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Abstract—We present a new C2 piecewise bivariate rational
interpolation scheme with bi-quadratic denominator. The given
interpolation scheme based only on the values of the inter-
polated function which includes two steps: in the first step,
we construct a kind of x-direction C2 interpolation curves
based on a new Hermite-type rational interpolation basis; in
the second step, by using another new class of Hermite-type
rational interpolation basis to interpolate the generated x-
direction interpolation curves, a kind of piecewise bivariate
rational interpolation surfaces with bi-quadratic denominator
and two parameters is established in a rectangular domain. The
conditions for the interpolation surface to be C2 continuous
in the whole rectangular domain are given in detail. And the
interpolation surface is proved to be bounded and its error
formula is provided. Several numerical examples are given and
the numerical results show that the given interpolation scheme
is effective and practical.

Index Terms—Hermite-type rational interpolation basis, In-
terpolation surface, C2 continuity, Bounded property, Error
estimate

I. INTRODUCTION

IN Computer Aided Geometric Design (CAGD), Com-
puter Graphics (CG) and scientific data visualization,

constructing smooth interpolation surfaces to given data in
rectangular grid is an essential issue. Generally speaking,
for most applications, C1 smoothness is sufficient, and there
are many schemes to tackle this problem, see for example
the classical Coos surface schemes [1], the bivariate rational
interpolation schemes [2], [3], [4], [5], the bi-cubic blending
rational interpolation schemes [6], [7], [8], the bivariate
rational Hermite interpolation schemes [9], and the rational
trigonometric interpolation schemes [10]. In some practical
applications, curvature continuity is needed sometimes and
this leads to the need for C2 smoothness.

By using the classical Coons surface scheme, it is a
more difficult task to construct C2 interpolation surfaces
for 3D data defined over rectangular grid. For example, for
generating a C2 bi-quintic Coons surface, there need to
provide the second and higher mixed partial derivatives at
the data points in advance. In practical applications, however,
the second and higher mixed partial derivatives are hard to
estimate and control, and there may also exist compatibility
problem in generating the classical C2 bi-quintic Coons
surface, see [11]. Recently, a class of rational interpolation
spline with bi-cubic denominator and two parameters was
constructed in [12]. For generating interpolation surfaces,
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the given interpolant only use the values of the interpolated
function and can be C2 continuous for equally spaced knots.
And the shape of the generated C2 interpolation surfaces
can be modified conveniently by using the parameters for
the unchanged interpolating data.

The purpose of this paper is to present a class of piece-
wise bivariate rational interpolation surface scheme with bi-
quadratic denominator and two parameters over rectangular
domain. The given interpolation surface can be C2 con-
tinuous in the whole rectangular domain without using the
second or higher mixed partial derivatives at the knots. The
values of the generated interpolation surface are bounded and
stable no matter what the parameters might be. It improves
on the existing schemes in some ways: (1) The classical
C2 bi-quintic Coons surface have to estimate the second
or higher mixed partial derivatives at the knots in advance,
while the given C2 interpolation surface is based on the
interpolated function only; (2) Compared with the rational
interpolation spline with bi-cubic denominator developed
in [12], the given interpolation scheme with bi-quadratic
denominator has less computational cost. The rest of this
paper is organized as follows. In section II, the construction
of the new piecewise bivariate rational interpolation scheme
is described. section III discusses the properties of the inter-
polation surface in detail, including C2 continuity property,
bounded property, and error formula. In section IV, several
numerical examples are given to prove the effectiveness and
practicability of the new developed schemes. Conclusion is
given in the section V.

II. NEW PIECEWISE BIVARIATE RATIONAL
INTERPOLATION SCHEME

In this section, we firstly construct two classes of Hermite-
type interpolation basis functions. Then we use one of the
two classes of Hermite-type interpolation basis functions
to construct a kind of C2 x-direction interpolation curve
with a parameter. Based on this, by using another new kind
of Hermite-type interpolation basis functions to interpolate
the x-direction interpolation curve, we construct a class of
C2 piecewise bivariate rational interpolation surface scheme
with bi-quadratic denominator and two local parameters in a
rectangular domain.

