Abstract—In this paper, we study the properties of tensor operators on non-commutative residuated lattices. We give some equivalent conditions of (strict) strong tensor non-commutative lattices and investigate the relation between state operators on \mathcal{L} and state operators on \mathcal{L}^T. Moreover, we give the representation theory for (strict) strong tensor non-commutative residuated lattices and obtain the one to one correspondence between tense filters in \mathcal{L} and tense congruences on \mathcal{L}.

Index Terms—tensor operator, non-commutative residuated lattice, frame, filter, congruence.

I. INTRODUCTION

Residuated lattices are an important algebraic structure in mathematics. The works on residuated lattices were initiated by Krull, Dilworth and Ward etc. ([8], [13], [16], [17]). Also, these structures are closely related to logics. BL-algebra are algebras of basic fuzzy logics. MV-algebras are algebras of Łukasiewicz infinite valued logics and Heyting algebras are algebras of intuitionistic logics. Residuated lattices are a common generalization of these algebras.

Classical tense logic is the propositional logic with two tense operators G which reveals the future and H which expresses the past. Burges [2] studied tensor operators on Boolean algebra. Later, many authors have investigated tensor operators on other algebras. Diaconescu and Georgescu [7] studied the tensor operators for MV-algebra and Łukasiewicz-Moisil algebras. Chajda, Kolářik and Paseka ([5], [6]) studied tense operators for effect algebras for investigating quantum structures dynamically. Recently, Bakhshi [1] studied the algebraic properties of tense operators for non-commutative residuated lattices. The Dedekind-MacNeill completion of non-commutative lattices with involutive is investigated in [1].

In this paper, we will further study the tensor operators on non-commutative residuated lattices. We give some characteristics of tensor non-commutative residuated lattices which extend some results on effect algebras in [6]. The condition $\neg \neg x = x$ is important in studying tense operators for effect algebras. However, this condition is not valid in non-commutative residuated lattices. We have to overcome this difficulty for studying tense operators on non-commutative residuated lattices. In this paper, we get the one to one correspondence between tense filters (not normal tense filters) of \mathcal{L} and tense congruences on \mathcal{L}. The paper is constructed as follows: In Section 2, we give some basic properties on tensor non-commutative residuated lattices. In Section 3, we give some equivalent conditions for strong tensor non-commutative residuated lattices and investigate the relation between state operators on \mathcal{L} and state operators on \mathcal{L}^T. Finally, we give the representation theory of (strict) strong tensor non-commutative residuated lattices in Section 4. In Section 5, we study the relation between tense filters in \mathcal{L} and tense congruences on \mathcal{L}.

II. PRELIMINARIES

In this section, we give some basic notions and properties on non-commutative lattices which is useful in the paper.

A structure $(\mathcal{L}, \wedge, \vee, \rightarrow, \neg, 0, 1)$ is called a non-commutative residuated lattice, if the following conditions are satisfied:

L1) $(\mathcal{L}, \wedge, \rightarrow, \neg, 0, 1)$ is a bounded lattice;

L2) $(\mathcal{L}, \rightarrow, \neg)$ is an involutive residuated lattice;

L3) $x \vee x = 0$.

For $x \in \mathcal{L}$, we denote $x \rightarrow 0$ by $\neg x$ and denote $x \rightarrow 0$ by x.

A non-commutative residuated lattice \mathcal{L} is called to be involutive, if $\neg x = \neg x = x$, for all $x \in \mathcal{L}$.

II.1 Proposition. ([11]) Let \mathcal{L} be a non-commutative residuated lattice. For all $x, y, z \in \mathcal{L}$, then

1) $x \leq y$ iff $x \rightarrow y = 1$ iff $x \rightarrow y = 1$.

2) $x \rightarrow y \leq (y \rightarrow z) \sim (x \rightarrow z); x \rightarrow y \leq (y \rightarrow z) \rightarrow (x \rightarrow z)$.

3) $x \leq y$ implies $y \rightarrow z \leq x \rightarrow z$ and $y \rightarrow z \leq x \rightarrow z$.

Particularly, $x \leq y$ implies $\neg y \leq \neg x$ and $\neg y \leq \sim x$.

