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Abstract—In this paper, a Dirichlet-Neumann alternating
method using elliptical arc artificial boundary is designed to
solve exterior Poisson problem with a concave angle. It is shown
that the method is equivalent to a preconditioned Richardson
iteration. The convergence of this method and its discretization
are studied. Finally, some numerical examples are given to show
the effectiveness of this method.

Index Terms—Dirichlet-Neumann alternating method, ellip-
tical arc artificial boundary, exterior problem.

I. INTRODUCTION

MANY scientific and engineering problems can be
modeled by exterior boundary value problems of

partial differential equations which are required to be solved
in unbounded domains. In the last three decades, some
methods for solving problems over unbounded domains have
been developed. One of the commonly used techniques is
the method of artificial boundary conditions [1]-[9]. The
method may be summarized as follows: (i) Introduce an
artificial boundary Γµ, which divides the original unbounded
domain into two non-overlapping subdomains: a bounded
computational domain Ωi and infinite residual domain Ωe.
(ii) By analyzing the problem in Ωe, obtain a relation on Γµ

(exact or approximate) involving the unknown function u and
its derivatives. (iii) Using the relation as a boundary condition
on Γµ, to obtain a well-posed problem in Ωi. (iv) Solve the
problem in Ωi be the standard finite element methods or
some other numerical methods.The relation obtained in Step
(ii) and used as a boundary condition in Step (iii) is called
an artificial boundary condition.

Based on artificial boundary conditions, the overlapping
and non-overlapping domain decomposition methods can be
viewed as effective ways to solve problems in unbounded
domains. These techniques have been used to solve many
linear or nonlinear problems [10]-[17]. Recently, the authors
used a new elliptical arc artificial boundary to solve Poisson
problems and anisotropic problems [18]-[19], and construct
an iteration method which is equivalent to a Schwarz alter-
nating method to solve Poisson problems in concave angle
domains [20]. In this paper, we design a Dirichlet-Neumann
alternating method based on an elliptical arc artificial bound-
ary to solve exterior Poisson problem with a concave angle.

Let Ω be an exterior concave angle domain with angle α,
and 0 < α ≤ 2π. The boundary of domain Ω is decomposed
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Fig. 1. The Illustration of Domain Ω

into three disjoint parts: Γ,Γ0 and Γα(see Fig. 1), i.e. ∂Ω =
Γ ∪ Γ0 ∪ Γα, Γ0 ∩ Γα = Ø, Γ ∩ Γ0 = Ø, Γ ∩ Γα = Ø. The
boundary Γ is a simple smooth curve part, Γ0 and Γα are
two half lines.

We consider the Poisson problem in two cases:

−∆u = f, in Ω,

u = 0, on Γ0 ∪ Γα,

∂u

∂n
= g, on Γ,

u is vanish at infinity,

(1)

and 

−∆u = f, in Ω,

∂u

∂n
= 0, on Γ0 ∪ Γα,

u = h, on Γ,

u is bounded at infinity,

(2)

where u is the unknown function, f ∈ L2(Ω) and g, h ∈
L2(Γ) are given functions, supp(f ) is compact.

The rest of the paper is organized as follows. In Section 2,
we introduce an elliptical arc artificial boundary which divide
the original domain Ω into two non-overlapping subdomains,
then we construct a Dirichlet-Neumann alternating method.
In Section 3, we give the weak form and discretization. In
Section 4, we analyze the convergence of the method. Finally,
in Section 5 we present some numerical results to show its
accuracy and the effectiveness of our method.

II. DIRICHLET-NEUMANN ALTERNATING METHOD

Draw a elliptical arc Γ1 = {(µ, φ)|µ = µ1, 0 < φ < α},
which enclose Γ such that dist(Γ,Γ1) > 0. Then Ω is divided
into two non-overlapping subdomains Ω1 and Ω2(see Fig.
2). Let Ω1 be the bounded domain among Γ, Γ0, Γα and
Γ1, and Ω2 be the unbounded domain outside Γ1, Γ0 and
Γα. Then the original problems (1) is decomposed into two
subproblems in domains Ω1 and Ω2 with Ω1 ∩ Ω2 = Ø,
∂Ω1 = Γ ∪ Γ1 ∪ Γ01 ∪ Γα1, ∂Ω2 = Γ1 ∪ Γ02 ∪ Γα2, where
Γ0i = Ωi ∩ Γ0, Γαi = Ωi ∩ Γα, i = 1, 2.
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In the first case, we proposed the Dirichlet-Neumann
alternating method as follows.