A. Two new classes of Hermite-type rational interpolation
basis functions

Firstly, for t, s ∈ [0, 1], we construct two new classes of
Hermite-type rational interpolation basis functions Hk(t;α)
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and Gk(s;β), k = 0, 1, 2, 3 respectively as follows

H0(t;α) =
(1−t)2+α(1−t)3t(1+2t)

(1−t)2+α(1−t)t+t2
,

H1(t;α) =
t2+α(1−t)t3(3−2t)

(1−t)2+α(1−t)t+t2
,

H2(t;α) =
(1−t)3t+α(1−t)3t2

(1−t)2+α(1−t)t+t2
,

H3(t;α) =
−[(1−t)t3+α(1−t)2t3]
(1−t)2+α(1−t)t+t2

,

with α ≥ 0 and

G0(s;β) =
(1−s)3(1+s+2s2)+β(1−s)3s(1+2s)

(1−s)2+β(1−s)s+s2
,

G1(s;β) =
s3(4−5s+2s2)+β(1−s)s3(3−2s)

(1−s)2+β(1−s)s+s2
,

G2(s;β) =
(1−s)3s(1+s)+β(1−s)3s2

(1−s)2+β(1−s)s+s2
,

G3(s;β) =
−[(1−s)s3(2−s)+β(1−s)2s3]

(1−s)2+β(1−s)s+s2
,

with β ≥ 0.
For the two classes of Hermite-type rational interpolation

basis functions Hk(t;α) and Gk(s;β), k = 0, 1, 2, 3, by
directly computing, we can obtain the following important
end-point properties

H0(0;α) = 1, H ′
0(0;α) = 0, H ′′

0 (0;α) = −2,
H0(1;α) = 0, H ′

0(1;α) = 0, H ′′
0 (1;α) = 2,

H1(0;α) = 0, H ′
1(0;α) = 0, H ′′

1 (0;α) = 2,
H1(1;α) = 1,H ′

1(1;α) = 0, H ′′
1 (1;α) = −2,

H2(0;α) = 0, H ′
2(0;α) = 1, H ′′

2 (0;α) = −2,
H2(1;α) = 0, H ′

2(1;α) = 0, H ′′
2 (1;α) = 0,

H3(0;α) = 0, H ′
3(0;α) = 0, H ′′

3 (0;α) = 0,
H3(1;α) = 0, H ′

3(1;α) = 1, H ′′
3 (1;α) = 2,

and
G0(0;β) = 1, G′

0(0;β) = 0, G′′
0(0;β) = 0,

G0(1;β) = 0, G′
0(1;β) = 0, G′′

0(1;β) = 0,
G1(0;β) = 0, G′

1(0;β) = 0, G′′
1(0;β) = 0,

G1(1;β) = 1, G′
1(1;β) = 0, G′′

1(1;β) = 0,
G2(0;β) = 0, G′

2(0;β) = 1, G′′
2(0;β) = 0,

G2(1;β) = 0, G′
2(1;β) = 0, G′′

2(1;β) = 0,
G3(0;β) = 0, G′

3(0;β) = 0, G′′
3(0;β) = 0,

G3(1;β) = 0, G′
3(1;β) = 1, G′′

3(1;β) = 0.

For any t, s ∈ [0, 1], it is easy to check that H0 (t;α) +
H1 (t;α) = 1 and G0 (s;β) +G1 (s;β) = 1.

It is interesting to note that for a large value of α and β ,
the given Hermite-type rational interpolation basis functions
Hk(t;α) and Gk(s;β), k = 0, 1, 2, 3 will give approximation
to the standard cubic Hermite interpolation basis functions.

B. Bivariate rational interpolation scheme

Let {(xi, yi, Fij), i = 1, 2, . . . , n; j = 1, 2, . . . ,m} be a
given set of data points defined over the rectangular domain
R = [x1, xn] × [y1, ym], where πx : x1 < x2 < . . . < xn

is the partition of [x1, xn] and πy : y1 < y2 < . . . < ym
is the partition of [y1, ym]. Dx

i,j and Dy
i,j are known as the

first partial derivatives at the grid point (xi, yj). Denote hx
i =

xi+1−xi, h
y
j = yj+1−yj , Ri,j = [xi, xi+1]× [yj , yj+1], and

for any (x, y) ∈ Ri,j , let t = (x− xi)/h
x
i , s =(y − yj)

/
hy
j ,

and

∆x
i,j =

Fi+1,j − Fi,j

hx
i

, ∆y
i,j =

Fi,j+1 − Fi,j

hy
j

.

