Periodic Solutions in Shifts Delta(+/-) for a Nabla Dynamic System of Nicholson’s Blowflies on Time Scales

Lili Wang, Pingli Xie, and Meng Hu

Abstract—In this paper, based on some properties of nabla exponential function $e_p(t, t_0)$ and shift operators δ_\pm on time scales, by using Krasnosel’skiı’s fixed point theorem in a cone and some mathematical methods, sufficient conditions are established for the existence and nonexistence of positive periodic solutions in shifts δ_\pm for a nabla dynamic system of Nicholson’s blowflies on time scales of the following form:

$$x^\nabla(t) = -a(t)x(t) + \sum_{i=1}^{m} b_i(t)\nabla(x(\delta_-(\tau_i, t)))e^{-c_i(t)}x(\delta_-(\tau_i, t)),$$

where $t \in \mathbb{T}, \mathbb{T} \subset \mathbb{R}$ is a periodic time scale in shifts δ_\pm with period $P \in [t_0, \infty)$ and $t_0 \in \mathbb{T}$ is nonnegative and fixed. Finally, two numerical examples are presented to illustrate the feasibility and effectiveness of the results.

Index Terms—positive periodic solution; Nicholson’s blowflies model; nabla dynamic equation; shift operator; time scale.

I. INTRODUCTION

T he theory of time scales was introduced by S. Hilger [1] in order to unify, extend, and generalize ideas from discrete calculus, quantum calculus, and continuous calculus to arbitrary time scale calculus. A time scale is a nonempty arbitrary closed subset of reals. The time scales approach not only unifies differential and difference equations, but also solves some other problems such as a mix of stop-start and continuous behaviors [2,3] powerfully. Nowadays the theory on time scales has been widely applied to ecological dynamic systems.

In 1980, Gurney et al. [4] proposed a mathematical model

$$x'(t) = -\delta x(t) + px(t - \tau)e^{-ax(t - \tau)}$$

to describe the dynamics of Nicholson’s blowflies, where $x(t)$ is the size of the population at time t, p is the maximum per capita daily egg production, $1/\delta$ is the size at which the population reproduces at its maximum rate, δ is the per capita daily adult death rate, and τ is the generation time. Nicholson’s blowflies model and its analogous equations on time scales have attracted much attention in the past few years; see, for example, [5,6].

The existence problem of periodic solutions is of importance to biologists since most models deal with certain types of populations. In the paper of Kaufmann and Raffoul [7], the authors were the first to define the notion of periodic time scales, by satisfying the additivity “there exists a $\omega > 0$ such that $t \pm \omega \in \mathbb{T}, \forall t \in \mathbb{T}$.” Under this additivity all periodic time scales are unbounded above and below. However, there are many time scales that are of interest to biologists and scientists such as $q^\mathbb{Z}$ and $\cup_{k=1}^{\infty} [3^k \mathbb{Z}, 23^k \mathbb{Z}] \cup \{0\}$ which do not satisfy the additivity. To overcome such difficulties, Adıvar introduced a new periodicity concept on time scales which does not oblige the time scale to be closed under the operation $t \pm \omega$ for a fixed $\omega > 0$. He defined a new periodicity concept with the aid of shift operators δ_\pm which are first defined in [8] and then generalized in [9].

In recent years, periodic solutions in shifts δ_\pm for some nonlinear dynamic equations on time scales with delta derivative have been studied by many authors; see, for example, [10-13]. However, to the best of our knowledge, there are few papers published on the existence of periodic solutions in shifts δ_\pm for a dynamic equation on time scales with nabla derivative.

Motivated by the above, in the present paper, we first study some properties of the nabla exponential function $e_p(t, t_0)$ and shift operators δ_\pm on time scales, and then we consider the following nabla dynamic system of Nicholson’s blowflies on time scales:

$$x^\nabla(t) = -a(t)x(t) + \sum_{i=1}^{m} b_i(t)x(\delta_-(\tau_i, t))e^{-c_i(t)}x(\delta_-(\tau_i, t)),$$

where $t \in \mathbb{T}, \mathbb{T} \subset \mathbb{R}$ is a periodic time scale in shifts δ_\pm with period $P \in [t_0, \infty)$ and $t_0 \in \mathbb{T}$ is nonnegative and fixed; $a, b_i \in C_{\Delta}(\mathbb{T}, (0, \infty))$ for $i = 1, 2, \ldots, m$ are Δ-periodic in shifts δ_\pm with period ω and $-a \in \mathbb{R}^\times$; $c_i \in C_{\Delta}(\mathbb{T}, (0, \infty))$ are periodic in shifts δ_\pm with period ω for $i = 1, 2, \ldots, m$; $\tau_i(i = 1, 2, \ldots, m)$ are fixed if $\mathbb{T} = \mathbb{R}$ and $\tau_i \in [P, \infty)$ if \mathbb{T} is periodic in shifts δ_\pm with period P.