Step 0. Pick an initial value λ0 ∈ H
1
2 (Γ1), and put k = 0.

Step 1. Solve a Dirichlet problem in Ω2
−∆uk

2 = f, in Ω2,

uk
2 = 0, on Γ02 ∪ Γα2,

uk
2 = λk, on Γ1,

uk
2 is vanish at infinity.

(3)

Step 2. Solve a mixed problem in Ω1

−∆uk
1 = f, in Ω1,

uk
1 = 0, on Γ01 ∪ Γα1,

∂uk
1

∂n
= g, on Γ,

∂uk
1

∂n
= −∂uk

2

∂n
, on Γ1.

(4)

Step 3. Update the boundary value on Γ1 by

λk+1 = θku
k
1 + (1− θk)λ

k. (5)

Step 4. Set k = k + 1, then goto Step 1.
where uk

1 and uk
2 are the kth approximate solutions in Ω1 and

Ω2, respectively. θk denotes the kth relaxation factor and λ0

is an arbitrary function in H
1
2 (Γ1). Note that, on interface

Γ1, only the value of the normal derivative of the solution
of (3) is needed in solving (4). So it is unnecessary to solve
(3). Actually, we can obtain ∂uk

2

∂n directly from λk by making
use of the following artificial boundary condition [18]:

∂uk
2

∂n
= Kλk, (6)

where

Kλk = − 2π

α2
√
J

+∞∑
n=1

n

∫ α

0

λk(µ1, ϕ) sin
nπφ

α
sin

nπϕ

α
dϕ.

(7)
For the second case, we can also construct the Dirichlet-

Neumann alternating method. In the following sections, we
just consider the discretization and convergence of problem
(1), we can obtain corresponding result of problem (2) in the
same way.

III. THE WEAK FORM AND DISCRETIZATION

Let

V (Ω1) = {v|v ∈ H1(Ω1), v|Γ01∪Γα1 = 0},

then problem (1) is equivalent to the variational problem:
Find u ∈ V (Ω1), such that

a(u, v) + b(u, v) = f(v), ∀v ∈ V (Ω1), (8)

where
a(u, v) =

∫
Ω1

∇u∇vdx, (9)

b(u, v) =

+∞∑
n=1

2

nπ

∫ α

0

∫ α

0

∂u

∂ϕ

∂v

∂φ
cos

nπϕ

α
cos

nπφ

α
dϕdφ,

(10)

f(v) =

∫
Ω1

fvdx+

∫
Γ

gvds. (11)

α
Γ
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Fig. 2. The Illustration of Domain Ω1 and Ω2

Let Sh(Ω1) ⊂ V (Ω1) denote the liner finite element space
of V (Ω1). Then the approximate variational problem of (8)
can be written as: Find uh ∈ Sh(Ω1), such that

a(uh, vh) + b(uh, vh) = f(vh), ∀vh ∈ Sh(Ω1). (12)

From the problem (12), we can get algebraic equations as
follows A11 +B A1i A10

Ai1 Aii Ai0

A01 A0i A00

 U1

Ui

U0

 =

 0
0
F0

 , (13)

where U1 is a vector whose components are function values
at nodes on Γ1, Ui is a vector whose components are function
values at interior nodes in Ω1 and U0 is a vector whose
components are function values at nodes on Γ. The matrix

A =

 A11 A1i A10

Ai1 Aii Ai0

A01 A0i A00


is the stiffness matrix obtained from finite element in Ω1

while B is gotten from the artificial boundary condition on
Γ1. (13) can also be rewritten as follows A11 A1i A10

Ai1 Aii Ai0

A01 A0i A00

 U1

Ui

U0

 =

 −BU1

0
F0

 . (14)

Then, we have the iterative method A11 A1i A10

Ai1 Aii Ai0

A01 A0i A00

 Uk
1

Uk
i

Uk
0

 =

 −BΛk

0
F0

 , (15)

with

Λk+1 = θkU
k
1 + (1− θk)Λ

k, k = 0, 1, 2, . . . (16)

IV. ANALYSIS OF CONVERGENCE

It is difficult to analyze the convergence of the above
alternating method in the general domain. However, the
analysis is possible for some special curve Γ. Therefore, we
only consider the case where the boundaries Γ and Γ1 both
are elliptical arcs, i.e., Γ = {(µ, φ)|µ = µ0, 0 < φ < α},
Γ1 = {(µ, φ)|µ = µ1, 0 < φ < α}, and µ1 > µ0.