For each y = yj , j = 1, 2, . . . ,m, and x ∈ [xi, xi+1],
by using the new Hermite-type rational interpolation basis

functions Hk(t;α), k = 0, 1, 2, 3 given in the previous
subsection, we construct a kind of x-direction interpolation
curve with a free parameters αx

i,j as follows

P ∗
i,j(x) = H0(t;α

x
i,j)Fi,j +H1(t;α

x
i,j)Fi+1,j

+H2(t;α
x
i,j)h

x
i D

x
i,j +H3(t;α

x
i,j)h

x
i D

x
i+1,j ,

(1)

where αx
i,j ≥ 0.

From the end-point properties of the Hermite-type rational
interpolation basis functions Hk(t;α), k = 0, 1, 2, 3, we have

P ∗
i,j(x

+
i ) = Fi,j , P ∗

i,j
′(x+

i ) = Dx
i,j ,

P ∗
i,j

′′(x+
i ) =

2(∆x
i,j−Dx

i,j)
hx
i

, P ∗
i,j(x

−
i+1) = Fi+1,j ,

P ∗
i,j

′(x−
i+1) = Dx

i+1,j , P ∗
i,j

′′(x−
i+1) =

2(Dx
i+1,j−∆x

i,j)
hx
i

.

Thus, we can see that if the first partial derivative values
Dx

i,j , i = 2, 3, . . . , n− 1 are chosen as follows

Dx
i,j =

hx
i−1∆

x
i,j + hx

i ∆
x
i−1,j

hx
i−1 + hx

i

, (2)

then for i = 2, 3, . . . , n− 1, we have

P ∗
i,j(x

+
i ) = P ∗

i,j(x
−
i ) = Fi,j ,

P ∗
i,j

′(x+
i ) = P ∗

i,j
′(x−

i ) = Dx
i,j ,

P ∗
i,j

′′(x+
i ) = P ∗

i,j
′′(x−

i ) =
2(∆x

i,j−∆x
i−1,j)

hx
i−1

+hx
i

,

which implies that the resulting interpolation function P ∗
i,j(x)

defined by (1) is C2 continuous in [x1, xn]. At the end
knots x1 and xn, the derivative values are computed by the
following formulas

Dx
1,j = ∆x

1,j −
hx
1

hx
1+hx

2

(
∆x

2,j −∆x
1,j

)
,

Dx
n,j = ∆x

n−1,j +
hx
n−1

hx
n−2

+hx
n−1

(
∆x

n−1,j −∆x
n−2,j

)
.

(3)

For any (x, y) ∈ Ri,j , i = 1, 2, . . . , n − 1, j =
1, 2, . . . ,m − 1, we further use the x-direction interpolant
P ∗
i,j(x) given in (1) to construct a new kind of piecewise

bivariate rational interpolation surfaces Pi,j(x, y) as follows

Pi,j(x, y) = G0(s;β
y
i,j)P

∗
i,j(x) +G1(s;β

y
i,j)P

∗
i,j+1(x)

+G2(s;β
y
i,j)h

y
jϕi,j(x) +G3(s;β

y
i,j)h

y
jϕi,j+1(x),

(4)
where the four Hermite-type interpolation basis functions
Gk(s;β

y
i,j) with βy

i,j ≥ 0, k = 0, 1, 2, 3 are given in the
previous subsection, and the functions ϕi,l(x), l = j, j + 1
are given by

ϕi,l(x) = (1− t)
3 (

1 + 4t+ 9t2
)
Dy

i,l

+ t3
(
6− 8t+ 3t2

)
Dy

i+1,l,

where l = j, j + 1.