II.2 Definition. ([11]) Let $(\mathcal{L}, \wedge, \vee, \rightarrow, \sim, 0, 1)$ be a non-commutative residuated lattice and G, H be maps of \mathcal{L} into itself. We call (\mathcal{L}, G, H) a tensor non-commutative residuated lattice, if the following conditions are satisfied:

TRL1) $G(1) = 1, H(1) = 1$.

TRL2) $G(x \rightarrow y) \leq G(x) \rightarrow G(y), G(x \sim y) \leq G(x) \rightarrow G(y), H(x \rightarrow y) \leq H(x) \rightarrow H(y), H(x \sim y) \leq H(x) \rightarrow H(y)$.

TRL3) $x \leq GP_\sim(x) \wedge GP_\sim(x), x \leq HF_\sim(x) \wedge HF_\sim(x)$, where

$P_\sim(x) = \neg H(\neg x), P_\sim(x) = H(\neg x),$ $F_\sim(x) = G(\sim x), F_\sim(x) = G(\sim x)$.

II.3 Definition. Let (\mathcal{L}, G, H) be a tensor non-commutative residuated lattice. We call (\mathcal{L}, G, H) to be a strong tensor non-commutative residuated lattice, if $G(0) = H(0) = 0$.

In fact, G and H are strong tense operators on \mathcal{L} in Example 1 in [1] (or see [15]).
II.4 Proposition. ([1]) Let \((\mathcal{L}, \cup, \cap, \to, \neg, 0, 1)\) be a non-commutative residuated lattice. For all \(x, y \in \mathcal{L}\), the following conditions are satisfied.

1) \(x \leq y\) implies \(G(x) \leq G(y)\), \(H(x) \leq H(y)\), \(F_{-}(x) \leq F_{-}(y)\), \(F_{-}(x) \leq F_{-}(y)\), \(G_{-}(x) \leq G_{-}(y)\), \(G_{-}(x) \leq G_{-}(y)\).

2) \(G(x) \ast G(y) \leq G(x \ast y)\), \(H(x) \ast H(y) \leq H(x \ast y)\).

II.5 Proposition. Let \((\mathcal{L}, \cup, \cap, \to, \neg, 0, 1)\) be a non-commutative residuated lattice and \(G, H\) be maps of \(\mathcal{L}\) into itself. Then \((\mathcal{L}, G, H)\) is a strong tensor non-commutative residuated lattice if and only if

\(\text{STRL1)}\) \(G(0) = 0\), \(H(0) = 0\), \(G(1) = 1\), \(H(1) = 1\).

\(\text{STRL2)}\) \(x \leq y\) implies \(G(x) \leq G(y)\) and \(H(x) \leq H(y)\);

\(\text{STRL3)}\) \(x \leq G_{P}(x) \land G_{P}(x), x \leq G_{F}(x) \land G_{F}(x)\), where

\(P_{-}(x) = \neg H(\neg x)\), \(P_{+}(x) = \neg H(\neg x)\),

\(F_{-}(x) = \neg G(\neg x)\), \(F_{+}(x) = \neg G(\neg x)\).

Proof: \(\iff\) By Definition II.3 and Proposition II.4, we get the desired result.

\(-\iff\): We only need to prove TRL2). For all \(x, y \in \mathcal{L}\), we have \((x \ast y) \leq x \iff y \leq x\) by Proposition 2.1 4). Hence,

\[G(x) \ast G(y) \leq G((x \ast y) \ast y) \leq G(y)\]

This implies \((x \ast y) \leq G(x) \to G(y)\).

Similarly, we can get \(G(x) \ast H(y) \leq G(x \ast H(y) \leq H(x) \leq H(y)\; H(x) \ast H(y) \leq H(x).

\[\text{II.6 Lemma. Let } (\mathcal{L}, \cup, \cap, \to, \neg, 0, 1) \text{ be a strong tensor non-commutative residuated lattice. For all } x, y \in \mathcal{L}, \text{ the following conditions are satisfied.}

1) \(G(\neg x) \leq \neg G(x)\), \(G(\neg x) \leq \neg G(x)\), \(H(\neg x) \leq\)

\(H(x), \; H(\neg x) \leq H(x)\).

2) \(P_{+}(\neg x) \geq P_{-}(x), \; P_{+}(\neg x) \geq P_{-}(x), \; F_{-}(\neg x) \geq F_{-}(\neg x) \geq F_{+}(\neg x)\).