We first consider the convergence of the method in con-
tinuous case.

Theorem 1. If 0 < θk < 1, then the Dirichlet-Neumann
alternating method (3)-(5) is convergent.

Proof. Let

ek2 = λ− λk =
+∞∑
n=1

bn sin
nπφ

α
, on Γ1,
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we have

∂ek1
∂n

= −K(ek2) = − π

α
√
J

+∞∑
n=1

nbn sin
nπφ

α
. (17)

By the separation of variables, we have

ek1 = −
+∞∑
n=1

bnHn(µ) sin
nπφ

α
,

where

Hn(µ) =
e

nπ
α (µ−µ0) − e

nπ
α (µ0−µ)

e
nπ
α (µ1−µ0) − e

nπ
α (µ0−µ1)

.

Hence

K(ek1) = − π

α
√
J

+∞∑
n=1

nbnHn(µ) sin
nπφ

α
.

Then, we have

∂ek+1
1

∂n
= −K(λ− λk+1)

= K(θku
k
1 + (1− θk)λ

k − λ)

=
π

α
√
J

+∞∑
n=1

nbn(θkHn(µ1)− 1 + θk) sin
nπφ

α
.

(18)

If we let

Ek = ∥∂e
k
1

∂n
∥2− 1

2 ,Γ1
,

then

Ek =
π2

α2J

+∞∑
n=1

(1 + n2)−
1
2n2b2n,

and
Ek+1

=
π2

α2J

+∞∑
n=1

(1 + n2)−
1
2n2b2n(θkHn(µ1)− 1 + θk)

2

= (1− θk)
2Ek +

π2

α2J

+∞∑
n=1

(1 + n2)−
1
2n2b2n

· θkHn(µ1)(θkHn(µ1) + 2θk − 2).

Let
δ = inf

n∈Z+

2

2 +Hn(µ1)
.

A computation shows that δ = 2
3 .

If we let θk, k = 0, 1, 2, . . ., satisfy 0 < θk ≤ δ, then

Ek+1 < (1− θk)
2Ek. (19)

By the trace theorem, we have

∥ek1∥21,Ω1
≤ CEk → 0, k → +∞.

This means that the Dirichlet-Neumann alternating method
is convergent if 0 < θk ≤ δ.

We also have
Ek+1

=
π2

α2J

+∞∑
n=1

(1 + n2)−
1
2n2b2n(2θk − 1− 2θkGn(µ1))

2

= (1− θk)
2Ek +

π2

α2J

+∞∑
n=1

(1 + n2)−
1
2n2b2n

· θkGn(µ1)(θkGn(µ1)− 2θk + 1),

where
Gn(µ1) =

1−Hn(µ1)

2
.

Let
σ = sup

n∈Z+

1

2−Gn(µ1)
.

It is easy to get σ = 2
3 .

Similar to the above analysis, if we take θk, k =
0, 1, 2, . . ., satisfy σ ≤ θk < 1, the Dirichlet-Neumann
alternating method is also convergent.

Therefore, for 0 < θk < 1, the Dirichlet-Neumann
alternating method is convergent.

In the following, we consider the convergence of the
discretization form.

Theorem 2. The discrete Dirichlet-Neumann alternating
method (15) and (16) are equivalent to the following pre-
conditioned Richardson iteration:

S
(1)
h (Λk+1 − Λk) = θk(F1 − ShΛ

k), (20)

where

S
(1)
h = A11 −A1i(Aii −Ai0(A00)

−1A0i)
−1Ai1, (21)

Sh = S
(1)
h +B, (22)

F1 = A1i(Aii −Ai0(A00)
−1A0i)

−1Ai0(A00)
−1F0. (23)

Proof. From (13), we have

(A11 −A1i(Aii −Ai0(A00)
−1A0i)

−1Ai1 +B)U1

= A1i(Aii −Ai0(A00)
−1A0i)

−1Ai0(A00)
−1F0,

namely,
ShU1 = F1.

From (14) and (15), we obtain

A

 Uk
1 − U1

Uk
i − Ui

Uk
0 − U0

 =

 −B(Λk − U1)
0
0

 .

So
S
(1)
h (Uk

1 − U1) = B(U1 − Λk).

