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Abstract—This paper considers a discrete-time Geo/Geo/1
queue with server breakdowns and repairs. If the server is busy
in a normal state, a breakdown is represented by the arrival
of a negative customer, and the failed server still works at a
lower service rate rather than stopping the service completely.
Applying the matrix-analytic method, we derive the necessary
and sufficient condition for the system to be stable. Using
the probability generating function, we deal with the joint
distribution of the server state and the number of customers
in the system. The relation between our discrete-time model
and its continuous-time counterpart is also investigated. Finally,
some numerical examples are presented to show the effect
of various system parameters on the queueing characteristics.
Furthermore, an operating cost function is formulated and
the optimum service rate in the working breakdown period
is obtained.

Index Terms—Geo/Geo/1, negative customer, working break-
down, repair.

I. INTRODUCTION

Queues with negative arrivals, called G-queues, were first
introduced by Gelenbe [1]. A negative customer will vanish
if it arrives to an empty queue, and negative customers
cannot accumulate in a queue and do not receive services.
In some cases, an arrival negative customer makes the server
break down when the system is in a normal state. Queues
with server breakdowns can be applied in manufacturing
systems, production systems, telecommunication systems,
inventory systems and computer systems. Wang and Zhang
[2] investigated a Geo/G/1 retrial queue with negative cus-
tomers, where the server is subject to failure due to the
negative arrivals. Wu and Lian [3] analyzed an M/G/1 retrial
G-queue with unreliable server under Bernoulli vacation
schedule. Using the matrix geometric method, Rakhee et al.
[4] studied a Geo/Geo/1 queue with unreliable server, where
the breakdown of the server is represented by the arrival of
a negative customer. For more queueing models with server
breakdowns and repairs, readers can refer to Do [5], Yang et
al. [6], Gao and Wang [7] and Tsai et al. [8].

In the study of queueing systems, it is usually assumed
that the server stops the service completely in a breakdown
period. However, in many practical cases, the failed server
still can serve a customer at a lower service rate. This type
of breakdown is called as working breakdown introduced by
Kalidass and Kasturi [9], and the M/M/1 queue they analyzed
can be applied to studying the behavior of communication
system or machine replacement problem. Liu and Song [10]
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extended the model in [9] to an MX /M/1 queue, where the
customers arrive in batches. Kim and Lee [11] discussed
an M/G/1 queue with disasters and working breakdowns,
where all present customers leave the system when a dis-
aster happens. Recently, Jiang and Liu [12] investigated a
GI/M/1 queue with disasters and working breakdowns in a
multi-phase service environment. Using the matrix geometric
method, Ma et al. [13] computed the steady-state distribution
of an M/M/1 queue with multiple vacations and working
breakdowns. Readers can also refer to Liou [14], [15] and
Yen et al. [16]. Note that working breakdown is different
from working vacation introduced by Servi and Finn [17].
A working vacation is taken only when the system becomes
empty, while a working breakdown can occur at any time
point. Some authors like Zhang and Liu [18] and Rajadurai
et al. [19], [20] have studied working vacation queues with
unreliable server, where the server is subject to breakdown
due to the negative arrivals.

The concept of working breakdown introduced by Kalidass
and Kasturi [9] does make sense in real life. For example,
when a computer is infected by a virus, it may still be able to
perform but in a slower service rate. Parallel to continuous-
time queues, discrete-time models are more suitable to ana-
lyze computer systems or communication systems, the reason
is that these systems operate on a discrete-time basis where
the events (arrival of packets and their forward transmissions)
only take place at regularly spaced epochs. A detailed discus-
sion and application of discrete-time queues can be found in
Woodward [21] and Ramasamy et al. [22]. Up to now, a few
authors have discussed continuous-time queues with working
breakdowns, but their discrete-time counterparts seem to
receive very little attention in the literature. Inspired by the
natural and reasonable applications of discrete-time queues,
we deal with a Geo/Geo/1 queue with working breakdowns
in this paper, where a breakdown occurs due to a negative
arrival. In order to make a comparison with the continuous-
time system [9], the killing discipline is not considered in
this model.