Proof: 1) By \((x \to 0) \ast x \leq 0\), we have

\[G(x) \ast G(0) \leq G((x \to 0) \ast x) \leq G(0)\].

Hence, \(G(\neg x) \leq \neg G(\neg x)\).

Similarly, \(G(\neg x) \leq \neg G(x)\), \(H(\neg x) \leq \neg H(x), \; H(\neg x) \leq H(x)\).

3) Using Proposition II.3, we get \(P_{-}(\neg x) = \neg H(\neg x) \geq \neg H(x) \leq \neg P_{+}(x)\).

Similarly, we have \(P_{+}(\neg x) \geq P_{-}(x), \; F_{-}(\neg x) \geq F_{-}(\neg x) \geq F_{+}(\neg x)\)

\[\text{II.7 Proposition. Let } (\mathcal{L}, \cup, \cap, \to, \neg, 0, 1) \text{ be a non-commutative residuated lattice with condition (C). For all }

x, y \in \mathcal{L}, \text{ we have}

\[P_{-}(G(x) \leq x, \; P_{+}(G(x) \leq x, \; F_{-}(H(x) \leq x, \; F_{+}(H(x) \leq x)\].

Proof: By D4) of Definition II.2, we have

\(\neg x \leq H \land F_{-}(\neg x) \leq H(\neg (G(\neg x) \leq H(\neg G(x) \leq \neg P_{+}(G(x)\].

This proves \(P_{-}(G(x) \leq x\). Similarly, we have \(P_{-}(G(x) \leq x, \; F_{+}(H(x) \leq x, \; F_{+}(H(x) \leq x)\).
Let 0 and 1 be the elements in \mathcal{L}^T such that $0(x) = 0$ and $1(x) = 1$, for all $x \in T$.

Similarly to Theorem 3 in [1], we also have the following theorem.

III.3 Theorem. Let (\mathcal{L}, G, H) be a strong tensor non-commutative residuated lattice and (T, R) be a frame. For all $p \in \mathcal{L}^T$, we can define $\widehat{G}, \widehat{H} : \mathcal{L}^T \rightarrow \mathcal{L}^T$ as
\[
\widehat{G}(p)(u) = \bigvee \{p(v) \cup uRv\},
\]
\[
\widehat{H}(p)(u) = \bigvee \{p(v) \cup vRu\}.
\]
Then $(\mathcal{L}^T, \widehat{G}, \widehat{H})$ is a strong tensor non-commutative residuated lattice.

Proof: By Theorem 3 in [1], we only need to check that
\[
\widehat{G}(0) = 0, \quad H(0) = 0, \quad G(1) = 1 \quad \text{and} \quad H(1) = 1.
\]

III.4 Definition. (\mathcal{L}, G, H) is called a strong tensor non-commutative residuated lattice, if for all $x, y \in \mathcal{L}$,
\[
G(x \rightarrow y) = G(x) \rightarrow G(y),
\]
\[
G(x \rightsquigarrow y) = G(x) \rightarrow G(y),
\]
\[
H(x \rightarrow y) = H(x) \rightarrow H(y),
\]
\[
H(x \rightsquigarrow y) = H(x) \rightarrow H(y).
\]

III.5 Lemma. Let (\mathcal{L}, G, H) be a strong tensor non-commutative residuated lattice. For all $x \in \mathcal{L}$, we have $G(\sim x) = -G(x)$, $G(\sim x) = \sim G(x)$, $H(\sim x) = -H(x)$, $H(\sim x) = \sim H(x)$.

Proof: By Definition III.4, we have $G(x \rightarrow 0) = \mathcal{G}(0) = 0$ and $G(0) = 0$. $G(x \rightarrow 0) = G(x) \rightarrow G(0) = G(x) \rightarrow 0$. So $G(\sim x) = -G(x)$. Similarly, $G(\sim x) = -G(x)$, $H(\sim x) = -H(x)$, $H(\sim x) = \sim H(x)$.

III.6 Theorem. If \mathcal{L} is a non-commutative residuated lattice with condition (C), $G, H : \mathcal{L} \rightarrow \mathcal{L}$ are mappings. Then the following conditions are equivalent.

