃ and denote the set of all fuzzy number equivalence
classes by F/S .

Definition 2.5: [10] Let x̃ ∈ F and let x̂ be a fuzzy
number such that x̃ = x̂+ s̃ for some s̃ ∈ S , if x̂ = ỹ+ s̃1
for some ỹ ∈ F and s̃1 ∈ S , then s̃1 = 0̃. Then the fuzzy
number x̂ will be called the Mareš core of the fuzzy number
x̃.

Definition 2.6: [15] Let ⟨x̃⟩ ∈ F/S , we define the
midpoint function M⟨x̃⟩ : [0, 1] → R by

M⟨x̃⟩(α) = x̂M (α)

for all α ∈ [0, 1], where x̂ is the Mareš core of ⟨x̃⟩.

Definition 2.7: [15] Let ⟨x̃⟩ , ⟨ỹ⟩ ∈ F/S , we define the
sum of this two fuzzy number equivalence classes as a fuzzy
equivalence class ⟨z̃⟩ ∈ F/S , which satisfies the condition

M⟨x̃⟩(α) +M⟨ỹ⟩(α) = M⟨z̃⟩(α)

for all α ∈ [0, 1] and we denote this by

⟨x̃⟩+ ⟨ỹ⟩ = ⟨x̃+ ỹ⟩ = ⟨z̃⟩ .

Definition 2.8: [14] Let ⟨x̃⟩ , ⟨ỹ⟩ ∈ F/S , we say that
⟨z̃⟩ ∈ F/S is the product of ⟨x̃⟩ and ⟨ỹ⟩ if their midpoint
functions satisfy

M⟨x̃⟩(α) ·M⟨ỹ⟩(α) = M⟨z̃⟩(α)

for all α ∈ [0, 1] and we denote this by

⟨x̃⟩ · ⟨ỹ⟩ = ⟨z̃⟩ .

Definition 2.9: [15] For any ⟨x̃⟩ ∈ F/S and λ ∈ R, we
define λ · ⟨x̃⟩ = λ ⟨x̃⟩ by

λ ⟨x̃⟩ = ⟨x̃⟩λ = ⟨λx̃⟩ .

It is obvious that Mλ⟨x̃⟩ (α) = M⟨λx̃⟩ (α) = λM⟨x̃⟩ (α) for
all α ∈ [0, 1].

Definition 2.10: [14] Let ⟨x̃⟩ , ⟨ỹ⟩ ∈ F/S , we define
dsup : F/S × F/S → R+ ∪ {0} by

dsup (⟨x̃⟩ , ⟨ỹ⟩) = sup
α∈[0,1]

∣∣M⟨x̃⟩(α)−M⟨ỹ⟩(α)
∣∣ .

It is easy to see that (F/S , dsup) is a metric space [14].

III. OPTIMIZATION OF CONVEX AND GENERALIZED
CONVEX FUZZY MAPPINGS

In this paper, we always suppose that the range of fuzzy
mappings is the set of all fuzzy number equivalence classes.

Definition 3.1: [15] Let F : T → F/S be a fuzzy
mapping, where T = [a, b] ⊆ R. Then F is said to be
continuous at t ∈ T with respect to dsup if for any h ̸= 0
with t+ h ∈ T such that

lim
h→0

dsup (F (t+ h) , F (t)) = 0.

If t = a(or b), then we consider only h → 0+ (or h → 0−).
Definition 3.2: [15] Let F : T → F/S be a fuzzy

mapping, where T = [a, b] ⊆ R. Then F is said to be
differentiable at t ∈ T if there exists an F ′ (t) ∈ F/S
such that

lim
h→0

dsup

(
F (t+ h)− F (t)

h
, F ′ (t)

)
= 0.

If t = a(or b), then we consider only h → 0+ (or h → 0−).
Lemma 3.1: [15] F : T → F/S is differentiable on T

if and only if
(1) MF (t) (α) is differentiable with respect to t ∈ T for all

α ∈ [0, 1]. i.e., ∂
∂tMF (t) (α) exists and is of bounded

variation with respect to α ∈ [0, 1] for all t ∈ T .
(2) The mappings

{
MF (t) (α)

}
α∈[0,1]

are uniformly dif-
ferentiable with the derivatives ∂

∂tMF (t) (α). i.e., for
each t ∈ T and ε > 0, there exists a δ > 0 such that∣∣∣∣MF (t+h) (α)−MF (t) (α)

h
− ∂

∂t
MF (t) (α)

∣∣∣∣ < ε

for all |h| ∈ (0, δ) and α ∈ [0, 1].
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Lemma 3.2: [15] If F : T → F/S is differentiable, then
it is continuous with respect to dsup.

