
 

 

Abstract—Understanding driving behaviors on the roads is a 

complicated research topic. To describe accurate speed, flow 

and density of a multi-lane traffic flow, an adequate traffic flow 

model is needed. Unfortunately, the model with complicated 

behaviors always takes lots of computing time. In this study, 

traffic cellular automata models are considered and two 

speed-up strategies are proposed. The first strategy employs an 

analytical solution instead of simulation. However, the solution, 

which is based on the mean field theory does not agree with the 

result of simulation. The second strategy considers 3-lane traffic 

to be equivalent to 2-lane traffic under heavy traffic situation. 

The computing time for various simulation scenarios is also 

presented so as to analyze the computational efficiency. 

According to the results, 2-lane simulation could be a good 

estimation of 3-lane simulation under the same simulation 

parameters. In addition, the computational efficiency can be 

improved up to 42.7% in the best case. 

 
Index Terms—traffic flow simulation, cellular automata, 

multi-lane traffic, speeding up simulation 

 

I. INTRODUCTION 

N the real world, traffic flow involves complex phenomena, 

such as acceleration, deceleration, dawdling, 

lane-changing and multiple driving behaviors. Therefore, 

various models are developed to understand single-lane 

traffic, multi-lane traffic, lane-changing behavior and 

network traffic situations. The traffic flow theory provides a 

description for the fundamental traffic flow characteristics 

and analytical techniques so as to predict, control, manage 

and plan traffic flow systems [1]. The anisotropic property 

and consistency of model are two necessary conditions for 

traffic flow modeling and simulation. Generally, microscopic 

models have good agreement with these two aspects. The 

traffic cellular automata (TCA) model [2] is one of the 

microscopic models. In TCA, a road is represented as a string 

of cells, which are either empty or occupied by exactly one 

vehicle. Movement takes place by propagating along the 

string of cells.  

Traffic problems in daily life involve many aspects, such 

as geometric design, different driving behaviors, different 

types of vehicles, weather conditions, lane usage, network 

topology and so on. There are diverse research topics related 

to traffic flow. Generally, multi-lane traffic is quite common 

in the real world. Simulating multi-lane traffic involves 

 
Manuscript received July 17, 2017; revised September 13, 2017.  

S.-C. Lo is with the Chung Hua University, Hsinchu, 300 Taiwan 

(corresponding author to provide phone: +886-3-5186443; fax: 

+886-3-5186545; e-mail: sclo@chu.edu.tw). 

 

acceleration, deceleration, lane-changing, and passing of 

vehicles, which takes lots of computing time especially under 

high vehicle density. However, to improve the performance 

of traffic control, it is necessary to describe and predict the 

multi-lane traffic flow.  

In this study, two speed-up strategies are proposed and 

examined. Firstly, an analytical solution of TCA is presented. 

If the simulation result of TCA can be replaced by the 

analytical solution, the computing time will be saved. Next, 

an equivalent concept is employed because lane-changing 

behavior occurs in dilute traffic. When traffic is congested, 

vehicles are unable to change lanes and thus multi-lane traffic 

may behave as single-lane traffic. The simulation of 

single-lane traffic is much faster than that of multi-lane traffic. 

The paper is organized as follows. In section 2, an 

introduction of multi-lane traffic CA models is briefly 

reviewed. Section 3 presents the speed-up strategy of the 

analytical solution. Then, an equivalent strategy is presented 

in Sec. 4. Finally, section 5 concludes with a short summary 

and discussion of our findings.  

II. MULTI-LANE TRAFFIC CELLULAR AUTOMATA MODELS 

In CA, a road is represented as a string of same-sized cells. 

The size of the cells is chosen to be equal to the speed of the 

vehicle that moves forward one cell during one time step. The 

vehicle’s speed is assumed to be a limited number of discrete 

values ranging from zero to vmax, which is the maximum 

speed of vehicle. The process of the NaSch model [2] can be 

split up into four steps: 

(Step 1) Acceleration. If time step is less than the total 

simulation time, let each vehicle with speed lower than its 

maximum speed vmax accelerate to a higher speed, i.e. v = 

min (vmax, v+1). 

(Step 2) Deceleration. If the speed is greater than the distance 

gap d to the preceding vehicle, the vehicle will decelerate: 

v = min (v, d). 

(Step 3) Dawdling. With the given slow-down probability p, 

the speed of a vehicle decreases spontaneously: v = max 

(v–1, 0). 