From (1) and (4), after some manipulations, we can also
rewrite the interpolation surfaces Pi,j(x, y) as the following
form

Pi,j (x, y) =
i+1∑
k=i

j+1∑
l=j

[
ak,l (t, s)Fk,l + bk,l (t, s)h

x
i D

x
k,l

+ck,l (t, s)h
y
jD

y
k,l

]
(5)
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where

ai,j (t, s) = H0

(
t;αx

i,j

)
G0

(
s;βy

i,j

)
,

ai,j+1 (t, s) = H0

(
t;αx

i,j+1

)
G1

(
s;βy

i,j

)
,

ai+1,j (t, s) = H1

(
t;αx

i,j

)
G0

(
s;βy

i,j

)
,

ai+1,j+1 (t, s) = H1

(
t;αx

i,j+1

)
G1

(
s;βy

i,j

)
,

bi,j (t, s) = H2

(
t;αx

i,j

)
G0

(
s;βy

i,j

)
,

bi,j+1 (t, s) = H2

(
t;αx

i,j+1

)
G1

(
s;βy

i,j

)
,

bi+1,j (t, s) = H3

(
t;αx

i,j

)
G0

(
s;βy

i,j

)
,

bi+1,j+1 (t, s) = H3

(
t;αx

i,j+1

)
G1

(
s;βy

i,j

)
,

ci,j (t, s) = (1− t)
3 (

1 + 4t+ 9t2
)
G2

(
s;βy

i,j

)
,

ci,j+1 (t, s) = (1− t)
3 (

1 + 4t+ 9t2
)
G3

(
s;βy

i,j

)
,

ci+1,j (t, s) = t3
(
6− 8t+ 3t2

)
G2

(
s;βy

i,j

)
,

ci+1,j+1 (t, s) = t3
(
6− 8t+ 3t2

)
G3

(
s;βy

i,j

)
.

We call the terms ak,l, bk,l and ck,l, k = i, i+1, l = j, j+
1, as the interpolation basis functions of the interpolation
surface defined by (5).

III. PROPERTIES OF THE INTERPOLATION SURFACES

In this section, we shall discuss the properties of the
interpolation surfaces in detail, including the C2 continuous
property, the bounded property, and the error formula.

A. C2 continuity property

For any (x, y) ∈ Ri,j , from the interpolation surface
Pi,j(x, y) given in (4), direct computation gives that

Pi,j

(
x, y+j

)
= P ∗

i,j (x) , Pi,j

(
x, y−j+1

)
= P ∗

i,j+1 (x) ,

Pi,j(x
+
i , y) = G0(s;β

y
i,j)Fi,j +G1(s;β

y
i,j)Fi,j+1

+G2(s;β
y
i,j)h

y
jD

y
i,j +G3(s;β

y
i,j)h

y
jD

y
i,j+1,

Pi,j(x
−
i+1, y) = G0(s;β

y
i,j)Fi+1,j +G1(s;β

y
i,j)Fi+1,j+1

+G2(s;β
y
i,j)h

y
jD

y
i+1,j +G3(s;β

y
i,j)h

y
jD

y
i+1,j+1,

Thus we have Pi,j

(
x, y+j

)
= Pi,j

(
x, y−j

)
, Pi,j(x

+
i , y) =

Pi,j(x
−
i , y).

Furthermore,

∂Pi,j(x,y+
j )

∂x =
dP∗

i,j(x)

dx ,
∂Pi,j(x,y−

j+1)
∂x =

dP∗
i,j+1(x)

dx ,
∂Pi,j(x+

i
,y)

∂x = G0(s;β
y
i,j)D

x
i,j +G1(s;β

y
i,j)D

x
i,j+1

+G2(s;β
y
i,j)h

y
j

Dy
i,j

hx
i

+G3(s;β
y
i,j)h

y
j

Dy
i,j+1

hx
i

,

∂Pi,j(x−
i+1

,y)
∂x = G0(s;β

y
i,j)D

x
i+1,j +G1(s;β

y
i,j)D

x
i+1,j+1

+G2(s;β
y
i,j)h

y
j

Dy
i+1,j

hx
i

+G3(s;β
y
i,j)h

y
j

Dy
i+1,j+1

hx
i

,

thus we have
∂Pi,j(x,y+

j )
∂x =

∂Pi,j(x,y−
j )