Definition 3.3: [16] Let ⟨ã⟩ = (⟨ã1⟩, ⟨ã2⟩, · · · , ⟨ãn⟩)T ∈
(F/S )

n and t = (t1, t2, · · · , tn)T ∈ Rn be an n-
dimensional fuzzy number equivalence class vector and n-
dimensional real vector respectively. We define theirs product
as

⟨ã⟩T t =
n∑

i=1

⟨ãi⟩ti = ⟨ã1⟩t1 + ⟨ã2⟩t2 + · · ·+ ⟨ãn⟩tn,

which is a fuzzy number equivalence class.
Definition 3.4: [16] Let F : Ω → F/S be a fuzzy

mapping, where Ω is an open subset in Rn. We say that F has
a partial derivative at t = (t1, t2, · · · , tn)t ∈ Ω with respect
to the ith variable ti if there exists an ∂

∂ti
F (t) ∈ F/S

such that

lim
h→0

dsup

(
F
(
t+ hei

)
− F (t)

h
,
∂

∂ti
F (t)

)
= 0,

where ei stands for the unit vector that the ith component
is 1 and the others are 0.

Definition 3.5: [16] Let F : Ω → F/S be a fuzzy
mapping, where Ω is an open subset in Rn. We say that
F is differentiable at t = (t1, t2, · · · , tn)T ∈ Ω if F has
continuous partial derivatives ∂

∂ti
F (t) with respect to ith

variable ti (i = 1, 2, · · · , n) and satisfies

F (t+ h) = F (t) + ∇̃F (t)
T
h+ o (∥h∥) ,

where ∇̃F (t) ∈ (F/S )n is an n-dimensional fuzzy number
equivalence class vector defined by

∇̃F (t) =

(
∂F (t)

∂t1
,
∂F (t)

∂t2
, · · · , ∂F (t)

∂tn

)T

,

∥h∥ is the usual Euclid norm of h and o : [0,+∞) → F/S
is a fuzzy mapping that satisfies

lim
t→0

dsup

(
o (t)

t
, ⟨0̃⟩

)
= 0.

Then we call ∇̃F (t), the gradient of the fuzzy mappings F
at t.

Definition 3.6: [16] Let ⟨x̃⟩ , ⟨ỹ⟩ ∈ F/S .
(1) We say that ⟨x̃⟩ ≼ ⟨ỹ⟩ if M⟨x̃⟩(α) ≤ M⟨ỹ⟩(α) for all

α ∈ [0, 1].
(2) We say that ⟨x̃⟩ ≺ ⟨ỹ⟩ if ⟨x̃⟩ ≼ ⟨ỹ⟩ and there exists at

least one α0 ∈ [0, 1] such that M⟨x̃⟩(α0) < M⟨ỹ⟩(α0).
(3) If ⟨x̃⟩ ≼ ⟨ỹ⟩ and ⟨ỹ⟩ ≼ ⟨x̃⟩, then ⟨x̃⟩ = ⟨ỹ⟩.
Sometimes we may write ⟨ỹ⟩ ≽ ⟨x̃⟩ instead of ⟨x̃⟩ ≼ ⟨ỹ⟩

and write ⟨ỹ⟩ ≻ ⟨x̃⟩ instead of ⟨x̃⟩ ≺ ⟨ỹ⟩ . Note that ≼ is a
partial order relation on F/S .

Definition 3.7: Let ⟨ã⟩ ∈ F/S , we say that ⟨ã⟩ is
nonnegative if ⟨ã⟩ ≽ ⟨0̃⟩, i.e., M⟨ã⟩ (α) ≥ 0 for all α ∈ [0, 1].

Let F : Rn → F/S be a fuzzy mapping. Consider the
following optimization problem

min F (t) = F (t1, t2, · · · , tn) ,
subjec to t = (t1, t2 · · · , tn)T ∈ Ω ⊆ Rn,

(1)

where the feasible set Ω is assumed to be convex subset
of Rn. Since ≼ is a partial order relation on F/S , we
may follow the similar solution concept (the non-dominated

solution) used in multi-objective programming problems to
interprete the meaning of minimization in problem (1).