1) (\mathcal{L}, G, H) is a strong tensor non-commutative residuated lattice.

2) G and H satisfy the following properties:
 i) $G(0) = H(0) = 0$.
 ii) G is both a left adjoint and a right adjoint to H.
 iii) $G(x \rightarrow y) = G(x) \rightarrow G(y)$, $G(x \rightsquigarrow y) = G(x) \rightsquigarrow G(y)$.
 iv) $H(x \rightarrow y) = H(x) \rightarrow H(y)$, $H(x \rightsquigarrow y) = H(x) \rightsquigarrow H(y)$.

Proof: 1) \implies 2): i) By Definition III.3, we obviously have $G(0) = H(0) = 0$.

ii) For all $x, y \in \mathcal{L}$, if $x \leq G(y)$, By Proposition II.7 we get $P_+(x) \leq y$, i.e. $\sim H(\sim x) \leq y \leq \sim \sim y$. This implies $\sim y \leq H(\sim x) \leq \sim H(x)$. Hence $H(x) \leq y$. Conversely, if $H(x) \leq y$, we have $\sim y \leq H(\sim x) \leq \sim H(x) \leq \sim H(x) \leq \sim H(x) = \sim P_+(x)$.

Then $P_+(x) \leq y$. By Theorem III.1 again, $x \leq G(y)$ holds. Hence, G is a right adjoint to H. Similarly, we can prove that H is also a right adjoint to G.

iii and iv) are obvious.

2) \implies 1): Since G is a right adjoint, G preserves infima and $G(1) = 1$. For all $x, y \in \mathcal{L}$, we have $G(x) \leq G(y) \rightarrow x \leq y \rightarrow x \leq y$. This implies $G(x) \leq G(x) \rightarrow \leq G(y) \leq G(y)$.

Similarly, H preserves order and $H(x) \leq H(x) \rightarrow \leq H(y) \leq H(y)$. Then STRL2 holds.

Now, we prove STRL3. For all $x \in \mathcal{L}$, we have
\[
H(x) \leq H(\sim x) = H(\sim x) \leq H(\sim x) = P_+(x).
\]
By $H(x) \leq H(x)$, then $x \leq H(\sim x) \leq GP_-(x)$ and $x \leq H(\sim x) \leq HF_-(x)$. Similarly, $x \leq GP_-(x)$, $x \leq H(\sim x) \leq H(\sim x)$.

In the following, we discuss the relation between state operators on commutative residuated lattice \mathcal{L} and state operators on \mathcal{L}^T.

III.7 Definition. $(\mathcal{L}, \bigcap, \bigcup, \ast, \rightarrow, 0, 1)$ be a residuated lattice and $\tau : \mathcal{L} \rightarrow \mathcal{L}$ a map. If the following conditions are satisfied
1) $\tau(0) = 0$, $\tau(1) = 1$.
2) $x \leq y$ implies $\tau(x) \leq \tau(y)$.

For $x, y \in \mathcal{L}$, we have $x \leq y$ \iff $x \rightarrow y = 1$.

III.8 Proposition. $(\mathcal{L}, \bigcap, \bigcup, \ast, \rightarrow, 0, 1)$ be a residuated lattice and $\tau : \mathcal{L} \rightarrow \mathcal{L}$ a state operator on \mathcal{L}, the following propositions are satisfied.

1) $\tau(1) = 1$.
2) $x \leq y$ implies $\tau(x) \leq \tau(y)$.

For $x, y \in \mathcal{L}$, we have $x \leq y$ \iff $x \rightarrow y = 1$.

III.9 Theorem. If $\tau : \mathcal{L} \rightarrow \mathcal{L}$ is a state operator on \mathcal{L}, the mapping $\check{\tau} : \mathcal{L}^T \rightarrow \mathcal{L}^T$ defined by $\check{\tau}(f) = \tau f$ is also a state operator on \mathcal{L}^T.

Proof: 1) Obviously, $\check{\tau}(0) = 0$.

2) For $f, g \in \mathcal{L}^T$, if $f \rightarrow g = 1$, we have $f \leq g$. For every $x \in \mathcal{L}$, for $\tau f(\ast) = f(x) \leq \tau(\ast)(x)$ by Proposition III.8. It concludes that $\check{\tau}(f) \leq \check{\tau}(g)$. That is, $\check{\tau}(f) \leq \check{\tau}(g) = 1$.