For convenience, we introduce the notation

$$f^* = \sup_{t \in [t_0, \delta^\pm_+(t_0)]} f(t), \quad f_* = \inf_{t \in [t_0, \delta^\pm_-(t_0)]} f(t),$$

where f is a positive and bounded periodic function.

Take the initial condition

$$x(s) = \phi(s), \phi \in C_{\Delta}([\delta_-(\tau^*, 0), 0], (0, \infty)), \phi \neq 0,$$

where $\tau^* = \max_{1 \leq i \leq m} \tau_i$.

It is easy to prove that the initial value problem (1) and (2) has a unique non-negative solution $x(t)$ on $[0, \infty)$.

The main purpose of this paper is to establish sufficient conditions for the existence and nonexistence of positive
periodic solutions in shifts δ_{\pm} of system (1) using Krasnoselskii’s fixed point theorem in a cone and some mathematical methods.

II. PRELIMINARIES

Let \mathbb{T} be a nonempty closed subset (time scale) of \mathbb{R}. The forward jump operator $\sigma : \mathbb{T} \to \mathbb{T}$ is defined by $\sigma(t) = \inf\{s \in \mathbb{T} : s > t\}$ for all $t \in \mathbb{T}$, while the backward jump operator $\rho : \mathbb{T} \to \mathbb{T}$ is defined by $\rho(t) = \sup\{s \in \mathbb{T} : s < t\}$ for all $t \in \mathbb{T}$.

A point $t \in \mathbb{T}$ is called left-dense if $t > \inf\mathbb{T}$ and $\rho(t) = t$, left-scattered if $\rho(t) < t$, right-dense if $t < \sup\mathbb{T}$ and $\sigma(t) = t$, and right-scattered if $\sigma(t) > t$. If \mathbb{T} has a left-scattered maximum m, then $\mathbb{T}^k = \mathbb{T} \setminus \{m\}$; otherwise $\mathbb{T}^k = \mathbb{T}$. If \mathbb{T} has a right-scattered minimum m, then $\mathbb{T}_k = \mathbb{T} \setminus \{m\}$; otherwise $\mathbb{T}_k = \mathbb{T}$. The backwards graininess function $\nu : \mathbb{T} \to [0, +\infty)$ is defined by $\nu(t) = t - \rho(t)$.

A function $f : \mathbb{T} \to \mathbb{R}$ is ν-continuous if f is continuous and $\nu f \in C_{\text{rd}}(\mathbb{T})$. If f is discontinuous at $t \in \mathbb{T}$, then f is ν-continuous if f is left-scattered at t.

The set of all ν-continuous functions is denoted by $\mathcal{R}_{\nu} = \mathcal{R}_{\nu}(\mathbb{T}, \mathbb{R})$.

Lemma 1. [14] If $P(f) \in \mathcal{R}_{\nu}$, and $a, b, c \in \mathbb{T}$, then

(i) $P(f)[a, b) = \{\nu f \in [b, c) : b \leq \nu f \leq c, a \leq \nu f \}$

(ii) $P(f)[a, b) = \{\nu f \in [b, c) : b \leq \nu f \leq c, a \leq \nu f \}$

(iii) $P(f)[a, b) = \{\nu f \in [b, c) : b \leq \nu f \leq c, a \leq \nu f \}$

(iv) $P(f)[a, b) = \{\nu f \in [b, c) : b \leq \nu f \leq c, a \leq \nu f \}$

(vi) $\int_{t_0}^{t_1} f(t) g(t) \nu(t) dt$ for all $t_0 \in \mathbb{T}$.

For more details about the calculus on time scales, see [14].

Let \mathbb{T} be a non-empty subset of a time scale \mathbb{T} and $t_0 \in \mathbb{T}$ be a fixed number, define operators $\delta_{\pm} : [t_0, +\infty) \times \mathbb{T} \to \mathbb{T}$: $\delta_{\pm}(s, t)$ is called to be rightward ν-continuous at $t \in \mathbb{T}$, respectively. The variable $s \in [t_0, +\infty)$ in $\delta_{\pm}(s, t)$ is called the shift size. The value $\sigma_{\pm}(s, t)$ in \mathbb{T} indicates s units translation of the term $t \in \mathbb{T}$ to the right and left, respectively.

The sets

$$D_{\pm} = \{(s, t) \in [t_0, +\infty) \times \mathbb{T} : \delta_{\pm}(s, t) \in \mathbb{T}^*\}$$

are the domains of the shift operators δ_{\pm}, respectively. Hereafter, \mathbb{T}^* is the largest subset of the time scale \mathbb{T} such that the shift operators $\delta_{\pm} : [t_0, +\infty) \times \mathbb{T} \to \mathbb{T}$ exist.