Definition 3.8: Let t∗ be a feasible solution of problem
(1), i.e., t∗ ∈ Ω.
(1) We say that t∗ is a local non-dominated solution of

problem (1) if there exists an ε > 0 and for no t ∈
Nε (t

∗)∩Ω such that F (t) ≺ F (t∗), where Nε (t
∗) is

an ε-neighborhood around t∗.
(2) We say that t∗ is a (global) non-dominated solution of

problem (1) if there exists no t ∈ Ω such that F (t) ≺
F (t∗).

(3) We say that t∗ is a strongly (global) non-dominated
solution of problem (1) if there exists no t(̸= t∗) ∈ Ω
such that F (t) ≼ F (t∗).

Remark 3.1: It is easy to get that if t∗ is a strongly non-
dominated solution of problem (1), then it is also a non-
dominated solution of problem (1).

To present the relationships among above non-dominated
solutions, first of all, we provide the concept of convexity
and its generalizations for fuzzy mappings.

Definition 3.9: Let F : Ω → F/S be a fuzzy mapping,
where Ω is a non-empty convex subset in Rn. F is said to be
convex on Ω if for any s, t ∈ Ω and λ ∈ (0, 1), we always
have F (λs+ (1− λ)t) ≼ λF (s)+(1− λ)F (t). F is said
to be concave if −F is convex.

Theorem 3.1: Let F : Ω → F/S be a fuzzy mapping,
where Ω is a non-empty convex subset in Rn. Then F is
convex on Ω if and only if MF (t) (α) is convex with respect
to t ∈ Ω for all α ∈ [0, 1].
Proof. The result follows from Definitions 3.6 and 3.9
immediately. 2

Theorem 3.2: Every local non-dominated solution of
problem (1) is also a (global) non-dominated solution of
problem (1) if the objective function F is convex.
Proof. Let t∗ ∈ Ω be a local non-dominated solution of
problem (1). Thus there exists an ε > 0 and for no t ∈
Nε (t

∗)∩Ω such that F (t) ≺ F (t∗). We are going to prove
this result by contradiction. Suppose that t∗ ∈ Ω is not a
(global) non-dominated solution of problem (1), then there
exists at least one other point t0 ∈ Ω such that

F
(
t0
)
≺ F (t∗) . (2)

Since the feasible set Ω is convex, we have λt0 +
(1− λ) t∗ ∈ Ω for any λ ∈ (0, 1). Considering that the
objective function F is convex and using (2), we have

F
(
λt0 + (1− λ) t∗

)
≼ λF

(
t0
)
+ (1− λ)F (t∗)

≺ λF (t∗) + (1− λ)F (t∗) = F (t∗) .

We see that λ ∈ (0, 1) can be sufficiently small such that
λt0 + (1− λ) t∗ ∈ Nε (t

∗), which contradicts the condition
that t∗ is a local non-dominated solution of problem (1).
Thus, we have that t∗ ∈ Ω is also a (global) non-dominated
solution of problem (1). 2

The concept of quasiconvex fuzzy mapping in the space of
fuzzy numbers have been introduced by Nanda[11]. Nanda
did not discuss the concept for finding the maximum of two
fuzzy numbers. Since it may happen that two fuzzy numbers
are not comparable. Similarly, since ≼ is a partial order
relation on F/S , to present and modify the definition of
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quasiconvex fuzzy mapping on F/S , we shall to present
the following definition firstly.