This paper is organized as follows. Section 2 gives a
brief description of the model. Using the matrix-analytic
method, the stable condition is obtained. In Section 3, we
deal with the steady state joint distribution of the server
state and the number of customers in the system. Section
4 gives the relation between our discrete-time queue and its
corresponding continuous-time model. In Section 5, some
numerical examples and cost optimization analysis are pre-
sented. Finally, Section 6 concludes the paper.

II. MODEL DESCRIPTION AND STABILITY CONDITION

In this paper, for any real number x ∈ [0, 1], we denote
x̄ = 1 − x. We consider a early arrival system, and the
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Geo/Geo/1 queue with two types of customers and working
breakdowns is given as follows:

(1) Assume a potential departure (due to the completion of
a service) occurs in (n−, n), and the distribution of service
time Sb in a normal period is

P{Sb = k} = µµ̄k−1, k ≥ 1, 0 < µ < 1.

A potential positive customer arrival takes place in (n, n+),
and inter-arrival times of positive customers follow the
geometric distribution:

P{A = k} = pp̄k−1, k ≥ 1, 0 < p < 1.

(2) There are at least two possible choices for the location
of a negative arrival: (i) in (n, n+) and immediately after
a potential positive arrival; (ii) in (n, n+) and immediately
before a potential positive arrival. In this paper, we choose
(i) as Atencia and Moreno [23] did. Inter-arrival times of
negative customers follow the geometric distribution:

P{B = k} = δδ̄k−1, k ≥ 1, 0 < δ < 1.

(3) In a normal period, the arrival of a negative customer
makes the server break down if the server is busy (i.e., there
are customers in the system) at that moment. When the server
breaks down, the service rate decreases, and the distribution
of service time Sw in a breakdown period is

P{Sw = k} = ηη̄k−1, k ≥ 1, 0 < η < 1,

where η < µ.
(4) When the server breaks down, a repair procedure starts

immediately. We assume that the beginning and ending of
repair occur at the slot n, and the repair times follow the
geometric distribution:

P{R = k} = θθ̄k−1, k ≥ 1, 0 < θ < 1.

(5) The arriving negative customer has nothing to do with
the server when the server is free or under repairing, and
negative customers cannot accumulate in a queue and do not
receive services.

We assume that inter-arrival times, service times and repair
times are mutually independent.

Here we give a practical application of this model. In a
computer system, date packets arrive at the system according
to a Bernoulli process with parameter p. When the computer
system is operating in a normal state, the processing time
(service time) for each data packet is geometrically distribut-
ed with parameter µ. The computer system may be subject
to the invasion of a virus during the normal operation period,
and the time interval until the presence of virus follows
a geometric distribution with parameter δ. If the computer
system is invaded by a virus, the CPU of the computer will
not stop running completely and still can work at a lower
speed. Under this situation, the processing time for each
data packet is governed by a geometric distribution with
parameter η (η < µ). Meanwhile, the antivirus software
begins to repair the system until the virus is cleared, and the
repair times follow a geometric distribution with parameter
θ.

Let Jn be the state of server at time n+, and Qn be the
number of customers in the system at time n+. There are two
possible states of the single server as follows: (i) Jn = 1,

the server is in a normal period at time n+; (ii) Jn = 2, the
server is defective (in a working breakdown period) at time
n+. Then, {Jn, Qn} is a Markov chain with state space

Ω = {(j, k), j = 1, 2, k ≥ 0}.

Remark 1: In order to make a comparison with the
continuous-time model Kalidass and Kasturi [9], we do
not consider killing discipline in this paper. If we consider
removal discipline, such as RCH, i.e., the negative arrival can
remove a customer being in service, the system will have a
similar solution but is not pursued in the present work.

Using the lexicographical sequence for the states, the
transition probability matrix can be written as

P̃ =


A00 A01

B10 A1 A0

A2 A1 A0

. . . . . . . . .