(Step 4) Propagation. Let each vehicle move forward v cells 

and let time step increase one. Then, repeat the procedure: 

acceleration, deceleration, dawdling and propagation.  

Based on the NaSch model, Takayasu and Takayasu (the TT 

model or the T2 model) [3] suggested a slow-to-start rule 

firstly. The TT model describes that a standing vehicle (i.e., a 

vehicle with the instantaneous speed v = 0) with exactly one 

empty cell in front accelerates with probability qt = 1–pt, 

while all other vehicles accelerate deterministically. The 

other steps of the update rule (Step 2 to Step 4) of the NaSch 
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model are kept unchanged. The TT model reduces to the 

NaSch model in the limit pt = 0. Another slow-to-start model 

is the BJH model [4]. An extra step is introduced to 

implement the slow-to-start rule. According to the BJH 

model, a standing vehicle will move on only with probability 

1–ps. Step 1, 3 and 4 of the BJH model are the same as those 

of the NaSch model. An extra step (Step 1.5) is introduced 

and Step 2 is modified as follows: 

(Step 1.5) Slow-to-start. If flag = 1, then let v = 0 with 

probability ps. 

(Step 2’) Blockage. v = min (v, d) and let flag = 1 if v = 0; else 

flag = 0. 

Here, flag is a label for distinguishing vehicles. If flag = 1, the 

vehicles should obey the slow-to-start rule. If flag = 0, the 

vehicles can accelerate immediately. Obviously, when ps = 0, 

the above rules reduce to those of the NaSch model. The 

slow-to-start rule of the TT model is a spatial rule. In 

contrast, the BJH slow-to-start rule requires memory, i.e., it is 

a temporal rule depending on the number of trials and not 

depending on the free space available in front of the vehicle. 

Velocity dependent randomization (VDR model) is a 

generalized BJH model [5], which considers a larger 

slow-down probability while the velocity is zero in the last 

time step. In addition, Maerivoet [6, 7] proposed a 

time-oriented delay model, which considers a safety 

threshold. If the gap between two vehicles is smaller than the 

threshold, then the following vehicle cannot accelerate. The 

average speed obtained by the model would be smaller than 

that of the other models under the same simulation scenario.  

Fukui and Ishibashi [8] proposed a high speed CA model, 

which is the so-called FI model. The FI model considers that 

a driver would not dawdle unless he is driving at the 

maximum speed. Thus, the Step 3 of the NaSch model is 

modified as follows: 

(Step 3’) Dawdling. Let each vehicle with speed equal to its 

maximum speed vmax have a probability p to slow down to 

vmax−1. Otherwise, vehicles will keep the same speed and 

will accelerate in the next time step. 

In multi-lane traffic, overtaking maneuver uses an 

extended neighborhood behind and ahead of the vehicle on 

both lanes. Technically, one can say that there must be a gap 

of size d− +1+d+. The label + (−) belongs to the gap on the 

target lane in front of (behind) the vehicle that wants to 

change lanes. In the following, we characterize the security 

criterion (no accident condition) by the boundaries [−d− , d+] 

of the required gap on the target lane relative to the current 

position of the vehicle considered for changing lanes. If one 

vehicle has enough gaps to change lanes, it still has a 

probability pcl to keep in the same lane so as to avoid the 

ping-pong phenomenon [9-13]. 

III.  SPEED-UP BY AN ANALYTICAL SOLUTION 

Generally, the analytical solution of the cellular automata 

model is derived by the mean field theory. The basic idea of 

the mean field theory is based on the conservation of 

probability. The definition of notations is listed in Table I.  
 

 

 

 

 

TABLE I 

DEFINITION OF NOTATIONS 

Notation Definition 

m The number of cells between two cars. 

Pm(t) The probability that there are m cells 

between two cars and the speed of the 

following car is 1 at time t.  

Bm(t) The probability that there are m cells 

between two cars and the speed of the 

following car is 0 at time t.  

p Dawdling probability. 

q q =1- p。 

gm(t) The probability of the preceding car that 

moves forward m cells at time t, m is 0 or 

1.  

In the four steps of the NaSch model, the stochastic 

deceleration is in the third step. Let vmax = 1 and derive the 

analytical solution by the mean field theory [14, 15]. In this 

case, the speed is 0 or 1. Since the four steps are recurring, we 

can rearrange the order to make the formulation easier. Let 

the deceleration be the first step and dawdling be the next. 