Definition 3.10: Let S ⊆ F/S , then S is said to be
bounded above if there exists a fuzzy number equivalence
class ⟨ã⟩ ∈ F/S , called an upper bound of S, such that
⟨x̃⟩ ≼ ⟨ã⟩ for every ⟨x̃⟩ ∈ F/S . Further, a fuzzy number
equivalence class ⟨ã0⟩ ∈ F/S is called the least upper
bound (sup, in short) for S if the following conditions are
hold:
(1) ⟨ã0⟩ is an upper bound of S;
(2) ⟨ã0⟩ ≼ ⟨ã⟩ for every upper bound ⟨ã⟩ of S.
A lower bound and the greatest lower bound (inf, in short)

are defined similarly.
Theorem 3.3: Let any ⟨ã⟩ , ⟨c̃⟩ ∈ F/S , then the set

{⟨ã⟩ , ⟨c̃⟩} has the least upper bound and the greatest lower
bound.
Proof. For any ⟨ã⟩ , ⟨c̃⟩ ∈ F/S , by Lemma 2.3 we have
that the midpoint functions M⟨ã⟩ and M⟨c̃⟩ are continuous
from the right at 0, continuous from the left on [0,1] and
are functions of bounded variation on [0,1]. Then we define
two functions Msup : [0, 1] → R and Minf : [0, 1] → R
by Msup (α) = max

{
M⟨ã⟩ (α) ,M⟨c̃⟩ (α)

}
and Minf (α) =

min
{
M⟨ã⟩ (α) ,M⟨c̃⟩ (α)

}
for all α ∈ [0, 1], respectively.

It is easy to see that the functions Msup and Minf are
continuous from the right at 0 and continuous from the left on
[0,1]. Furthermore, we have that V 1

0 (Msup) ≤ V 1
0

(
M⟨ã⟩

)
+

V 1
0

(
M⟨c̃⟩

)
and V 1

0 (Minf) ≤ V 1
0

(
M⟨ã⟩

)
+V 1

0

(
M⟨c̃⟩

)
. Thus

Msup and Minf are functions of bounded variation on [0,1].
By Theorem 3.10 in [14], the functions Msup and Minf can
determine two fuzzy number equivalence classes ⟨m̃⟩ and
⟨ñ⟩ such that M⟨m̃⟩ = Msup and M⟨ñ⟩ = Minf . It is easy to
see that ⟨m̃⟩ and ⟨ñ⟩ are sup {⟨ã⟩ , ⟨c̃⟩} and inf {⟨ã⟩ , ⟨c̃⟩},
respectively. 2

Definition 3.11: Let F : Ω → F/S be a fuzzy mapping,
where Ω is a non-empty convex subset in Rn. F is said to
be quasiconvex on Ω if for any s, t ∈ Ω and λ ∈ (0, 1),
we always have F (λs+ (1− λ)t) ≼ sup{F (s), F (t)}.
The fuzzy mapping F is said to be quasiconcave if −F is
quasiconvex.

Theorem 3.4: Let F : Ω → F/S be a fuzzy mapping,
where Ω is a non-empty convex subset in Rn. Then F is
quasiconvex on Ω if and only if MF (t) (α) is quasiconvex
with respect to t ∈ Ω for all α ∈ [0, 1].
Proof. The result follows from Theorem 3.3 and Definition
3.11 immediately. 2

Theorem 3.5: Let F : Ω → F/S be a differentiable
fuzzy mapping, where Ω is a non-empty convex subset in
Rn. If F is quasiconvex on Ω, then the following state-
ment holds: If s, t ∈ Ω such that F (s) ≼ F (t), then
∇̃F (t)

T
(s− t) ≼ ⟨0̃⟩. Furthermore, if F is comparable in

the sense of Definition 3.1 in [15], then the converse of this
theorem is hold.
Proof. Let F be quasiconvex on Ω and s, t ∈ Ω such that
F (s) ≼ F (t). Then we shall show that ∇̃F (t)

T
(s− t) ≼

⟨0̃⟩. Since F is differentiable at t, by Definition 3.5 we have

F (λs+ (1− λ) t)−F (t) = λ∇̃F (t)
T
(s− t)+o (λ ∥(s− t)∥)

(3)
for any λ ∈ (0, 1), where

dsup

(
o (λ ∥(s− t)∥)

λ
, ⟨0̃⟩

)
→ 0 (4)

as λ → 0. Since F is quasiconvex on Ω, and as F (s) ≼
F (t), we have

F (λs+ (1− λ) t) ≼ sup {F (s) , F (t)} = F (t) (5)

for any λ ∈ (0, 1). Now (3), (4) and (5) imply that
λ∇̃F (t)

T
(s− t) + o (λ ∥(s− t)∥) ≼ ⟨0̃⟩, that is

λM∇̃F (t)(α)
T
(s− t) +Mo(λ∥(s−t)∥) (α) ≤ 0. (6)

for all α ∈ [0, 1]. Further, we see that

dsup

(
o (λ ∥(s− t)∥)