 ,

where

A00 =

(
p̄ 0
θp̄ θ̄p̄

)
; A0 =

(
µ̄pδ̄ µ̄pδ
η̄θpδ̄ η̄θ̄p+ η̄θpδ

)
;

B10 =

(
µp̄ 0
ηθp̄ ηθ̄p̄

)
; A01 =

(
pδ̄ pδ
θpδ̄ θ̄p+ θpδ

)
;

A1 =

(
µ̄p̄δ̄ + µpδ̄ µ̄p̄δ + µpδ
η̄θp̄δ̄ + ηθpδ̄ η̄θ̄p̄+ ηθ̄p+ η̄θp̄δ + ηθpδ

)
;

A2 =

(
µp̄δ̄ µp̄δ
ηθp̄δ̄ ηθ̄p̄+ ηθp̄δ

)
.

Due to the block structure of transition probability matrix,
{Jn, Qn} is called a QBD process.

Theorem 1: The QBD process {Jn, Qn} is positive recur-
rent if and only if θδ̄(µp̄− µ̄p) > δ(η̄p− ηp̄).

Proof: Let

A = A0 +A1 +A2 =

(
δ̄ δ
θδ̄ θ̄ + θδ

)
,

the Theorem 7.2.3 in [24] states that the QBD is positive
recurrent if and only if πA2e > πA0e, where e is a column
vector with all elements equal to one, and π is the unique
solution of the system πA = π, πe = 1. After some algebraic
manipulation, we have π =

(
θδ̄

θδ̄+δ
, δ
θδ̄+δ

)
, and the QBD

process is positive recurrent if and only if µθp̄δ̄ + ηp̄δ >
µ̄θpδ̄ + η̄pδ ⇔ θδ̄(µp̄− µ̄p) > δ(η̄p− ηp̄).

III. STEADY STATE ANALYSIS

If θδ̄(µp̄− µ̄p) > δ(η̄p− ηp̄), let (J,Q) be the stationary
limit of the process (Jn, Qn), and denote

Pj,k = P{J = j,Q = k}
= lim

n→∞
P{Jn = j,Qn = k}, (j, k) ∈ Ω.

Using the transition probability matrix P̃ , the balance
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equations governing the system are given by

P1,0 = p̄P1,0 + µp̄P1,1 + θp̄P2,0 + ηθp̄P2,1, (1)
P1,1 = pδ̄P1,0 + (µ̄p̄δ̄ + µpδ̄)P1,1 + µp̄δ̄P1,2

+ θpδ̄P2,0 + (η̄θp̄δ̄ + ηθpδ̄)P2,1 + ηθp̄δ̄P2,2, (2)
P1,k = µ̄pδ̄P1,k−1 + (µ̄p̄δ̄ + µpδ̄)P1,k + µp̄δ̄P1,k+1

+ η̄θpδ̄P2,k−1 + (η̄θp̄δ̄ + ηθpδ̄)P2,k

+ ηθp̄δ̄P2,k+1, k ≥ 2, (3)
P2,0 = θ̄p̄P2,0 + ηθ̄p̄P2,1, (4)
P2,1 = pδP1,0 + (µ̄p̄δ + µpδ)P1,1 + µp̄δP1,2

+ (θ̄p+ θpδ)P2,0 + (η̄θ̄p̄+ ηθ̄p+ η̄θp̄δ + ηθpδ)P2,1

+ (ηθ̄p̄+ ηθp̄δ)P2,2, (5)
P2,k = µ̄pδP1,k−1 + (µ̄p̄δ + µpδ)P1,k

+ µp̄δP1,k+1 + (η̄θ̄p+ η̄θpδ)P2,k−1

+ (η̄θ̄p̄+ ηθ̄p+ η̄θp̄δ + ηθpδ)P2,k

+ (ηθ̄p̄+ ηθp̄δ)P2,k+1, k ≥ 2. (6)