Definition 1. [15] (Periodicity in shifts δ_{\pm}) Let T be a time scale with the shift operators δ_{\pm} associated with the initial point $t_0 \in \mathbb{T}$. The time scale \mathbb{T} is said to be periodic in shifts δ_{\pm} if there exists $p \in (t_0, +\infty)$ such that $(p, t) \in D_{\pm}$ for all $t \in \mathbb{T}^*$. Furthermore, if

$$P := \inf\{p \in (t_0, +\infty) \cap \mathbb{T}^* : (p, t_0) \in \delta_{\pm}, \forall t \in \mathbb{T^*}\} \neq t_0,$$

then P is called the period of the time scale \mathbb{T}.

Definition 2. [15] (Periodic function in shifts δ_{\pm}) Let \mathbb{T} be a time scale that is periodic in shifts δ_{\pm} with the period P. We say that a real-valued function f defined on \mathbb{T}^* is periodic in shifts δ_{\pm} if there exists $\omega \in [P, +\infty)$ such that $(\omega, t) \in \mathbb{T}^*$ and $f(\delta_{\pm}(t)) = f(t)$ for all $t \in \mathbb{T}^*$, where $\delta_{\pm}(\omega, t)$. The smallest number $\omega \in [P, +\infty)$ is called the period of f.

Definition 3. (V-Periodic function in shifts δ_{\pm}) Let \mathbb{T} be a time scale that is periodic in shifts δ_{\pm} with the period P. We say that a real-valued function f defined on \mathbb{T}^* is ν-periodic in shifts δ_{\pm} if there exists $\omega \in [P, +\infty)$ such that $(\omega, t) \in \mathbb{T}^*$, the shifts δ_{\pm} are ν-differentiable with ν-continuous derivatives and $f(\delta_{\pm}(t)) = f(t)$ for all $t \in \mathbb{T}^*$, where $\delta_{\pm}(\omega, t)$. The smallest number $\omega \in [P, +\infty)$ is called the period of f.

Similar to the proofs of Lemma 2, Corollary 1 and Theorem 2 in [15], we can get the following two lemmas.

Lemma 2. $\delta_{\pm}(\nu(t)) = \nu(\delta_{\pm}(t))$ and $\nu(\delta_{\pm}(t)) = \rho(\delta_{\pm}(t))$ for all $t \in \mathbb{T}^*$.

Lemma 3. Let \mathbb{T} be a time scale that is periodic in shifts δ_{\pm} with the period P, and let f be a ν-periodic function in shifts δ_{\pm} with the period $\omega \in [P, +\infty)$. Assume that $f \in C_{\text{rd}}(\mathbb{T})$, then

$$\int_{t_0}^{t_1} f(t) \nu(t) dt$$

for all $t_0 \in \mathbb{T}$.

Lemma 4. [16] Let \mathbb{T} be a time scale that is periodic in shifts δ_{\pm} with the period P. Assume that the shifts δ_{\pm} are ν-differentiable on $t \in \mathbb{T}^*$, where $\omega \in [P, +\infty)$. Then the ν-graininess function $\nu : \mathbb{T} \to [0, +\infty)$ satisfies

$$\nu(\delta_{\pm}(t)) = \delta_{\nu^{-1}}(t)\nu(t).$$

Lemma 5. [16] Let \mathbb{T} be a time scale that is periodic in shifts δ_{\pm} with the period P. Assume that the shifts δ_{\pm} are ν-differentiable on $t \in \mathbb{T}^*$, where $\omega \in [P, +\infty)$. Then the ν-graininess function $\nu : \mathbb{T} \to [0, +\infty)$ satisfies

$$\nu(\delta_{\pm}(t)) = \delta_{\nu^{-1}}(t)\nu(t).$$

Lemma 6. [14] Assume that r is ν-regressive and $f : \mathbb{T} \to \mathbb{R}$ is ν-continuous. Let $t_0 \in \mathbb{T}$, $y_0 \in \mathbb{R}$, then the unique solution of the initial value problem

$$y' = f(t), \quad y(t_0) = y_0$$

is given by

$$y(t) = \left(\mathcal{E}_r(t, t_0)\right)y_0 + \int_{t_0}^{t} \mathcal{E}_r(t, \tau)f(\tau)\nu(\tau).$$

Set

$$X = \{x : x \in C_{\text{rd}}(\mathbb{T}, \mathbb{R}), x(\delta_{\pm}(t)) = x(t)\}$$
with the norm \(\|x\| = \sup_{t \in [t_0, \delta_+^+(t_0) \cap T]} |x(t)| \), then \(X \) is a Banach space.