∂x and
∂Pi,j(x+

i
,y)

∂x =
∂Pi,j(x−

i
,y)

∂x if hx
i−1 = hx

i and βy
i−1,j = βy

i,j .
Similarly, we have

∂Pi,j(x,y+
j )

∂y = ϕi,j (x) ,
∂Pi,j(x,y−

j+1)
∂y = ϕi,j+1 (x) ,

∂Pi,j(x+
i
,y)

∂y =
dG0(s;β

y
i,j

)

ds
Fi,j

hy
j

+
dG1(s;β

y
i,j

)

ds
Fi,j+1

hy
j

+
dG2(s;β

y
i,j

)

ds Dy
i,j +

dG3(s;β
y
i,j

)

ds Dy
i,j+1,

∂Pi,j(x−
i+1

,y)
∂y =

dG0(s;β
y
i,j

)

ds
Fi+1,j

hy
j

+
dG1(s;β

y
i,j

)

ds
Fi+1,j+1

hy
j

+
dG2(s;β

y
i,j

)

ds Dy
i+1,j +

dG3(s;β
y
i,j

)

ds Dy
i+1,j+1,

it follows that
∂Pi,j(x,y+

j )
∂y =

∂Pi,j(x,y−
j )

∂y and
∂Pi,j(x+

i
,y)

∂y =
∂Pi,j(x−

i
,y)

∂y if βy
i−1,j = βy

i,j .

From the above analysis, we can see that the interpolation
surface Pi,j(x, y) is C1 continuous in the whole rectangular
domain R if hx

i =constant and βy
i,j =constant for each

j ∈ {1, 2, . . . ,m− 1} and all i = 1, 2, . . . , n − 1, no
matter what the parameters αx

i,j might be. In the following,
we shall further discuss the C2 continuous property of the
interpolation surface.

For any (x, y) ∈ Ri,j , straightforward computation gives
the mixed partial derivatives ∂2Pi,j(x,y)

∂x∂y and ∂2Pi,j(x,y)
∂y∂x as

follows

∂2Pi,j(x,y)
∂x∂y = 1

hy
j

dG0(s;βy
i,j)

ds

dP∗
i,j(x)

dx + 1
hy
j

dG1(s;βy
i,j)

ds

dP∗
i,j+1(x)

dx

+
dG2(s;βy

i,j)
ds

dϕi,j(x)
dx +

dG3(s;βy
i,j)

ds
dϕi,j+1(x)

dx

=
∂2Pi,j(x,y)

∂y∂x .

Thus we have

∂2Pi,j(x,y+
j )

∂x∂y =
dϕi,j(x)

dx =
∂2Pi,j(x,y+

j )
∂y∂x ,

∂2Pi,j(x,y−
j+1)

∂x∂y =
dϕi,j+1(x)

dx =
∂2Pi,j(x,y−

j+1)
∂y∂x ,

∂2Pi,j(x+
i
,y)

∂x∂y =
dG0(s;β

y
i,j

)

ds

Dx
i,j

hy
j

+
dG1(s;β

y
i,j

)

ds

Dx
i,j+1

hy
j

+
dG2(s;β

y
i,j

)

ds

Dy
i,j

hx
i

+
dG3(s;β

y
i,j

)

ds

Dy
i,j+1

hx
i

=
∂2Pi,j(x+

i
,y)

∂y∂x ,
∂2Pi,j(x−

i+1
,y)

∂x∂y =
dG0(s;β

y
i,j

)

ds

Dx
i+1,j

hy
j

+
dG1(s;β

y
i,j

)

ds

Dx
i+1,j+1

hy
j

+
dG2(s;β

y
i,j

)

ds

Dy
i+1,j

hx
i

+
dG3(s;β

y
i,j

)

ds

Dy
i+1,j+1

hx
i

=
∂2Pi,j(x−

i+1
,y)

∂y∂x .