Define partial probability generating functions P1(z) =∑∞
k=1 P1,kz

k, P2(z) =
∑∞

k=0 P2,kz
k. Multiplying (2) and

(3) by appropriate powers of z, and summing over k ≥ 1,
we can obtain(

− µ̄pδ̄z2 + (1− µ̄p̄δ̄ − µpδ̄)z − µp̄δ̄
)
P1(z)

− θδ̄
(
η̄pz2 + (η̄p̄+ ηp)z + ηp̄

)
P2(z)

= pδ̄z(z − 1)P1,0 + ηθδ̄(pz + p̄)(z − 1)P2,0. (7)

Multiplying (4), (5) and (6) by appropriate powers of z, and
summing over k ≥ 0, we can get

−
(
µ̄pδz2 + (µ̄p̄δ + µpδ)z + µp̄δ

)
P1(z)

+
(
− η̄θ̄pz2 + (1− η̄θ̄p̄− ηθ̄p)z − ηθ̄p̄

)
P2(z)

− θδ
(
η̄pz2 + (η̄p̄+ ηp)z + ηp̄

)
P2(z)

= pδz(z − 1)P1,0 + η(θ̄ + θδ)(pz + p̄)(z − 1)P2,0. (8)

Solving Eqs. (7) and (8), we have

P1(z) =
[
pδ̄z

(
θz + θ̄(ηp̄− η̄pz)(z − 1)

)
P1,0

+ ηθδ̄z(pz + p̄)P2,0

]/
ϕ(z), (9)

P2(z) =
[
pδz2P1,0 + η

(
θ̄δ̄(µp̄− µ̄pz)(z − 1) + δz

)
× (pz + p̄)P2,0

]/
ϕ(z), (10)

where ϕ(z) = δ̄(µp̄ − µ̄pz)(ηp̄ − η̄pz)(z − 1) + δz(ηp̄ −
η̄pz) + θδ̄(µp̄− µ̄pz)(η̄z + η)(pz + p̄).

Lemma 1: If θδ̄(µp̄ − µ̄p) > δ(η̄p − ηp̄), the equation
ϕ(z) = 0 has a unique root z = r1 in the interval (0,1).

Proof: We can easily obtain

ϕ(0) = −µηθ̄p̄2δ̄ < 0,

ϕ(1) = δ(ηp̄− η̄p) + θδ̄(µp̄− µ̄p) > 0,

ϕ
(µp̄
µ̄p

)
=

µp̄2δ

µ̄2p
(η − µ) < 0,

ϕ(+∞) = +∞ (the coefficient of z3 is µ̄η̄θ̄p2δ̄ > 0).

Thus, the three roots of ϕ(z) lie in (0, 1), (1, µp̄
µ̄p ) and

(µp̄µ̄p ,+∞), and ϕ(z) = 0 has a unique root z = r1 in the
interval (0,1).

From Lemma 1, the numerator of P1(z) must vanish at z =
r1, we have

pδ̄r1

(
θr1 + θ̄(ηp̄− η̄pr1)(r1 − 1)

)
P1,0

+ ηθδ̄r1(pr1 + p̄)P2,0 = 0,

which means

P2,0 =
θ̄p(ηp̄− η̄pr1)(1− r1)− θpr1

ηθ(pr1 + p̄)
P1,0

△
= L(r1)P1,0. (11)

Therefore, using (11), we have the following theorem.
Theorem 2:

P1(z) =
[
pδ̄z

(
θz + θ̄(ηp̄− η̄pz)(z − 1)

)
+ ηθδ̄z(pz + p̄)L(r1)

]
P1,0

/
ϕ(z),

P2(z) =
[
pδz2 + η

(
θ̄δ̄(µp̄− µ̄pz)(z − 1) + δz

)
× (pz + p̄)L(r1)

]
P1,0

/
ϕ(z),

where P1,0 is determined by the normalization condition

P1,0 + P1(1) + P2(1) = 1,

which leads to

P1,0 =
ϕ(1)

(δ + θδ̄)(p+ ηL(r1)) + ϕ(1)
. (12)