The third step moves forward and the last step is acceleration. 

Thus, the speed of all cars will be 1 after the four steps. 

According to the conservation of probability, we will have 

the following systematic equations: 

        tqPtPtgtP 1000 1  ,                          (1) 

                tPtqgtPtpgtqgtPtgtP 20101011 1  ,   (2) 

                tPtqgtPtpgtqgtPtpgtP nnnn 1001111   ,    (3) 

where Eq.(1) is the probability that the speed of the following 

car is 1 at time t+1 when there is no gap between the 

following car and the preceding car. Equation (2) is the 

probability that the speed of the following car is 1 at time t+1 

when the gap between the following car and the preceding 

car is 1. Equation (3) is the general form of Eqs.(1) and (2). 

Since gm(t) denotes the probability of the preceding car that 

moves forward m cells at time t, we can derive the 

conservative equations as follows: 

       tqPptPptPtg
n

n 0

1

00  


,                  (4) 

      tPqtPqtg
n

n 0

1

1 1 


,                      (5) 

  1
0


n

n tP ,                                    (6) 

   
k

tPn
n

n

1
1

0




.                              (7 ) 

After solving the simultaneous equations (1) to (7), the flow 

equation is derived. 

 
 

2

1411
, 1

kqk
kgukpkf


 ,             (8 ) 

where k is traffic density, u is average speed and f(k, p) is 

traffic volume.  

According to our study [16], a three-step TCA is 

proposed to simplify the moving procedure of TCA. The 

three steps are given as follows:  
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(Step 1) Adjusting. If time step is less than the total 

simulation time, let each vehicle with speed v < vmax have 

a probability 1−p to accelerate to a higher speed. One 

vehicle with its maximum speed vmax has a probability p to 

decrease its speed to vmax–1. That is, 










,otherwise,

,1),(if
,)yprobabilit(If

vv

vvvv
p

maxmax  

),1max(otherwise, maxvvv  . 

(Step 2) Deceleration. If the speed is greater than the distance 

gap d to the preceding vehicle, the vehicle will decelerate: 

v = min (v, d). 

(Step 3) Propagation. Let each vehicle move forward v cells 

and let time step increase one. Then, repeat the procedure: 

adjusting, deceleration and propagation.  

Figure 1 illustrates the single-lane flow-density relation of 

the NaSch and the 3-step models. Obviously, the critical 

density (kc) of the 3-step model is larger than that of the 

NaSch model. The critical density is defined as the density 

when the maximum flow occurs. kc of the NaSch model is 

0.17 and kc of the 3-step model is 0.20. The flow-density 

relation of the NaSch and 3-step models is very close. In 

single-lane traffic, the flow of the 3-step model is larger than 

that of the NaSch model, especially when density belongs to 

the interval [0.16, 0.75]. 

density
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Fig. 1. Flow-density relation of the NaSch and 3-step models for single-lane 

traffic. 

Also, we derive the analytical solution of the 3-step TCA 

by the mean field theory. Let vmax = 1, B1(t) denotes the 

probability that there is 1 cell between two cars and the speed 

of the following car is 0 at time t. By conservation of 

probability, we have 

        tBtPtqgtP 1100 1  ,                              (9) 

               tBtPtqgtBtPtqgtP 2201111 1  ,          (10) 

               tBtPtqgtBtPtqgtP nnnnn 11011   , 2n , (11) 

where Eq.(9) is the probability that the speed of the following 

car is 1 and there is no gap between the preceding car and the 

following car at time t+1. Equation (10) shows the 

probability that the speed of the following car is 1 and there is 

no gap between the preceding car and the following car at 

time t+1. The general form is given in Eq. (11). From the 

viewpoint of Bn(t), we can derive Eqs. (12) to (15).  

        tBtPtgtB 0000 1  ,                            (12) 

               tBtPtpgtBtPtgtB 1100011 1  ,         (13) 

               tBtPtpgtBtPtpgtB 2201112 1  ,          (14) 

               tBtPtpgtBtPtpgtB nnnnn 11011   , 3n .       (15) 

Then, the flow equation g0(t) can be obtained by the 

relationship between Pn(t) and Bn(t). 