λ
, ⟨0̃⟩

)
= sup

α∈[0,1]

∣∣∣M o(λ∥(s−t)∥)
λ

(α)− 0
∣∣∣

= sup
α∈[0,1]

∣∣∣∣Mo(λ∥(s−t)∥) (α)

λ

∣∣∣∣→ 0

as λ → 0. Since λ ̸= 0, dividing (6) by λ and taking λ → 0,
we can obtain M∇̃F (t)(α)

T
(s− t) ≤ 0, for all α ∈ [0, 1],

that is, ∇̃F (t)
T
(s− t) ≼ ⟨0̃⟩.

Conversely, we suppose that s, t ∈ Ω such that F (s) ≼
F (t) and then we have ∇̃F (t)

T
(s− t) ≼ ⟨0̃⟩. Next, we

shall show that F (λs+ (1− λ) t) ≼ sup {F (s) , F (t)} =
F (t) for any λ ∈ (0, 1), which implies that F is quasiconvex
on Ω. By contradiction, we suppose that there exists a λ∗ ∈
(0, 1) such that

F (λ∗s+ (1− λ∗) t) � F (t) . (7)

Further, since we suppose that F is comparable, (7) implies
that F (λ∗s+ (1− λ∗) t) ≻ F (t) . Since F is differentiable,
by Lemma 3.2 we have that F is continuous with respect to
dsup. Denoting w = λ∗s + (1− λ∗) t, then there exists a
δ ∈ (0, 1) such that

F (µw + (1− µ) t) ≻ F (t) (8)

for all µ ∈ (δ, 1) and F (w) ≻ F (δw + (1− δ) t) , which
implies that MF (w)(α) > MF (δw+(1−δ)t)(α) for all α ∈
[0, 1]. By Lemma 3.1 we have that MF (t) (α) is differentiable
with respect to t ∈ T for all α ∈ [0, 1]. Further, by the usually
mean value theorem, we have that

0 < (1− δ)M∇̃F (v)(α)
T
(w − t)

for all α ∈ [0, 1], where v = µ′w + (1− µ′) t for some
µ′ ∈ (δ, 1). That is

0 < M∇̃F (v)(α)
T
(s− t) (9)

for all α ∈ [0, 1]. Furthermore, by (8) we can obtain F (v) ≻
F (t) . Since F (s) ≼ F (t), it is easy to see that F (v) ≻
F (s) . Further, we have

v = µ′w + (1− µ′) t = µ′λ∗s+ (1− µ′λ∗) t,

where ν∗ = µ′λ∗ ∈ (0, 1). Then by the assumption of the
theorem, we have that

⟨0̃⟩ ≽ ∇̃F (v)
T
(s− v) = (1− ν∗) ∇̃F (v)

T
(s− t) . (10)

Since 1− ν∗ > 0, the inequality (10) implies that
M∇̃F (v)(α)

T
(s− t) ≤ 0 for all α ∈ [0, 1], which contra-

dicts the inequality (9). Hence, we have that F is quasiconvex
on Ω. 2

Definition 3.12: Let F : Ω → F/S be a fuzzy mapping,
where Ω is a non-empty convex subset in Rn. F is said to
be strictly quasiconvex on Ω if for any s, t ∈ Ω with F (s) ̸=
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F (t) and λ ∈ (0, 1), we always have F (λs+ (1− λ)t) ≺
sup{F (s), F (t)}. The fuzzy mapping F is said to be strictly
quasiconcave if −F is strictly quasiconvex.

Theorem 3.6: Let F : Ω → F/S be a strictly qua-
siconvex fuzzy mapping, where Ω is a non-empty convex
subset in Rn. If t∗ ∈ Ω is a local non-dominated solution of
problem (1), then t∗ is also a global non-dominated solution
of problem (1).
Proof. If t∗ ∈ Ω is a local non-dominated solution of prob-
lem (1), then there exists an ε > 0 and for no t ∈ Nε (t

∗)∩Ω
such that F (t) ≺ F (t∗). We are going to prove this result
by contradiction. Suppose that t∗ ∈ Ω is not a (global) non-
dominated solution of problem (1), then there exists at least
one point t0 ∈ Ω such that