Lemma 7. The function \(x(t) \in X \) is an \(\omega \)-periodic solution in shifts \(\delta_\pm \) of system (1) if and only if \(x(t) \) is an \(\omega \)-periodic solution in shifts \(\delta_\pm \) of

\[
x(t) = \int_t^{t+\omega} G(t, s) \sum_{i=1}^m b_i(s) x(\delta_-(\tau_i, s))
\]

\[\times e^{-c_i(s)x(\delta_-(\tau_i, s))} \nabla s,\]

where \(G(t, s) = \frac{\hat{e}_{-a}(t, \rho(s))}{\hat{e}_{-a}(0, \delta_+^+(t_0)) - 1} \).

Proof: If \(x(t) \) is an \(\omega \)-periodic solution in shifts \(\delta_\pm \) of system (1). By using Lemmas 1 and 6, for any \(\delta \)

\[
(x(t) = \int_t^{t+\omega} G(t, s) \sum_{i=1}^m b_i(s) x(\delta_-(\tau_i, s))
\]

\[\times e^{-c_i(s)x(\delta_-(\tau_i, s))} \nabla s,\]

Let \(s = \delta_+^+(t) \), then

\[
x(\delta_+^+(t)) = \hat{e}_{-a}(t, \rho(s)) \int_{t_0}^{t+\omega} e^{-a(t, \rho(s))} \nabla \theta.
\]

Noticing that \(\hat{e}_{-a}(t, \delta_+^+(t)) = \hat{e}_{-a}(0, \delta_+^+(t_0)) \), \(x(\delta_+^+(t)) = x(t) \), by Lemma 1, then \(x(t) \) satisfies (3).

Let \(x(t) \) be an \(\omega \)-periodic solution in shifts \(\delta_\pm \) of (3). By

(3) and Lemmas 1, 2 and 5, we have

\[
x(\delta_+^+(t)) = -a(t)x(t)
\]

\[+ G(\rho(t, \delta_+^+(t))) \sum_{i=1}^m b_i(t)x(\delta_-(\tau_i, t))
\]

\[\times e^{-c_i(t)x(\delta_-(\tau_i, t))} \theta.
\]

So, \(x(t) \) is an \(\omega \)-periodic solution in shifts \(\delta_\pm \) of system (1).

This completes the proof.

It is easy to verify that the Green’s function \(G(t, s) \) satisfies the property

\[
0 < \frac{1}{\xi - 1} \leq G(t, s) \leq \xi - 1, \quad \forall s \in [t, \delta_+^+(t_0) \cap T],
\]

where \(\xi = \hat{e}_{-a}(0, \delta_+^+(t_0)) \). By Lemma 5, we have

\[
G(\delta_+^+(t), \delta_+^+(s)) = G(t, s), \quad \forall t \in T^+, s \in [t, \delta_+^+(t_0) \cap T].
\]

Define \(K \), a cone in \(X \), by

\[
K = \{ x \in X : x(t) \geq \frac{1}{\xi} ||x||, \forall t \in [t_0, \delta_+^+(t_0) \cap T] \}
\]

and an operator \(H : K \to X \) by

\[
(Hx)(t) = \int_t^{t+\omega} G(t, s) \sum_{i=1}^m b_i(s) x(\delta_-(\tau_i, s))
\]

\[\times e^{-c_i(s)x(\delta_-(\tau_i, s))} \nabla s.
\]

In the following, we shall give some lemmas concerning \(K \) and \(H \) defined by (6) and (7), respectively.

Lemma 8. \(H : K \to K \) is well defined.

Proof: For any \(x \in K, t \in [t_0, \delta_+^+(t_0) \cap T] \). In view of (7), by Lemma 3 and (5), we have

\[
Hx(\delta_+^+(t)) = \int_{\delta_+^+(t)}^{\delta_+^+(t+\omega)} G(\rho(t, \delta_+^+(t))) \sum_{i=1}^m b_i(s)x(\delta_-(\tau_i, s))
\]

\[\times e^{-c_i(s)x(\delta_-(\tau_i, s))} \nabla s.
\]

\[
\geq \frac{1}{\xi} ||Hx||,
\]

that is, \(Hx \in X \).

Furthermore, for any \(x \in K, t \in [t_0, \delta_+^+(t_0) \cap T] \), we have

\[
(Hx)(\delta_+^+(t)) \geq \frac{1}{\xi - 1} \int_{t_0}^{t+\omega} G(\rho(t, \delta_+^+(t))) \sum_{i=1}^m b_i(s)x(\delta_-(\tau_i, s))
\]

\[\times e^{-c_i(s)x(\delta_-(\tau_i, s))} \nabla s.
\]

\[
\geq \frac{1}{\xi} - \frac{B}{c_1} := M_1,
\]

where

\[
c_1 = \min_{1 \leq i \leq m} c_i, \quad B := \int_{t_0}^{\delta_+^+(t_0)} \sum_{i=1}^m b_i(s) \nabla s.
\]