Therefore

S
(1)
h (Λk+1 − Λk) = θkS

(1)
h (Uk

1 − Λk)

= θk(S
(1)
h (Uk

1 − U1) + S
(1)
h (U1 − Λk))

= θk(B + S
(1)
h (U1 − Λk))

= θkSh(U1 − Λk)

= θk(F1 − ShΛ
k).

Theorem 3. Let ρ be spectral radius of (S(1)
h )−1Sh, which

is iterative matrix of preconditioned Richardson iteration.
Then, there is a positive constant σ, which is independent
of finite element mesh parameter h of subdomain Ω1, such
that ρ ≤ σ.

Theorem 4. Put θk = θ(k = 0, 1, 2, . . .), then, there
exists a constant δ(0 < δ < 1), which is independent
of finite element mesh parameter h of subdomain Ω1. For
0 < θ < δ, the preconditioned Richardson iteration, i.e.,
Dirichlet-Neumann alternating method (15)-(16) converges
and the convergence rate is independent of mesh parameter
h of subdomain Ω1.
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Proof. From Theorem 2, we have

U1 − Λk+1 = (I − θ(S
(1)
h )−1Sh)(U1 − Λk)

= (I − θ(S
(1)
h )−1Sh)

k+1(U1 − Λ0),

it comes that

∥U1 − Λk+1∥2 ≤ δk+1∥U1 − Λ0∥2,

where
δ = ∥I − θ(S

(1)
h )−1Sh∥2.

Following Theorem 3, there exists a constant δ(0 < δ < 1),
which is independent of h. For 0 < θ < δ, spectral radius
of I − θ(S

(1)
h )−1Sh is less than 1, and spectral norm δ < 1;

therefore,
lim

k→+∞
∥U1 − Λk+1∥2 = 0.

It follows that the preconditioned Richardson iteration con-
verges; then, the Dirichlet-Neumann alternating method con-
verges and the convergence rate is independent of mesh
parameter h of subdomain Ω1.

V. NUMERICAL EXAMPLES

In this section, we give two numerical examples to
show the effectiveness of the Dirichlet-Neumann alternating
method. In these examples, the exact solutions are known.
The purpose of showing these examples is to check the
convergence in terms of iteration k and mesh size h. The
finite element method with liner elements is used in the
computation. u1h is the finite element solution in Ω1, e and
eh denote the maximal error of all node functions in Ω1,
respectively, i.e.,

e(k) = sup
Pi∈Ω1

|u(Pi)− uk
1h(Pi)|,

eh(k) = sup
Pi∈Ω1

|uk+1
1h (Pi)− uk

1h(Pi)|.

qh(k) is the approximation of the convergence rate, i.e.,

qh(k) =
eh(k − 1)

eh(k)
.

Example 1. We consider problem (1), where Ω =
{(µ, φ)|µ > 1, 0 < φ < 2π}, Γ = {(1, φ)|0 < φ < 2π},
Γ0 = {(µ, 0)|µ > 1}, Γα = {(µ, 2π)|µ > 1} and f0 = 2.
Let u(µ, φ) = sin φ

2

cosh µ
2 +sinh µ

2
be the exact solution of original

problem and g = ∂u
∂n |Γ. Let Γµ1 = {(3, φ)|0 < φ < 2π} be

the artificial boundary. Fig. 3 shows the mesh h of subdomain
Ω1, Table 1 shows the relation between convergence rate
and mesh (θ = 0.5), Table 2 shows the relation between
convergence rate and relaxation factor (mesh h/4), Fig. 4
shows L∞(Ω1) errors with iteration k.

Example 2. We consider problem (1), where Ω =
{(µ, φ)|µ > 1, 0 < φ < 3π

2 }, Γ = {(1, φ)|0 < φ < 3π
2 },

Γ0 = {(µ, 0)|µ > 1}, Γα = {(µ, 3π
2 )|µ > 1} and f0 = 2.

Let u(µ, φ) = sin 2φ
3

cosh 2µ
3 +sinh 2µ

3

be the exact solution of origi-

nal problem and g = ∂u
∂n |Γ. Let Γµ1 = {(3, φ)|0 < φ < 2π}

be the artificial boundaries. Fig. 5 shows the mesh h of sub-
domain Ω1, Table 3 shows the relation between convergence
rate and mesh (θ = 0.6), Table 4 shows the relation between
convergence rate and relaxation factor (mesh h/4), Fig. 6
shows L∞(Ω1) errors with iteration k.