F
(
t0
)
≺ F (t∗) . (11)

We define t = λt0 + (1− λ) t∗, where λ ∈ (0, 1) is
selected such that t ∈ Nε (t

∗). Since the feasible set Ω
is convex, we have t ∈ Ω. Considering that the objective
function F is strictly quasiconvex and using (11), we have
F
(
t
)
≺ sup

{
F (t∗) , F

(
t0
)}

= F (t∗) , which contradicts
the condition that t∗ is a local non-dominated solution of
problem (1). Hence, we have that t∗ ∈ Ω is also a (global)
non-dominated solution of problem (1). 2

Definition 3.13: Let F : Ω → F/S be a fuzzy mapping,
where Ω is a non-empty convex subset in Rn. F is said
to be strongly quasiconvex on Ω if for any s, t ∈ Ω with
s ̸= t and λ ∈ (0, 1), we always have F (λs+ (1− λ)t) ≺
sup{F (s), F (t)}. The fuzzy mapping F is said to be
strongly quasiconcave if −F is strongly quasiconvex.

Theorem 3.7: Let F : Ω → F/S be a strongly qua-
siconvex fuzzy mapping, where Ω is a non-empty convex
subset in Rn. If t∗ ∈ Ω is a local non-dominated solution
of problem (1), then t∗ is also a strongly (global) non-
dominated solution of problem (1).
Proof. If t∗ ∈ Ω is a local non-dominated solution of prob-
lem (1), then there exists an ε > 0 and for no t ∈ Nε (t

∗)∩Ω
such that F (t) ≺ F (t∗). We are going to prove this result
by contradiction. Suppose that t∗ is not a strongly (global)
non-dominated solution of problem (1), then there exists at
least one point t0 ∈ Ω with t0 ̸= t∗ such that

F
(
t0
)
≼ F (t∗) . (12)

We define t = λt0 + (1− λ) t∗, where λ ∈ (0, 1) is
selected such that t ∈ Nε (t

∗). Since the feasible set Ω
is convex, we have t ∈ Ω. Considering that the objective
function F is strongly quasiconvex and using (12), we have
F
(
t
)
≺ sup

{
F (t∗) , F

(
t0
)}

= F (t∗) , which contradicts
the condition that t∗ is a local non-dominated solution of
problem (1). Hence, we have that t∗ ∈ Ω is also a strongly
(global) non-dominated solution of problem (1). 2

Definition 3.14: Let F : Ω → F/S be a differentiable
fuzzy mapping, where Ω is a non-empty convex subset in Rn.
F is said to be pseudoconvex on Ω if for any s, t ∈ Ω such
that F (s) ≺ F (t), we always have ∇̃F (t)

T
(s− t) ≺ ⟨0̃⟩.

The fuzzy mapping F is said to be pseudoconcave if −F
is pseudoconvex. Similarly, F is said to be strictly pseu-
doconvex on Ω if for any s, t ∈ Ω with s ̸= t satisfying
F (s) ≼ F (t), we always have ∇̃F (t)

T
(s− t) ≺ ⟨0̃⟩.

Theorem 3.8: Let F : Ω → F/S be a pseudoconvex
fuzzy mapping, where Ω is a non-empty open convex subset

in Rn. If ∇̃F (t∗) = ⟨0̃⟩, then t∗ is a non-dominated solution
of problem (1).
Proof. If ∇̃F (t∗) = ⟨0̃⟩. Then we have
∇̃F (t∗)

T
(t− t∗) = ⟨0̃⟩ for any t ∈ Ω. Since F is

pseudoconvex, we have F (t) ⊀ F (t∗) for all t ∈ Ω, which
implies that there exists no t ∈ Ω such that F (t) ≺ F (t∗).
Hence, we get that t∗ is a non-dominated solution of
problem (1). 2

IV. CONCLUSION

In this present investigation, by considering an order-
ing relation on the quotient space of fuzzy numbers, we
have presented the concepts of convexity, quasiconvexity
and pseudoconvexity for fuzzy mappings [19]. Further, the
solutions concepts proposed in this paper will follow from
the similar solution concept, called non-dominated solution,
in the conventional multiobjective programming problems
[26], [30], [31]. We hope that our results may provide a
background to ongoing work in related fields [12], [20], [25].
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