Furthermore, for \(t \in T \), we have

\[
(Hx)(\delta_+^+(t)) = -a(t)(Hx)(t)
\]

\[+ \sum_{i=1}^m b_i(t)x(\delta_-(\tau_i, t))e^{-c_i(t)x(\delta_-(\tau_i, t))},
\]

(Advance online publication: 17 November 2017)
Lemma 10. Let \(H \) be a Banach space and \(K \subset \Omega \) be a cone in \(K \). Assume that \(\Omega_1, \Omega_2 \) are bounded open subsets of \(X \) with \(0 \in \Omega_1 \subset \overline{\Omega}_1 \subset \Omega_2 \) and \(H : \Omega_2 \cap (\Omega_2 \setminus \Omega_1) \to K \) is a completely continuous operator such that, either

1. \(\|Hx\| \leq \|x\|, x \in K \cap \partial \Omega_1, \) and \(\|Hx\| \leq \|x\|, x \in K \cap \partial \Omega_2; \)

2. \(\|Hx\| \geq \|x\|, x \in K \cap \partial \Omega_1, \) and \(\|Hx\| \leq \|x\|, x \in K \cap \partial \Omega_2. \)

Then \(H \) has at least one fixed point in \(K \cap (\Omega_2 \setminus \Omega_1). \)

Lemma 11. Let

\[
\sum_{i=1}^{m} b_i(t) > a(t), t \in [t_0, \delta^*_+(t_0)].
\]

Then there exist positive constants \(M_1 \) and \(M_2 \) such that for \(x \in K, \)

\[
M_2 \leq \|Hx\| \leq M_1.
\]

Proof: From (8), for any \(x \in K, t \in [t_0, \delta^*_+(t_0)], \)

\[
\|Hx\| \leq M_1.
\]

From (9), there exists a \(q > 1 \) such that

\[
\sum_{i=1}^{m} b_i(t) > qa(t), t \in [t_0, \delta^*_+(t_0)].
\]

For any \(x \in K, t \in [t_0, \delta^*_+(t_0)], \)

\[
(Hx)(t) = \int_{t_0}^{\delta^*_+(t)} G(t, s) \sum_{i=1}^{m} b_i(s)x(\delta_-(\tau_i, s)) e^{-c_+s}(x(\delta_-(\tau_i, s))) \, ds
\]

\[
> q \int_{t_0}^{\delta^*_+(t_0)} a(s) e^{-a(t_0, \rho(s))} \, ds
\]

\[
\geq q \min \left\{ e^{-c_+s} \right\} \sum_{i=1}^{m} b_i(t_0) x(\delta_-(\tau_i, t_0))
\]

\[
\geq q \min \{ x \} e^{-c_+t_0}, x^* e^{-c_+ t^*},
\]

where \(c^* = \max_{1 \leq i \leq m} c_i. \)

Comparing (3) with (7), we also have for \(x \in K, t \in [t_0, \delta^*_+(t_0)], \)

\[
x(t) > q \min \{ x \} e^{-c_+t_0}, x^* e^{-c_+ t^*},
\]

which implies that

\[
x > q \min \{ x \} e^{-c_+t_0}, x^* e^{-c_+ t^*}.
\]

In the same way as (8), \(x(t) \leq M_1, \) which implies that

\[
x \leq M_1.
\]

If \(\min \{ x \} e^{-c_+t_0}, x^* e^{-c_+ t^*} \geq q \min \{ x \} e^{-c_+t_0}, x^* e^{-c_+ t^*}, \) then

\[
(Hx)(t) > qM_1 e^{-c_+t_0} := M_2 > 0.
\]

If \(\min \{ x \} e^{-c_+t_0}, x^* e^{-c_+ t^*} > q \min \{ x \} e^{-c_+t_0}, x^* e^{-c_+ t^*}, \) which implies that

\[
x > \frac{\ln q}{c^*}.
\]

From (13), we obtain

\[
(Hx)(t) > \frac{\ln q}{c^*} e^{-c_+t_0} \geq \ln \frac{q}{c^*} := M_2 > 0.
\]

Let \(M_2 = \min \{ M_2, 1 \}, \) then for \(x \in K, \)

\[
\|Hx\| \geq M_2.
\]

This completes the proof.

Theorem 1. Assume that

\[
\sum_{i=1}^{m} b_i(t) > a(t), t \in [t_0, \delta^*_+(t_0)].
\]

Then system (1) has at least one positive \(\omega \)-periodic solution in shifts \(\delta^*_+. \)

Proof: Let

\[
\Omega_1 = \{ x \in X : \|x\| \leq M_2 \},
\]

and

\[
\Omega_2 = \{ x \in X : \|x\| \leq M_1 \}.
\]

Clearly, \(\Omega_1 \) and \(\Omega_2 \) are open bounded subsets in \(X \), and \(\theta \in \Omega_1, \overline{\Omega}_1 \subset \Omega_2 \). From Lemma 8, \(H : K \cap (\Omega_2 \setminus \Omega_1) \to K \) is completely continuous.