          



1

000

n

nn tBtPptBtPtg ,                            (16) 

      



1

1

n

nn tBtPqtg .                                            (17) 

The summation of Pn(t) and Bn(t) is 1. That is, 

     1
0


n

nn tBtP .                                         (18) 

Next, convert the probability to density, we have 

      
k

tBtPn
n

nn

1
1

0




.                                          (19) 

After solving the simultaneous equations (11) to (19), 

the speed-flow equation of the 3-step TCA model is derived. 

 
k

kqk
gu

2

1411
1


 ,                                         (20) 

 
 

2

1411
, 1

kqk
kgukpkf


 .                    (21) 

In Eqs. (8) and (21), the analytical solution of the NaSch 

model is the same as that of the 3-step TCA. However, the 

simulation results of the two models are different. The reason 

is that the mean field theory is derived under steady-state 

conditions and the variables are independent to the moving 

procedure. That is, the derivation of the analytical solution is 

procedure-independent. If the relationship between steps 

must be considered, the conditional mean field theory should 

be employed to derive the analytical solution of TCA. 

However, the simultaneous equations of the conditional 

mean field theory can only be solved numerically, which 

cannot save computing time. In addition, the derivation of the 

mean field theory generates simultaneous equations and the 

number of the equations is equal to (vmax + 1)n, where n is the 

number of neighboring cells. Therefore, speeding up the 

simulation of traffic cellular automata by adopting the 

analytical solution is not a good alternative.  

IV. SPEED-UP BY AN EQUIVALENT STRATEGY  

The simulation results and the computational efficiency 

are compared in this section. The settings of simulation are 

given as follows. Typically, the length of a cell is suggested 

to be 7.5m. If time step is 1 second and vmax is 5, the 

corresponding speed will be 135 kilometers per hour (kph). 

In Taiwan, the upper speed limit of National Freeway No. 1 is 

100 kph and that of National Freeway No. 2 is 110 kph. 

Therefore, the length of a cell is considered to be 7 m, and the 

maximum speed vmax is 5 (i.e., 126 kph). With dawdling 

probability, the corresponding speed will be close to the real 

situation in Taiwan. The CA results are obtained from 

simulation on a chain of 1,000 sites, which is 7 km. A 

periodic boundary condition is assumed so that both the total 

number of vehicles and density are conserved at each 

simulated point. For each initial configuration of simulation, 

results are obtained by averaging over 10,000 time steps after 

the first 10,000 steps, so that the long-time limit is 

approached. This criterion was found to be sufficient to 

guarantee a steady-state being reached.  
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In this study, four combinations of parameters are 

simulated by 1-lane, 2-lane and 3-lane TCA models. Two 

maximal speeds (vmax), which are 4 and 5, and two dawdling 

probabilities (p), which are 0.2 and 0.9, are considered. The 

slow-down probability is p=0.25 and the lane-changing 

probability (pcl) is 0.5.  

Figures 2 to 5 illustrate the speed-density curves of 1-lane, 

2-lane and 3-lane models for four simulation scenarios, 

respectively. From the figures, the speed of 1-lane model is 

obviously smaller than that of 2-lane and 3-lane models in 

four cases. When p=0.2, the speed of 2-lane model is in good 

agreement with that of 3-lane model in both cases of vmax=4 

and 5. When p=0.9, the speed of 3-lane model is larger than 

that of 2-lane model slightly. The absolute error (AE) and 

absolute percentage error (APE) are employed to compare 

the difference between simulation scenarios. Equations (22) 

and (23) provide the definitions.  

emme uuAE  ,                                              (22) 

%100



m

em

me
u

uu
APE ,                                               (23) 

where um is the speed of multi-lane models, m=2 or 3. ue is the 

speed of 1-lane or 2-lane model, e=1 or 2. If e=1, m=2 or 3. If 

e=2, m=3. That is, AE12 represents the difference in speed 

between 1-lane and 2-lane models, whereas APE12 represents 

the percentage difference. Table II shows the same 

observation as Figs. 2 to 5.  
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Fig. 2 Speed-density curve of vmax =4 and p=0.2.  
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Fig. 3 Speed-density curve of vmax =4 and p=0.9. 
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Fig. 4 Speed-density curve of vmax =5 and p=0.2. 
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Fig. 5 Speed-density curve of vmax =5 and p=0.9. 

 

According to Table II, the speed of 1-lane model only has 

good agreement with that of 2-lane and 3-lane models in the 

case of vmax=4, p=0.2 with a density of 14.29 veh/km. 