These imply that
∂2Pi,j(x,y+

i )
∂x∂y =

∂2Pi,j(x,y−
i )

∂x∂y =
∂2Pi,j(x,y+

i )
∂y∂x =

∂2Pi,j(x,y−
i )

∂y∂x and
∂2Pi,j(x+

i
,y)

∂x∂y =
∂2Pi,j(x−

i
,y)

∂x∂y =
∂2Pi,j(x+

i
,y)

∂y∂x =
∂2Pi,j(x−

i
,y)

∂y∂x if hx
i−1 = hx

i

and βy
i−1,j = βy

i,j .

For ∂2Pi,j(x,y)
∂x2 , since the x-direction interpolation curve

P ∗
i,j (x) is C2 continuous if the first partial derivative values

Dx
i,j , i = 2, 3, . . . , n− 1 are given by (2) and

d2ϕi,l

(
x+
i

)
dx2

=
d2ϕi,l

(
x−
i+1

)
dx2

= 0, l = j, j + 1,

we have

∂2Pi,j(x,y+
j )

∂x2 =
d2P∗

i,j(x)

dx2 ,
∂2Pi,j(x,y−

j+1)
∂x2 =

d2P∗
i,j+1(x)

dx2 ,
∂2Pi,j(x+

i
,y)

∂x2 = G0

(
s;βy

i,j

) 2(∆x
i,j−∆x

i−1,j)
hx
i−1

+hx
i

+G1

(
s;βy

i,j

) 2(∆x
i,j+1−∆x

i−1,j+1)
hx
i−1

+hx
i

,

∂2Pi,j(x−
i+1

,y)
∂x2 = G0

(
s;βy

i,j

) 2(∆x
i+1,j−∆x

i,j)
hx
i
+hx

i+1

+G1

(
s;βy

i,j

) 2(∆x
i+1,j+1−∆x

i,j+1)
hx
i
+hx

i+1
,

these indicate that
∂2Pi,j(x,y+

j )
∂x2 =

∂2Pi,j(x,y−
j )

∂x2 and
∂2Pi,j(x+

i
,y)

∂x2 =
∂2Pi,j(x−

i
,y)

∂x2 if βy
i−1,j = βy

i,j .
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Finally, for ∂2Pi,j(x,y)
∂y2 , we have

∂2Pi,j(x,y+
j )

∂y2 = 0,
∂2Pi,j(x,y−

j+1)
∂y2 = 0,

∂2Pi,j(x+
i
,y)

∂y2 =
d2G0(s;βy

i,j)
ds2

Fi,j

(hy
j )

2 +
d2G1(s;βy

i,j)
ds2

Fi,j+1

(hy
j )

2

+
d2G2(s;βy

i,j)
ds2

Dy
i,j

hy
j

+
d2G3(s;βy

i,j)
ds2

Dy
i,j+1

hy
j

,

∂2Pi,j(x−
i+1

,y)
∂y2 =

d2G0(s;βy
i,j)

ds2
Fi+1,j

(hy
j )

2 +
d2G1(s;βy

i,j)
ds2

Fi+1,j+1

(hy
j )

2

+
d2G2(s;βy

i,j)
ds2

Dy
i+1,j

hy
j

+
d2G3(s;βy

i,j)
ds2

Dy
i+1,j+1

hy
j

,

it follows that
∂2Pi,j(x,y+

j )
∂y2 =

∂2Pi,j(x,y−
j )

∂y2 and
∂2Pi,j(x+

i
,y)

∂y2 =
∂2Pi,j(x−

i
,y)

∂y2 if βy
i−1,j = βy

i,j .
Summarizing the above discussion, we can conclude the

following theorem.
Theorem 1: If the knots are equally spaced for variable

x, that is hx
i =constant, and the first partial derivative values

Dx
i,j are given by (2), then a sufficient condition for the

interpolation surface Pi,j(x, y) to be C2 continuous in the
whole rectangular domain R is that βy

i,j =constant for each
j ∈ {1, 2, . . . ,m− 1} and all i = 1, 2, . . . , n− 1, no matter
what the parameters αx

i,j might be.
For generating the interpolation surface Pi,j(x, y), we also

need to provide the first partial derivative values Dy
i,j , i =

1, 2, . . . , n, j = 1, 2, . . . ,m in advance. In this paper, they
are computed by the following formula

Dy
i,1 = ∆y

i,1 −
hy
1

hy
1+hy

2

(
∆y

i,2 −∆y
i,1

)
,

Dy
i,j =

hy
j−1

∆y
i,j

+hy
j
∆y

i,j−1

hy
j−1

+hy
j

, j = 2, 3, . . . ,m− 1,

Dy
i,m = ∆y

i,m−1 +
hy
m−1

hy
m−2

+hy
m−1

(
∆y

i,m−1 −∆y
i,m−2

)
,

(6)
where i = 1, 2, . . . , n.