If \(x \in K \cap \partial \Omega_2, \) which implies that \(\|x\| = M_1 \), from Lemma 11, \(\|Hx\| \leq M_1. \) Hence \(\|Hx\| \leq \|x\| \) for \(x \in K \cap \partial \Omega_2. \)

If \(x \in K \cap \partial \Omega_1, \) which implies that \(\|x\| = M_2, \) from Lemma 11, \(\|Hx\| \leq M_2. \) Hence \(\|Hx\| \geq \|x\| \) for \(x \in K \cap \partial \Omega_1. \)

From the cone fixed point theorem (Lemma 10), the operator \(H \) has at least one fixed point lying in \(K \cap (\Omega_2 \setminus \Omega_1), \) i.e., system (1) has at least one positive \(\omega \)-periodic solution in shifts \(\delta^*_+. \) This completes the proof.
IV. NONEXISTENCE RESULT

In this section, we shall state and prove our main result about the nonexistence of positive periodic solution in shifts δ_{\pm} of system (1).

Lemma 12. Assume that

$$
\sum_{i=1}^{m} b_i(t) \leq \frac{1}{2} a(t), t \in [t_0, \delta_+^{(t_0)}].
$$

(19)

Then every positive solution of system (1) tends to zero as $t \to \infty$.

Proof: Let $x(t)$ be any positive solution of system (1). By using Lemma 5, integrating system (1) from t_0 to $t(> t_0)$, we have

$$
x(t) = \dot{e}_{-a}(t, t_0) x(t_0) + \int_{t_0}^{t} \dot{e}_{-a}(t, \rho(s)) \sum_{i=1}^{m} b_i(s) x(\delta_-(\tau_i, s)) \times e^{-c_i(s) \delta_-(\tau_i, \tau_i)} \nabla s.
$$

(20)

From (19),

$$
x(t) \leq \dot{e}_{-a}(t, t_0) x(t_0) + \frac{1}{2c_{a}} \int_{t_0}^{t} a(s) \dot{e}_{-a}(t, \rho(s)) \nabla s
$$

$$
= \dot{e}_{-a}(t, t_0) x(t_0) + \frac{1}{2c_{a}} \int_{t_0}^{t} \nabla [\dot{e}_{-a}(t, s)]
$$

$$
= \dot{e}_{-a}(t, t_0) x(t_0) + \frac{1}{2c_{a}} [1 - \dot{e}_{-a}(t, t_0)].
$$

Let $\beta = \limsup_{t \to \infty} x(t)$, then $0 \leq \beta < \infty$.

Next, we shall prove $\beta = 0$. We have some possible cases to consider.

Case 1. $x^{\nabla}(t) > 0$ eventually. Choose $t_0 > 0$ such that $x^{\nabla}(t) > 0$ for $t \geq t_0$. Let $\eta > 0$ be a sufficient large number with $\delta_-(\tau_i, t) > t_0, i = 1, 2, \ldots, m$ for $t \geq t_0 + \eta$. Then $0 < x(\delta_-(\tau_i, t)) < x(t)$ for $t \geq t_0 + \eta$ and $i = 1, 2, \ldots, m$. From (1), for $t \geq t_0 + \eta$,

$$
0 < -a(t)x(t) + \sum_{i=1}^{m} b_i(t) x(\delta_-(\tau_i, t)) e^{-c_i(t) \delta_-(\tau_i, t)}
$$

$$
< \left[\sum_{i=1}^{m} b_i(t) - a(t) \right] x(t) < 0.
$$

This contradiction shows that Case 1 is impossible.

Case 2. $x^{\nabla}(t) < 0$ eventually. Choose $t_0 > 0$ such that $x^{\nabla}(t) < 0$ for $t \geq t_0$. Then $\beta < x(\delta_-(\tau_i, t)) < x(\delta_-(\tau_i, t_0))$ for $t \geq t_0 + \eta$ and $i = 1, 2, \ldots, m$. From (19) and (20), we have

$$
x(t) \leq \dot{e}_{-a}(t, t_0) x(t_0) + \frac{1}{2} \max_{1 \leq i \leq m} x(\delta_-(\tau_i, t_0)) e^{-c_i \beta}
$$

$$
\times [1 - \dot{e}_{-a}(t, t_0)].
$$

(21)

Let $t \to \infty$ in (21), we obtain

$$
\beta \leq \frac{1}{2} \max_{1 \leq i \leq m} x(\delta_-(\tau_i, t_0)) e^{-c_i \beta}.
$$

(22)

Again let $t_0 \to \infty$ in (22), we have that $\beta \leq \beta(\frac{1}{2} e^{-c_i \beta})$, which implies that $\beta = 0$.