Although AEm1 randomly fluctuates with density, APEm1 

increases with density, where m=2 or 3. The reason is that 

when density increases, speed decreases, and a little 

difference between the models will cause a large difference 

in percentage. 1-lane model is not a good approximation of 

2-lane and 3-lane models. It is evident from Table II that AE32 

is much smaller than AE21 and AE31. Also, APE32 is much 

smaller than APE21 and APE31. When vmax=5, the largest 

APE32 is 3.33% and AE32 is only 2.30 kph. When vmax=4, the 

largest APE32 is 5.24% and AE32 is only 3.52 kph. Therefore, 

2-lane model is an acceptable approximation of 3-lane model. 

Next, the computing time of 1-lane, 2-lane and 3-lane models 

is discussed.  

The computing time of 1-lane, 2-lane and 3-lane 

models for all scenarios is illustrated in Figs. 6 to 8. From the 

figures, the computing time increases with density because 

when density increases, the number of simulated cars 

increases. If the number of lanes is given, the computing time 

will almost increase linearly with density. In the case of the 

largest density, the computing time of 1-lane, 2-lane and 

3-lane models is about 50 seconds, 170 seconds and 250 

seconds, respectively. When the number of lanes increases 

from 1 to 3, the computing time increases from 1 to 5 times. 

Although the computing time of 1-lane model is much less 

than that of the other two models, 1-lane model is 
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unfortunately a poor approximation of 2-lane and 3-lane 

models. Therefore, approximating 3-lane model by 2-lane 

model is acceptable. Table III and IV provide the difference 

and the percentage difference in computing time between 

2-lane and 3-lane models. By using 2-lane model to 

approximate 3-lane model, 114 seconds can be saved in the 

best case (congested traffic), which is about 42.7% of the 

total computing time. Even in the worst case (dilute traffic), 

21.82% of speed-up is achieved. 

 

TABLE II 

ABSOLUTE ERROR AND ABSOLUTE PERCENTAGE ERROR FOR ALL SCENARIOS 

vmax = 4, p = 0.2 
density 

(veh/km) 
absolute difference 

(km/hr) 

APE (%) 

AE21 AE31 AE32 APE21 APE31 APE32 
14.29 0.02 0.20 0.21 0.02 0.21 0.23 

28.57 2.07 5.59 3.52 3.19 8.59 5.24 

42.86 4.87 5.99 1.12 11.96 14.70 2.45 

57.14 5.02 5.51 0.49 18.00 19.75 1.48 

71.43 4.50 4.78 0.28 22.58 23.98 1.14 

85.71 4.00 4.16 0.16 28.00 29.14 0.89 

100.00 3.61 3.72 0.12 35.98 37.13 0.84 

114.29 3.60 3.70 0.10 55.68 57.20 0.98 

128.57 4.09 4.10 0.02 128.88 129.46 0.26 

vmax = 4, p = 0.9 
density 

(veh/km) 
absolute difference 

(km/hr) 

APE (%) 

AE21 AE31 AE32 APE21 APE31 APE32 
14.29 6.35 8.95 2.60 35.33 49.76 10.6% 

28.57 3.37 4.30 0.93 40.58 51.77 7.96 

42.86 2.27 3.11 0.84 46.70 63.94 11.75 

57.14 1.85 2.47 0.62 59.08 78.85 12.43 

71.43 1.57 2.07 0.50 74.91 98.69 13.59 

85.71 1.44 1.75 0.31 101.01 122.43 10.66 

100.00 1.19 1.68 0.54 124.64 184.07 26.46 

114.29 1.16 1.45 0.29 207.43 260.28 17.19 

128.57 1.05 1.21 0.16 389.75 451.26 12.56 

vmax = 5, p = 0.2 
density 

(veh/km) 
absolute difference 

(km/hr) 

APE (%) 

AE21 AE31 AE32 APE21 APE31 APE32 
14.29 2.79 0.06 2.73 2.33 0.05 2.34 

28.57 3.40 5.70 2.30 5.17 8.67 3.33 

42.86 5.28 6.31 1.03 12.88 15.40 2.23 

57.14 5.44 5.83 0.39 19.54 20.92 1.16 

71.43 4.71 4.93 0.21 23.71 24.79 0.87 

85.71 4.00 4.23 0.23 27.98 29.59 1.26 

100.00 3.71 3.77 0.06 37.06 37.68 0.45 

114.29 3.65 3.66 0.02 56.31 56.57 0.17 

128.57 4.07 4.17 0.10 128.44 131.67 1.42 

vmax = 5, p = 0.9 
density 

(veh/km) 
absolute difference 

(km/hr) 