The probability generating function of the system size is
given by

P (z) = P1,0 + P1(z) + P2(z)

=
[
ϕ(z) + pz

(
(δ + θδ̄)z + θ̄δ̄(ηp̄− η̄pz)(z − 1)

)
+ η

(
(δ + θδ̄)z + θ̄δ̄(µp̄− µ̄pz)(z − 1)

)
× (pz + p̄)L(r1)

]
P1,0

/
ϕ(z). (13)

Let W denote the sojourn time of a customer in the system,
and W ∗(s) is the Laplace Steiljes transform of W . Then, W
and Q have the following classical relationship (see [25])

P (z) = W ∗(pz + p̄).

Using (13), we can get

W ∗(s) =
[
pϕ(

s− p̄

p
) + (s− p̄)

(
(δ + θδ̄)(s− p̄)

+ θ̄δ̄(p̄− η̄s)(s− 1)
)
+ ηs

(
(δ + θδ̄)(s− p̄)

+ θ̄δ̄(p̄− µ̄s)(s− 1)
)
L(r1)

]
P1,0

/[
pϕ(

s− p̄

p
)
]
,

where

pϕ
(s− p̄

p

)
= δ̄(p̄− µ̄s)(p̄− η̄s)(s− 1)

+ δ(s− p̄)(p̄− η̄s) + θδ̄s(p̄− µ̄s)(η̄(s− p̄) + ηp).

The probability that the server is busy in the normal state is
given by

PN = P1(1) =
θpδ̄ + ηθδ̄L(r1)

ϕ(1)
P1,0.
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The probability that the server is busy in the defective state
(working breakdown period) is given by

PW = P2(1)− P2,0 =
pδ + (ηδ − ϕ(1))L(r1)

ϕ(1)
P1,0.

The probability that the server is free in the normal state and
in the defective state are given by P1,0 and P2,0, respectively.

Let E[Lj ] denote the average number of customers in the
system when the server’s state is j, j = 1, 2. From Theorem
2, after some calculations we can get

E[L1] = lim
z→1

P ′
1(z) =

[(
θδ̄(p+ ηL(r1))

+ θpδ̄(1 + ηL(r1)) + θ̄pδ̄(ηp̄− η̄p)
)
ϕ(1)

− θδ̄(p+ ηL(r1))ϕ
′(1)

]
P1,0

/
ϕ2(1),

E[L2] = lim
z→1

P ′
2(z) =

[(
δ(p+ ηL(r1))

+ pδ(1 + ηL(r1)) + ηθ̄δ̄(µp̄− µ̄p)L(r1

)
ϕ(1)

− δ(p+ ηL(r1))ϕ
′(1)

]
P1,0

/
ϕ2(1),

where

ϕ′(1) = δ̄(µp̄− µ̄p)(ηp̄− η̄p) + δ(ηp̄− 2η̄p)

+ θδ̄
(
(µp̄− µ̄p)(η̄ + p)− µ̄p

)
.

The expected number of customers in the system is given by

E[L] = lim
z→1

P ′(z) = E[L1] + E[L2].

Let E[W ] be the expected sojourn time of a customer in the
system, using Little’s formula, E[W ] = E[L]

p .

IV. RELATION TO THE CONTINUOUS-TIME QUEUEING
SYSTEM

This section discusses the relation between our discrete-
time queue and its corresponding continuous-time system [9].
If it is assumed that the time is slotted into sufficiently small
intervals of equal length ϵ, the continuous-time queue [9]
can be approximated by our discrete-time queueing system
for which

p = λ̃ϵ, δ = α̃ϵ, µ = µ̃ϵ, η = µ̃1ε, θ = β̃ϵ.