Case 3. $x^{\nabla}(t)$ is oscillatory. By the definition of oscillatory, then

(i) there exists $\{t_n\}$ with $t_n \to \infty$ as $n \to \infty$ such that

$$
x^{\nabla}(t) = 0 \quad \text{and} \quad \lim_{n \to \infty} x(t_n) = \beta;
$$

or

(ii) there exists $\{t_n\}$ with $t_n \to \infty$ as $n \to \infty$ such that

$$
x^{\nabla}(t_n) x^{\nabla}(\rho(t_n)) < 0 \quad \text{for} \quad n = 1, 2, \ldots,
$$

and

$$
\lim_{n \to \infty} x(t_n) = \lim_{n \to \infty} x(\rho(t_n)) = \beta.
$$

In case (i), from (1),

$$
a(t_n) x(t_n)
$$

$$
= \sum_{i=1}^{m} b_i(t_n) x(\delta_-(\tau_i, t_n)) e^{c_i(t_n) x(\delta_-(\tau_i, t_n))}
$$

$$
\leq x(\delta_-(\tau_i, t_n)) e^{-c_i x(\delta_-(\tau_i, \tau_i))} \sum_{i=1}^{m} b_i(t_n),
$$

(23)

where $l = l(n) \in \{1, 2, \ldots, m\}$ such that

$$
x(\delta_-(\tau_i, t_n)) e^{-c_i x(\delta_-(\tau_i, \tau_i))}
$$

$$
= \max_{1 \leq i \leq m} x(\delta_-(\tau_i, t_n)) e^{-c_i x(\delta_-(\tau_i, \tau_i))}.
$$

From (19) and (23), we have

$$
2x(t_n) e^{c_i x(\delta_-(\tau_i, t_n))} < x(\delta_-(\tau_i, t_n)).
$$

(24)

Set $\alpha = \limsup_{n \to \infty} x(\delta_-(\tau_i, t_n))$, then $\alpha \leq \beta$. Finding the superior limit of both sides of (24), we obtain

$$
\beta(2e^{c_i \alpha}) \leq \alpha,
$$

then

$$
\beta(2e^{c_i \alpha}) \leq \alpha \leq \beta,
$$

which implies that $\beta = \alpha = 0$.

In case (ii), from (1),

$$
a(t_n) a(\rho(t_n)) x(t_n) x(\rho(t_n))
$$

$$
+ \sum_{i=1}^{m} b_i(t_n) x(\delta_-(\tau_i, t_n)) e^{-c_i(t_n) x(\delta_-(\tau_i, t_n))}
$$

$$
\times \sum_{i=1}^{m} b_i(t_n) x(\delta_-(\tau_i, \rho(t_n)))
$$

$$
\times e^{-c_i(t_n) x(\delta_-(\tau_i, \rho(t_n)))}
$$

$$
< a(t_n) x(t_n) \sum_{i=1}^{m} b_i(\rho(t_n)) x(\delta_-(\tau_i, \rho(t_n)))
$$

$$
\times e^{-c_i(\rho(t_n)) x(\delta_-(\tau_i, \rho(t_n)))}
$$

$$
+ a(\rho(t_n)) x(\rho(t_n)) \sum_{i=1}^{m} b_i(t_n) x(\delta_-(\tau_i, t_n))
$$

$$
\times e^{-c_i(t_n) x(\delta_-(\tau_i, t_n))}
$$

$$
\leq [a(t_n) x(t_n) \sum_{i=1}^{m} b_i(\rho(t_n))
$$

$$
+ a(\rho(t_n)) x(\rho(t_n)) \sum_{i=1}^{m} b_i(t_n)]
$$

$$
\times x(\delta_-(\tau_i, t_n)) e^{-c_i x(\delta_-(\tau_i, t_n))},
$$

(25)

where $l = l(n) \in \{1, 2, \ldots, m\}$, $t_n = \{t_n, \rho(t_n)\}$, such that

$$
x(\delta_-(\tau_i, t_n)) e^{-c_i(t_n) x(\delta_-(\tau_i, t_n))}
$$

$$
= \max_{1 \leq i \leq m} \{x(\delta_-(\tau_i, t_n)) e^{-c_i(t_n) x(\delta_-(\tau_i, t_n))},
$$

$$
x(\delta_-(\tau_i, \rho(t_n))) e^{-c_i(\rho(t_n)) x(\delta_-(\tau_i, \rho(t_n)))}\}.
$$
From (19) and (25), we have
\[
2x(t_n)x(\rho(t_n))e^{c\alpha x(\delta_-(\tau_1, t_n))} \\
\leq [x(t_n) + x(\rho(t_n))]^2 x(\delta_-(\tau_1, t_n)).
\] (26)
Set \(\alpha = \limsup x(\delta_-(\tau_1, t_n)) \), then \(\alpha \leq \beta \). Finding the superior limit of both sides of (26), we obtain
\[
\beta e^{c \alpha} \leq \alpha,
\]
therefore
\[
\beta e^{c \alpha} \leq \alpha \leq \beta,
\]
which implies that \(\beta = \alpha = 0 \). This completes the proof. \(\blacksquare \)

From Lemma 12, we can get the following Theorem.