3) $c \check{\tau}(f \rightarrow g)(x) =$ $\tau(f \rightarrow g)(x)$
\[
\tau(f \rightarrow g)(x) = \tau(f \rightarrow g)(x) \wedge g(x)
\]$
\tau(f \rightarrow g)(x) = \tau(f \rightarrow g)(x) \wedge g(x)$
\[
\tau(f \rightarrow g)(x) = (\check{\tau} \rightarrow(\check{\tau} \vee g))(x).
\]
Therefore, $\check{\tau}(f \rightarrow g) = \tau(f) \rightarrow \tau(g)$. Similarly, we have
\[
\tau(f) \ast g = \tau(f) \ast g,
\]
\[
\tau(\tau(f) \ast \tau(g)) = \tau(f) \ast \tau(g),
\]
\[
\tau(\tau(f) \rightarrow \tau(g)) = \tau(f) \rightarrow \tau(g),
\]
\[
\tau(\tau(f) \vee \tau(g)) = \tau(f) \vee \tau(g),
\]
\[
\tau(\tau(f) \vee \tau(g)) = \tau(f) \vee \tau(g).
\]

Hence, $\check{\tau}$ is a state operator on \mathcal{L}^T.
IV. REPRESENTATIONS OF STRONG TENSOR NON-COMMUTATIVE RESIDUATED LATTICES

In this section, we shall give representation theorems for strong tensor non-commutative residuated lattices and strict tensor non-commutative residuated lattices. Some proofs are similar to those in [6].

Let P and P' be two bounded posets. A map $f : P \rightarrow P'$ is called to be morphism, if f preserves order, top element and bottom element. A map $f : P \rightarrow P'$ is called to be order reflecting, if f is a morphism and $f(x) \leq f(y) \iff x \leq y, \forall x, y \in P$.

IV.1 Definition. Let \mathcal{L} and \mathcal{L}' be two non-commutative residuated lattices. A map $f : \mathcal{L} \rightarrow \mathcal{L}'$ is called a semi-morphism from \mathcal{L} into \mathcal{L}', if f satisfies the following:

1) f preserves order.
2) $f(x) \ast f(y) \leq f(x \ast y), \forall x, y \in \mathcal{L}$.
3) $f(0) = 0, f(1) = 1$.

A semi-morphism $f : \mathcal{L} \rightarrow \mathcal{L}'$ is called to be strict, if for all $x, y \in \mathcal{L}$,

$$f(x \rightarrow y) = f(x) \rightarrow f(y), f(x \leftarrow y) = f(x) \leftarrow f(y).$$

If f is a strict semi-morphism, for all $x \in \mathcal{L}$, we have

$$f(\neg x) = \neg f(x), f(x) \iff f(x).$$

Let S be a set of semi-morphisms from \mathcal{L} into \mathcal{L}'. A subset $T \subseteq S$ is full, if for $x, y \in \mathcal{L}$,

$$x \leq y \iff f(x) \leq f(y), \forall x, y \in T.$$

IV.2 Theorem. Let (\mathcal{L}, G, H) be a dynamic non-commutative residuated lattice with a full set S of semi-morphisms into a non-commutative residuated lattice \mathcal{C}. Then

1) There exists a semi-morphisms set T satisfies the following conditions:
 i) $S \subseteq T$;
 ii) the map $i^*_T : (\mathcal{L}, C, H) \rightarrow (\mathcal{L}^T, \widehat{G}, \widehat{H})$ which sends x to $i^*_T(x)$ is order reflecting, where $i^*_T(x)(t) = t(x)$, for all $x \in \mathcal{T}, t \in T$.

2) There exists a frame (T, R) satisfies:
 for all $s, t \in T$, $(s, t) \in R$ iff $\forall x \in \mathcal{L}, s(G(x)) \leq t(x)$.
 Moreover,
 $$s(G(x)) = \bigwedge \{t(x) \mid sRt\}.$$
V. Congruences on Commutative Residuated Lattices

There is a bijection correspondence between normal filters of \(\mathcal{L} \) and congruences on \(\mathcal{L} \). In [1], the author proves that there is a bijection correspondence between tense normal filters of \(\mathcal{L} \) and tense congruences on \(\mathcal{L} \). In this section, we will prove that there is a bijection correspondence between filters of \(\mathcal{L} \) and congruences on \(\mathcal{L} \) when \(G(x * y) = G(x) * G(y), H(x * y) = H(x) * H(y) \), for \(x, y \in \mathcal{L} \).