Fig. 3. Mesh h of Subdomain Ω1 for Example 1

TABLE I
THE RELATION BETWEEN CONVERGENCE RATE AND MESH FOR

EXAMPLE 1 (θ = 0.5)

Mesh k 1 3 5 7 9

e(k) 0.0805 0.0582 0.0577 0.0577 0.0577
h/2 eh(k) 0.3054 0.0057 0.0001 0.0000 0.0000

qh(k) 7.3175 7.3180 7.3181 7.3182

e(k) 0.0465 0.0163 0.0157 0.0156 0.0156
h/4 eh(k) 0.3299 0.0076 0.0002 0.0000 0.0000

qh(k) 6.6071 6.6072 6.6072 6.6071

e(k) 0.0460 0.0047 0.0040 0.0040 0.0040
h/8 eh(k) 0.3366 0.0081 0.0002 0.0000 0.0000

qh(k) 6.4428 6.4428 6.4428 6.4428

TABLE II
THE RELATION BETWEEN CONVERGENCE RATE AND RELAXATION

FACTOR FOR EXAMPLE 1 (MESH h/4)

θ k 1 3 5 7 9

e(k) 0.2174 0.1275 0.0743 0.0427 0.0240
0.1 eh(k) 0.0660 0.0391 0.0232 0.0137 0.0081

qh(k) 1.2992 1.2992 1.2992 1.2992

e(k) 0.0854 0.0102 0.0151 0.0156 0.0156
0.3 eh(k) 0.1980 0.0189 0.0018 0.0002 0.0000

qh(k) 3.2343 3.2344 3.2345 3.2346

e(k) 0.0465 0.0163 0.0157 0.0156 0.0156
0.5 eh(k) 0.3299 0.0076 0.0002 0.0000 0.0000

qh(k) 6.6071 6.6072 6.6072 6.6071

e(k) 0.1785 0.0688 0.0314 0.0215 0.0178
0.7 eh(k) 0.4619 0.1729 0.0648 0.0242 0.0091

qh(k) 1.6343 1.6225 1.6343 1.6343

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

Iteration k

E
rr

or

 

 

h/2
h/4
h/8

Fig. 4. L∞(Ω1) Errors with Iteration k for Example 1

The numerical results show that this method is feasible
and convergent quickly. Its convergence rate is independent
of finite element mesh parameter h. The convergence of the
method is the best when the relaxation factor θk approaches
to 0.5.
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Fig. 5. Mesh h of Subdomain Ω1 for Example 2

TABLE III
THE RELATION BETWEEN CONVERGENCE RATE AND MESH FOR

EXAMPLE 2 (θ = 0.6)

Mesh k 1 3 5 7 9

e(k) 0.0775 0.0611 0.0598 0.0597 0.0597
h/2 eh(k) 0.1826 0.0141 0.0011 0.0001 0.0000

qh(k) 3.5962 3.5962 3.5962 3.5962

e(k) 0.0460 0.0181 0.0166 0.0164 0.0164
h/4 eh(k) 0.1957 0.0161 0.0013 0.0001 0.0000

qh(k) 3.4897 3.4897 3.4897 3.4897

e(k) 0.0453 0.0060 0.0044 0.0042 0.0042
h/8 eh(k) 0.1993 0.0166 0.0014 0.0001 0.0000

qh(k) 3.4622 3.4622 3.4622 3.4622

TABLE IV
THE RELATION BETWEEN CONVERGENCE RATE AND RELAXATION

FACTOR FOR EXAMPLE 2 (MESH h/4)

θ k 1 3 5 7 9

e(k) 0.0845 0.0260 0.0121 0.0150 0.0160
0.2 eh(k) 0.0652 0.0213 0.0069 0.0023 0.0007

qh(k) 1.7509 1.7509 1.7509 1.7509

e(k) 0.0193 0.0162 0.0164 0.0164 0.0164
0.4 eh(k) 0.1305 0.0026 0.0001 0.0000 0.0000

qh(k) 7.0276 7.0276 7.0276 7.0277

e(k) 0.0460 0.0181 0.0166 0.0164 0.0164
0.6 eh(k) 0.1957 0.0161 0.0013 0.0001 0.0000

qh(k) 3.4897 3.4897 3.4897 3.4897

e(k) 0.1112 0.0581 0.0309 0.0232 0.0199
0.8 eh(k) 0.2610 0.1336 0.0684 0.0350 0.0179

qh(k) 1.3978 1.3978 1.3978 1.3978

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
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Interation k

E
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Fig. 6. L∞(Ω1) Errors with Different Iteration k for Example 2
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