Theorem 2. Assume that the condition (19) hold. Then system (1) has no positive \(\omega \)-periodic solution in shifts \(\delta_\pm \).

V. NUMERICAL EXAMPLES

Consider the following Nicholson’s blowflies model on time scales \(\mathbb{T} \)
\[
x^{\nabla}(t) = -a(t)x(t) + \sum_{i=1}^{2} b_i(t)x(\delta_-(\tau_i, t))e^{-c_i(t)x(\delta_-(\tau_i, t))}.
\] (27)

Example 1. Take
\[
a(t) = a_0 + \frac{|\sin 2t + \cos 3t|}{2},
b_1(t) = e^{-1}(10 + 0.005)\sin t,
b_2(t) = e^{-1}(10 + 0.005)\cos t,
c_i(t) = c_2(t) = 0.25 + 0.025|\sin 3t + \cos 2t|.
\]
Let \(\mathbb{T} = \mathbb{R} \), \(t_0 = 0 \), then \(\omega = \pi \) and \(\delta_\pm(t) = t + \pi \). It is easy to verify \(a(t), b_i(t), c_i(t) \) satisfy
\[
a(\delta_\pm(t))\delta_\pm^{\nabla}(t) = a(t),
b_i(\delta_\pm(t))\delta_\pm^{\nabla}(t) = b_i(t),
c_i(\delta_\pm(t)) = c_i(t), \quad \forall t \in \mathbb{T}^*, \quad i = 1, 2,
\]
and \(-a \in \mathbb{R}^+\).

Case I. If \(a_0 = 18 \), by a direct calculation, we can get
\[
\sum_{i=1}^{2} b_i(t) \geq 20 e^{-1} = a(t), \quad t \in \mathbb{R}.
\]
According to Theorem 1, when \(\mathbb{T} = \mathbb{R} \), system (27) exists at least one positive \(\pi \)-periodic solution in shifts \(\delta_\pm \).

Case II. If \(a_0 = 240 \), by a direct calculation, we can get
\[
\sum_{i=1}^{2} b_i(t) \leq 20.02 e^{-1} < \frac{1}{2} a(t), \quad t \in \mathbb{R}.
\]
According to Theorem 2, when \(\mathbb{T} = \mathbb{R} \), system (27) has no positive periodic solution in shifts \(\delta_\pm \).

Example 2. Take
\[
a(t) = \frac{1}{a_0 t},
b_1(t) = \frac{1}{2t},
b_2(t) = \frac{1}{3t},
c_1(t) = c_2(t) = 0.25.
\]
Let \(\mathbb{T} = 2^{N_0}, t_0 = 1 \), then \(\omega = 4 \) and \(\delta_\pm(t) = 4t \). It is easy to verify \(a(t), b_i(t), c_i(t) \) satisfy
\[
a(\delta_\pm(t))\delta_\pm^{\nabla}(t) = a(t),
b_i(\delta_\pm(t))\delta_\pm^{\nabla}(t) = b_i(t),
c_i(\delta_\pm(t)) = c_i(t), \quad \forall t \in \mathbb{T}^*, \quad i = 1, 2,
\]
and \(-a \in \mathbb{R}^+\).

Case I. If \(a_0 = 6 \), by a direct calculation, we can get
\[
\sum_{i=1}^{2} b_i(t) = \frac{5}{6t} > a(t), \quad t \in 2^{N_0}.
\]
According to Theorem 1, when \(\mathbb{T} = 2^{N_0} \), system (27) exists at least one positive \(4 \)-periodic solution in shifts \(\delta_\pm \).

Case II. If \(a_0 = \frac{1}{2} \), by a direct calculation, we can get
\[
\sum_{i=1}^{2} b_i(t) = \frac{5}{6t} < \frac{1}{2} a(t), \quad t \in 2^{N_0}.
\]
According to Theorem 2, when \(\mathbb{T} = 2^{N_0} \), system (27) has no positive periodic solution in shifts \(\delta_\pm \).

VI. CONCLUSION

Two problems for a Nicholson’s blowflies model with time delays on time scales have been studied, namely, existence and nonexistence of positive periodic solutions in shifts \(\delta_\pm \) on time scales. It is important to notice that the methods used in this paper can be extended to other types of biological models; see, for example, [18-20]. Future work will include biological dynamic systems modeling and analysis on time scales.

REFERENCES

(Advance online publication: 17 November 2017)