Recall that a filter \(F \) of \((\mathcal{L}, G, H) \) is called to be a tense filter, if \(G(x), H(x) \in F \), for all \(x \in F \).

A congruence \(\theta \) on \((\mathcal{L}, G, H) \) is called to be a tense congruence, if \(x \theta y \), then \(G(x) \theta G(y) \) and \(H(x) \theta H(y) \), for \(x, y \in \mathcal{L} \).

In paper [14], the author gives the one to one correspondence between the ideals in quasi-Mv algebras and ideal congruences on quasi-Mv algebras. Inspired this fact, we will define a relation on \(\mathcal{L} \), which can be used to construct congruences on \(\mathcal{L} \). Further, we can give the one to one correspondence between tense filters in \(\mathcal{L} \) and tense congruences on \(\mathcal{L} \) under certain conditions.

Let \(F \) be a subset of \(\mathcal{L} \). The relation \(\mathcal{C}(F) \) on \(\mathcal{L} \) is defined as following: for \(x, y \in \mathcal{L} \),

\[
x \mathcal{C}(F) y \iff G(x) \wedge G(y) \wedge H(x) \wedge H(y) \in F \cdot (R)
\]

V.1 Proposition. Let \((\mathcal{L}, G, H) \) be a tense commutative residuated lattice such that \(G(x * y) = G(x) * G(y), H(x * y) = H(x) * H(y) \) and \(F \) be a tense filter of \(\mathcal{L} \). The relation \(\mathcal{C}(F) \) is a tense congruence on \(\mathcal{L} \).

Proof: 1) Since \(F \) is a filter, we have \(1 \in F \). For all \(x \in \mathcal{L} \),

\[
G(x) \rightarrow G(x) = 1 \in F
\]

holds. This concludes that \(\mathcal{C}(F) \) is reflexive.

2) The symmetry is obvious.

3) Suppose \(x \mathcal{C}(F) y \) and \(y \mathcal{C}(F) z \). We have

\[
G(x \rightarrow y), G(y \rightarrow x), G(y \rightarrow z), G(z \rightarrow y) \in F.
\]

Hence,

\[
cG(x \rightarrow z) \leq G((x \rightarrow y) \rightarrow (z \rightarrow y)) \\
\leq G(x \rightarrow y) \rightarrow G(z \rightarrow y) \in F.
\]

Similarly, \(G(z \rightarrow x) \in F \). So \(\mathcal{C}(F) \) is transitive.

4) Suppose \(x \mathcal{C}(F) y \) and \(a \mathcal{C}(F) b \). We have

\[
x \ast (x \rightarrow y) \leq y, \quad a \ast (a \rightarrow b) \leq b.
\]

Hence,

\[
x \ast a \ast (x \rightarrow y) \ast (a \rightarrow b) \leq y \ast b.
\]

It concludes that

\[
(x \rightarrow y) \ast (a \rightarrow b) \leq x \ast a \rightarrow y \ast b.
\]

Then

\[
G(x \rightarrow y) \ast G(a \rightarrow b) = G((x \rightarrow y) \ast (a \rightarrow b)) \leq G((x \ast a) \rightarrow (y \ast b)).
\]

By \(x \rightarrow y \leq (x \rightarrow z) \rightarrow (y \rightarrow z) \), we get

\[
G(x \rightarrow y) \leq G(x \rightarrow z) \rightarrow (y \rightarrow z).
\]

Then \((x \rightarrow z) \mathcal{C}(F) (y \rightarrow z) \).

5) Suppose \(x \mathcal{C}(F) y \). Then \(G(x \rightarrow y), G(y \rightarrow x) \in F \).

By \(G(x \rightarrow y) \leq G(x) \rightarrow G(y) \), we have \(G(G(x \rightarrow y)) \leq G(G(x) \rightarrow G(y)) \). Since \(F \) is a tensor filter, we concludes \(G(G(x \rightarrow y)) \in F \) and so \(G(G(x) \rightarrow G(y)) \in F \). Similarly, \(G(G(y) \rightarrow G(x)) \in F \). This proves that \(G(x) \mathcal{C}(F) G(y) \).