From Eqs. (9) and (10), we can obtain

P̃1(z)
△
= lim

ϵ→0
P1(z)

=
[
λ̃z

(
β̃z + (µ̃1 − λ̃z)(z − 1)

)
P̃1,0 + µ̃1β̃zP̃2,0

]/
ϕ̃(z),

P̃2(z)
△
= lim

ϵ→0
P2(z)

=
[
λ̃α̃z2P̃1,0 + µ̃1

(
(µ̃− λ̃z)(z − 1) + α̃z

)
P̃2,0

]/
ϕ̃(z),

where

ϕ̃(z) = (µ̃− λ̃z)(µ̃1 − λ̃z)(z − 1)

+ α̃z(µ̃1 − λ̃z) + β̃z(µ̃− λ̃z).

From Eqs. (11) and (12), we can have

P̃2,0
△
= lim

ϵ→0
P2,0 =

λ̃(µ̃1 − λ̃r̃1)(1− r̃1)− β̃λ̃r̃1

µ̃1β̃
P̃1,0

△
= L(r̃1)P̃1,0,

P̃1,0
△
= lim

ϵ→0
P1,0 =

ϕ̃(1)

(α̃+ β̃)(λ̃+ µ̃1L(r̃1)) + ϕ̃(1)
,
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Fig. 1. The expected queue length versus δ.
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Fig. 2. The probability of server being free in the normal state versus δ.

where ϕ̃(1) = α̃(µ̃1 − λ̃) + β̃(µ̃ − λ̃) and r̃1 is the unique
root of the equation ϕ̃(z) = 0 in the interval (0,1).

After some calculations, we can find the expressions
of P̃1(z), P̃2(z), P̃2,0 and P̃1,0 are agreement with the
expressions obtained in Kalidass and Kasturi [9].

V. NUMERICAL RESULTS

In this section, we present some numerical examples to
illustrate the effect of varying parameters on some crucial
performance measures of our model. Moreover, a cost mini-
mization problem is also considered. Under the stable condi-
tion, all the computations are done by developing program in
Matlab software and the values of parameters are arbitrarily
chosen as µ=0.8, η=0.4, θ=0.3, p=0.5 and δ=0.2, unless they
are considered as variables in the respective figures.

A. Sensitivity analysis

The effect of δ on the expected queue length E[L] and
the probability of server being free in the normal state P1,0

are presented in Fig.1 and Fig.2, respectively. We can find
that E[L] increases with increasing values of δ, while P1,0

decreases as δ increases. The reason is that as δ increases, the
system is more likely to break down and the service rate will
decrease, which in turn increases the system queue length.
Moreover, the effect of δ on E[L] is not obvious when the
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Fig. 4. The probability of server being free in the defective state versus p.

value of η is large. An especial case is δ → 0, i.e., the server
can not break down, and the system will be in normal state
with probability 1, we can see that η has no effect on E[L]
and P1,0.

Fig.3 illustrates that E[L] increases as p increases, which
agrees with the intuitive expectation. When p is small, which
means the number of customers in the system is small, it can
be found that the effect of η on E[L] is not obvious. In Fig.4,
we see that as p increases, the probability of server being free
in the defective state P2,0 first increases and then decreases.
However, the effect of p on P2,0 is not obvious. For example,
if we choose η=0.4, with the change of p, the values of P2,0

only varies from 0.023 to 0.047. The main reason is that the
failure rate can be regarded as δ=0.2, the mean repair time
is 1/θ, and the server can not break down if the system is
empty.

Fig.5 and Fig.6 provide the effect of η on the expected
queue length E[L] and the probability of server being busy in
the defective state PW , respectively. As expected, E[L] and
PW both decrease with increasing values of η. The effect of
η is more obvious when θ is smaller, this is due to the fact
that the expected repair time is 1/θ, and the defective system
will be repaired in a longer time. In Fig.5, an especial case
is η → µ, i.e., the lower service rate equals to the normal
service rate, it can be observed that θ has no effect on E[L].
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Fig. 5. The expected queue length versus η.
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Fig. 6. The probability of server being busy in the defective state versus
η.