APE (%) 

AE21 AE31 AE32 APE21 APE31 APE32 
14.29 7.03 8.20 1.17 38.92 45.42 4.68 

28.57 3.62 4.77 1.15 43.81 57.73 9.68 

42.86 2.36 3.31 0.94 47.82 66.90 12.91 

57.14 2.07 2.81 0.75 65.43 89.10 14.31 

71.43 1.62 2.41 0.79 77.32 114.85 21.16 

85.71 1.68 2.29 0.61 119.65 162.98 19.73 

100.00 1.50 2.01 0.52 162.86 219.00 21.36 

114.29 1.43 1.69 0.26 257.76 305.12 13.24 

128.57 1.00 1.71 0.71 379.33 651.20 56.72 
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Fig. 6 Computing time of 1-lane model. 
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Fig. 7 Computing time of 2-lane model. 
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Fig. 8 Computing time of 3-lane model. 

 

 

 

TABLE III 

DIFFERENCE IN COMPUTING TIME BETWEEN 2-LANE AND 3-LANE MODELS  

density 

(veh/km) 

difference in computing time (seconds) 

vmax=4, p=0.2 vmax=4, p=0.9 vmax=5, p=0.2 vmax=5, p=0.9 

14.29 16 12 13 13 

28.57 29 24 24 26 

42.86 39 35 33 37 

57.14 51 46 47 47 

71.43 62 59 55 58 

85.71 76 68 63 67 

100.00 88 79 75 77 

114.29 99 88 83 89 

128.57 114 101 94 92 
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TABLE IV 

PERCENTAGE DIFFERENCE IN COMPUTING TIME BETWEEN 2-LANE AND 

3-LANE MODELS  

density 

(veh/km) 

percentage difference in computing time (%) 

vmax=4, p=0.2 vmax=4, p=0.9 vmax=5, p=0.2 vmax=5, p=0.9 

14.29 29.09 21.82 23.21 23.21 

28.57 34.94 29.27 28.92 31.33 

42.86 36.11 32.41 30.28 33.64 

57.14 37.50 34.07 34.56 34.56 

71.43 38.75 36.42 34.59 35.80 

85.71 40.86 36.56 34.81 36.22 

100.00 41.12 37.44 36.23 36.67 

114.29 41.60 37.13 36.24 38.03 

128.57 42.70 37.97 36.86 35.25 

V. CONCLUSIONS AND PERSPECTIVES 

Traffic forecasting is an important part of management 

modernization of transportation systems. The accurate 

forecasting results for traffic parameters can help traffic 

control center in transportation systems to reduce traffic 

congestion and to improve the mobility of transportation. In 

addition, rapid and accurate evaluation of control strategies is 

another important part of relieving traffic congestion. 

Generally, macroscopic traffic flow models are advantage in 

rapid computing. However, modeling control strategies in 

macroscopic models is difficult. On the contrary, modeling 

control strategies in microscopic traffic flow models is much 

easier, but simulation of microscopic models is time 

consuming. In this study, two strategies are proposed to 

speed up TCA simulation. The speed-up strategy of the 

analytical solution fails to be achieved because the mean field 

theory is procedure-independent. If the conditional mean 

field theory is used to solve the TCA model, explicit 

equations cannot be derived and a numerical simulation is 

still needed. Therefore, speeding up TCA simulation by 

adopting the analytical solution is not possible. The second 

strategy aims to speed up simulation by adopting an 

equivalent concept. According to our findings, 1-lane model 

takes the least amount of computing time, but it is a poor 

approximation of 2-lane and 3-lane models. On the other 

hand, 2-lane model is a good approximation of 3-lane model 

and 42.7% of the computing time is saved in the best case. 

Thus, we can speed up TCA simulation by employing the 

equivalent strategy.  

In the real world, different driving behaviors can be 

observed on the road. If we simulate different driving 

behaviors, the logical judgement of TCA model will be more 

complicated and the computing time will increase. In this 

study, the behavior of simulated cars is controlled by the 

same parameters. That is, only one driving behavior is 

considered. In dilute traffic condition, drivers might behave 

as they wish. Yet, in congested traffic condition, drivers are 

restricted to one lane, which means that all drivers behave the 

same way. Consequently, the equivalent concept might be 

employed to deal with the simulation of multi-behavior 

traffic flow. The simulation and comparison are left for 

further studies.  
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