By above, we get that \(\mathcal{C}(F) \) is a tense congruence on \(\mathcal{L} \).

V.2 Proposition. Let \((\mathcal{L}, G, H) \) be a tense commutative residuated lattice and \(F \) be a subset of \(\mathcal{L} \). If \(\mathcal{C}(F) \) be a tensor congruence on \(\mathcal{L} \), then \(\mathcal{C}(F)(1) \) is a filter of \(\mathcal{L} \).

Proof: For \(x, y \in \mathcal{C}(F)(1) \), we have

\[
G(1) = G(x \rightarrow 1), G(x) = G(1 \rightarrow x) \in F.
\]

Hence,

\[
G((x \rightarrow y) \rightarrow 1) = G((x \rightarrow y) \rightarrow 1) = G(1) \in F.
\]

This implies that \(x \ast y \in \mathcal{C}(F)(1) \).

If \(x \in \mathcal{C}(F)(1) \) and \(x \leq y \), we get \((1 \rightarrow x) \leq (1 \rightarrow y) \) and so \(G(1 \rightarrow x) \leq G(1 \rightarrow y) \in F \). Since \(G(x \rightarrow 1) = G(y \rightarrow 1) = 1 \in F \), we get \(y \in \mathcal{C}(F)(1) \).

V.3 Proposition. Let \(\theta \) be a tense congruence on \((\mathcal{L}, G, H) \), then \(\theta(1) \) is a tensor filter.

Proof: Let \(x, y \in \theta(1) \). We have \(G(x), G(y) \in \theta(1) \).

By \(x \theta y, y \theta 1 \), we concludes that \(x \ast y \theta 1 \), i.e. \(x \ast y \in \theta(1) \).

If \(x \leq y \) and \(x \theta 1 \), then \(x \rightarrow y \theta 1 \rightarrow y \), i.e. \(1 \theta y \). Hence, \(\theta(1) \) is a tensor filter.

V.4 Theorem. Let \((\mathcal{L}, G, H) \) be a tense commutative residuated lattice. There is a bijection between the tense filters of \(\mathcal{L} \) and tense congruences on \(\mathcal{L} \).

Let \(A \) be a subset of \(\mathcal{L} \). Denote by \(\text{Fil}(A) \) the filter generated by \(A \). Ciung [3] proved that

\[
\text{Fil}(A) = \{ x \in \mathcal{L} \mid x \geq a_1 \ast \cdots \ast a_n, n \in N, a_1, \ldots, a_n \in A \}.
\]

If \(F \) is a filter of \(\mathcal{L} \) and \(a \in \mathcal{L} \), then

\[
\text{Fil}(F, a) = \{ x \in \mathcal{L} \mid x \geq (f_1 \ast a_n) \ast (f_2 \ast a_n) \ast \cdots \ast (f_m \ast a_n), m \in N, a_1, a_2, \ldots, a_m \in N^+ \}.
\]

Similar to Proposition 5.1 of [12], we have the following proposition.

V.5 Proposition. Let \(\mathcal{L} \) be a tense residuated lattice and \(a \in \mathcal{L} \) such that \(G(a) = H(a) = a \). Then \(\text{Fil}(F, a) \) is a tense filter of \(\mathcal{L} \).

Proof: For \(x \in \text{Fil}(F, a) \), there exist \(y_1, y_2, \ldots, y_t \in F \), \(m_1, m_2, \ldots, m_t \in N^+ \) such that \(x \geq y_1 \ast a^{m_1} \ast y_2 \ast a^{m_2} \ast \cdots \ast y_t \ast a^{m_t} \). Thus

\[
cG(x) \geq G(y_1) \ast a^{m_1} \ast y_2 \ast a^{m_2} \ast \cdots \ast y_t \ast a^{m_t} \ast G(a) \ast G(a) \ast \cdots \ast G(a) \ast G(a) \ast G(a).
\]

This proves that \(G(x) \in \text{Fil}(F, a) \).

Acknowledgements The author is very grateful to the anonymous referees for their valuable suggestions which improved the paper.
References

(Advance online publication: 10 February 2018)