B. Bounded property

We denote

M = max {|Fk,l| , k = i, i+ 1, l = j, j + 1} ,
Q1 = max

{
hx
i

∣∣∣Dx
k,l

∣∣∣ , k = i, i+ 1, l = j, j + 1
}
,

Q2 = max
{
hy
j

∣∣∣Dy
k,l

∣∣∣ , k = i, i+ 1, l = j, j + 1
}
.

By directly computing, we can obtain the following prop-
erties of the basis functions

ai,j (t, s) + ai,j+1 (t, s) + ai+1,j (t, s) + ai+1,j+1 (t, s)
= 1, bi,j (t, s) + bi,j+1 (t, s)− bi+1,j (t, s)− bi+1,j+1 (t, s)
= (1− t) t,
ci,j (t, s)− ci,j+1 (t, s) + ci+1,j (t, s)− ci+1,j+1 (t, s)
=

(
1 + t− 10t3 + 15t4 − 6t5

)
(1− s) s [1

+ (1−s)s

(1−s)2+βy
i,j

(1−s)s+s2

]
.

Thus, for the given data, from the expression of the

interpolation surface Pi,j(x, y) given in [5], we have

|Pi,j (x, y)| ≤ M
i+1∑
k=i

j+1∑
l=j

|ak,l (t, s)|+Q1

i+1∑
k=i

j+1∑
l=j

|bk,l (t, s)|

+Q2

i+1∑
k=i

j+1∑
l=j

|ck,l (t, s)|

= M +Q1 (1− t) t+Q2

(
1 + t− 10t3

+15t4 − 6t5
)
(1− s) s

[
1 + (1−s)s

(1−s)2+βy
i,j

(1−s)s+s2

]
≤ M + 0.25Q1 +Q2

(
1 + t− 10t3

+15t4 − 6t5
)
(1− s) s

[
1 + (1−s)s

(1−s)2+s2

]
≤ M + 0.25Q1 + 1.5Q2

(
1 + t− 10t3

+15t4 − 6t5
)
(1− s) s

≤ M + 0.25Q1 + 0.375Q2

(
1 + t− 10t3 +15t4 − 6t5

)
.

Since

max
t∈[0,1]

(
1 + t− 10t3 + 15t4 − 6t5

)
= 1.14675,

we can immediately conclude the following theorem.
Theorem 2: For any nonnegative free parameters

αx
i,j , β

y
i,j , the values of the resulting interpolation surface

Pi,j(x, y) on Ri,j are bounded by

|Pi,j(x, y)| ≤ M + 0.25Q1 + 0.43003125Q2.

C. Error formula

For any (x, y) ∈ Ri,j , let Fi,j = F (xi, yj) , D
x
i,j =

∂F (xi,yj)
∂x , Dy

i,j =
∂F (xi,yj)

∂y , and denote∥∥∥∂F (x,y)
∂x

∥∥∥ = max
(x,y)∈Ri,j

∣∣∣∂F (x,y)
∂x

∣∣∣ ,∥∥∥∂F (x,y)
∂y

∥∥∥ = max
(x,y)∈Ri,j

∣∣∣∂F (x,y)
∂y

∣∣∣ .
For any (x, y) ∈ Ri,j , by using the Taylor formula of

F (x, y) at the points (xk, yl), k = i, i+ 1, l = j, j + 1, we
have

F (x, y)− F (xk, yl) = (x− xk)
∂F (θk, ηl)

∂x
+(y − yl)

∂F (θk, ηl)

∂y
,

where θk and ηl are between x and xk, y and yl, respectively.
It follows that

max
(x,y)∈Ri,j

|F (x, y)− F (xk, yl)| ≤ hx
i

∥∥∥∥∂F (x, y)