As shown in Fig.7, since η < µ, it is obvious that E[L]
decreases as θ increases, and the effect of θ on E[L] is not
obvious when θ is large. The reason is that the mean repair
time is becoming shorter with the increasing repair rate θ,
and therefore the waiting customers have a greater chance
to be served by normal service rete, which can reduce the
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Fig. 7. The expected queue length versus θ.
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system queue length. Fig.8 indicates that the probability of
server being busy in the normal state PN increases with the
increment of θ, this is also because that the duration of server
in the defective state is shorter for larger value of θ. Further,
as intuitively expected, for a fixed repair rate θ, E[L] and
PN both decrease as µ increases.

B. Cost analysis

In practice, from the perspective of economic profit,
queueing managers are always interested in minimizing
operating cost of unit time. Therefore, in this subsection,
we establish a cost function to search for the optimal service
rate η, so as to minimize the expected operating cost function
per unit time.

Define the following cost elements:
CL=cost per unit time for each customer present in the

system;
Cµ=cost per customer served by the normal service rate

µ;
Cη=cost per customer served by the lower service rate η;
Cθ=fixed cost per unit time when the server is in a repair

(working breakdown) period.
Based on the definitions of each cost element listed above,

the expected operating cost function per unit time is given
by

min
η

: f(η) = CLE[L] + Cµµ+ Cηη + Cθθ. (14)

Because the expected operating cost function per unit time
is highly non-linear and complex, we can use the parabolic
method to find the optimum value of η, say η∗. The essence
of the parabolic method is to generate a quadratic function
through the evaluated points in each iteration, and the objec-
tive function f(x) is approximated by the quadratic function
in generating an estimate of the optimum value. According to
the polynomial approximation theory, the unique optimum of
the quadratic function agreeing with f(x) at 3-point pattern
{x0, x1, x2} occurs at

x̄ =
1

2

f(x0)(x
2
1 − x2

2) + f(x1)(x
2
2 − x2

0) + f(x2)(x
2
0 − x2

1)

f(x0)(x1 − x2) + f(x1)(x2 − x0) + f(x2)(x0 − x1)
.

The steps of the parabolic method are given as follows [26]:
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Fig. 8. The probability of server being busy in the normal state versus θ.

Step 1: Choose a starting 3-point pattern {x0, x1, x2}
along with a stopping tolerance ε, and initialize the iteration
counter i=0.

Step 2: Compute x̄ according to the above equation. If
|x̄− x1| ≤ ε, stop and report approximate optimum solution
x̄.

Step 3: If x̄≤x1, go to Step 4. If x̄>x1, go to Step 5.
Step 4: If f(x1) is less than f(x̄), update x̄ → x0.

Otherwise, replace x1 → x2, x̄ → x1. Either way, advance
i = i+ 1, and return to Step 2.

Step 5: If f(x1) is less than f(x̄), update x̄ → x2.
Otherwise, replace x1 → x0, x̄ → x1. Either way, advance
i = i+ 1, and return to Step 2.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
25.4

25.6

25.8

26

26.2

26.4

26.6

26.8

27

27.2

η

E
xp

ec
te

d 
op

er
at

in
g 

co
st

 p
er

 u
ni

t t
im

e

Fig. 9. The effect of η on the expected operating cost per unit time.

Assume CL=3, Cµ=18, Cη=10 and Cθ=5, Fig.9 shows that
there is an optimal service rate η to make the cost minimize.
Using the parabolic method and the error is controlled
by ε=10−5. After three iterations, Table 1 shows that the
minimum expected operating cost per unit time converges to
the solution η∗=0.568600 with a value f(η∗)=25.444881.

VI. CONCLUSION

This paper generalizes the model of Kalidass and Kasturi
[9] to a Geo/Geo/1 queue. During the breakdown period,
the service still continues at a lower rate. Using the matrix-
analytic method, we obtain the condition of stability. The
probability generating function of the number of customers
in the system is also discussed. Moreover, various system
performance measures are developed, and the effect of some
parameters are examined numerically. The novelty of this
investigation is the first time to consider working breakdowns
in a discrete-time queue. For future study, one can analyze
a similar system with retrial customers or extend this model
to a Geo/G/1 queue.
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