∂x

∥∥∥∥+hy
j

∥∥∥∥∂F (x, y)

∂y

∥∥∥∥ .
Thus for any (x, y) ∈ Ri,j , we have

|F (x, y)− Pi,j (x, y)| =

∣∣∣∣∣i+1∑
k=i

j+1∑
l=j

[ak,l (t, s) (F (x, y)− F (xk, yl))

+bk,l (t, s)h
x
i
∂F (xk,yl)

∂x + ck,l (t, s)h
y
j
∂F (xk,yl)

∂y

]∣∣∣
≤ max

(x,y)∈Ri,j

|F (x, y)− F (xk, yl)|

∣∣∣∣∣i+1∑
k=i

j+1∑
l=j

ak,l (t, s)

∣∣∣∣∣
+ hx

i

∥∥∥∂F (x,y)
∂x

∥∥∥ ∣∣∣∣∣i+1∑
k=i

j+1∑
l=j

bk,l (t, s)

∣∣∣∣∣
hy
j

∥∥∥∂F (x,y)
∂y

∥∥∥ ∣∣∣∣∣i+1∑
k=i

j+1∑
l=j

ck,l (t, s)

∣∣∣∣∣
≤ 1.25hx

i

∥∥∥∂F (x,y)
∂x

∥∥∥+ 1.43003125hy
j

∥∥∥∂F (x,y)
∂y

∥∥∥ .
Summarize the above analysis, we have the following

theorem.
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Theorem 3: Let F (x, y) ∈ C1(R) be the interpolated
function with Pi,j(x, y) is compared. Then for any (x, y) ∈
Ri,j , the following error formula holds

|F (x, y)− Pi,j (x, y)| ≤ 1.25hx
i

∥∥∥∂F (x,y)
∂x

∥∥∥
+ 1.43003125hy

j

∥∥∥∂F (x,y)
∂y

∥∥∥ .
From Theorems 2 and 3, we can see that the generated

interpolation surface is stable for the parameters.

IV. NUMERICAL EXAMPLES

In this section, we shall give two numerical examples
to show that the proposed C2 interpolation surface scheme
can give a good approximation to the interpolated function.
And for the unchanged interpolating data, the shape of the
interpolation surface can be modified by selecting parameters
according to the control need. In the following figures, the
interpolating data points have been marked with solid black
dots.

Example 1: Let the interpolated function be F (x, y) =
sin(x+ y), (x, y) ∈ [0, 1]× [0, 1] , and xi = 0.2(i− 1), yj =
0.2(j − 1), i, j = 1, 2, . . . , 6. The parameters are chosen as
αx
i,j = 5+5i+10j, βy

i,j = 10+10j, i, j = 1, 2, . . . , 6. Fig. 1
shows the resulting interpolation surface P (x, y) defined
by (4) and the error surface F (x, y) − P (x, y). From the
results, we can see that the interpolation surface gives a good
approximation to the interpolated function.

Fig. 1. Interpolation surface and the error surface.

Example 2: Fig. 2 shows the C2 interpolation surface
with different parameters for the 3D data set given in Tab. I.
It can be seen that the interpolation surface can be modified
conveniently by selecting suitable parameters according to
needs of practical design.

TABLE I
A 3D DATA SET.

y/x 0 1 2 3 4 5 6

0 0 1 3 4 3 1 0
1 1 2 4 5 4 2 1
3 3 4 5 8 5 4 3
5 1 2 4 5 4 2 1
6 0 1 3 4 3 1 0

V. CONCLUSION

As stated above, the developed bivariate rational inter-
polation surface can be C2 continuous based only on the
function values. The shape of the interpolation surface can
be modified conveniently by using the parameters under the
unchanged interpolating data. And the interpolation surface
is bounded and stable for the parameters. Compared with

Fig. 2. C2 interpolation surface with different parameters.

the rational interpolation spline with bi-cubic denominator
developed in [12], the given interpolation scheme with bi-
quadratic denominator has less computational cost. There
are still some problems worthy of further study, such as
the convexity control of the new constructed interpolation
surfaces. These will be our future work.
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