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Abstract—Computational modeling enhances our under-
standing of seemingly incomprehensible biological systems.
Certain dynamical models may be unwieldy to simulate repet-
itively, especially if the models contain uncertainty. This is
evident in both epidemiology and systems biology, where
inherent biological variability and a spectrum of plausible
model hypotheses exist. Surrogate modeling using sparse grid
interpolation can alleviate the burden associated with increasing
dimension of the parameter space. By leveraging multivariate
tensor products across a predefined set of points, sparse grid
interpolants are able to provide a promising surrogate model
to answer pressing domain-related questions. Specifically, we
explore Itô stochastic differential equation-based models, with
examples of a susceptible-infectious-vaccinated-removed (SIVR)
epidemiological model, a breast cancer tumor population model,
and a biochemical network model of the JAK-STAT signal
cascade presented. Surrogate modeling is performed to satisfy
model-based objectives. Overall, sparse grid interpolation is
an effective computational modeling tool, enabling researchers
in the epidemiology and systems biology communities to in-
terrogate models of interest for key insight into biological
phenomena.

Index Terms—interpolation, epidemiology, parameter estima-
tion, sparse grid, Itô stochastic differential equation, surrogate
modeling, systems biology

I. INTRODUCTION

B IOLOGICAL phenomena are inherently complex. This
complexity can be simplified for human understanding

with mathematical models. Mathematical models condense
key biological assumptions and knowledge into a unified rep-
resentation [1]. Two biological domains that have benefited
from mathematical modeling are epidemiology and systems
biology. Epidemiology aims to characterize the dynamics of
disease spread throughout a population [2]. Systems biology
is concerned with the biological functions and mechanisms
underpinning cellular networks [3]. Examples in both do-
mains are commonly represented as mechanistic and semi-
mechanistic mathematical models using ordinary differential
equations (ODEs), which often have to be solved numeri-
cally using discretized approximations of the true solution.
However, randomness and heterogeneity can also influence
biological systems, calling for the use of stochastic processes
[4], [5].

Consider Itô stochastic differential equations (SDEs):

dX(t) = f(X, t,θ)dt+g(X, t,θ)dB(t). X(0) = X0. (1)

where X ∈ RN is a continuous time stochastic process,
B ∈ RM is a Brownian motion process, t ∈ [0, T ] is
time, θ ∈ Θ ⊆ RP is a vector of model parameters,
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f(·) : RN × [0, T ] × Θ → RN is the drift term (de-
terministic component), X0 are the initial conditions, and
g(·) : RN × [0, T ] × Θ → RN×M is the diffusion term
(stochastic component). Examples of SDE-based models
in epidemiology and systems biology include the human
nervous system [6]–[8], cancer tumors [9], predator-prey
systems [10], [11], and a glucose regulatory system for
diabetes patients [12].

Complex system dynamics can be difficult to simulate
when a large number of model parameters have to be
considered [13]–[15]. Furthermore, local searches of these
parameters may be insufficient to characterize the wide
range of possible behaviors. Sparse grids allow for global,
computationally efficient exploration of the parameter space
Θ using tensor-product quadrature [16]–[18]. These ap-
proximations of the underlying model mitigate the curse
of dimensionality associated with the increasing dimension
of Θ by selecting the grid points, or support nodes, in a
hierarchical fashion [17]–[19]. This is done so that nodes
from a previous level of refinement can be re-used in
higher levels of refinement. Once the original model has
been evaluated at these support nodes and the interpolant
has been constructed, the resulting surrogate model can
be used in model-based control and optimization without
having to directly integrate the underlying model, which
is often computationally prohibitive. The concept of sparse
grid interpolation, and surrogate modeling in general, is not
unlike that of compressive sensing, where a compressible
signal is recovered from a limited number of measurements
[20]. Fig. 1 demonstrates the application of sparse grid
interpolation to a simple 3-dimensional exponential function.
Sparse grids have been applied to other stochastic models,
such as stochastic partial differential equations with random
inputs [21]–[26], backwards stochastic differential equations
with random inputs [27], and differential algebraic equations
with random parameters [28].

We demonstrate the application of sparse grid interpolation
to approximating the dynamics of Itô SDE-based models
in different biology contexts. In Section II, we discuss
the concept of sparse grids, and the necessary numerical
techniques for effective interpolation. Then, in Section III,
we present examples of sparse grid interpolation through
targeted computational experiments that approach domain-
related problems. More specifically, we examine the role
that noise plays in perturbing normal dynamics, or whether
there is any discernible influence of noise at all. Finally, in
Section IV, we summarize the significance of our work and
propose future avenues of research.
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Fig. 1. Exponential function evaluated on a grid [−2, 2] × [−2, 2]. Both the original function (left) and the sparse grid interpolant (right) are shown.
The interpolant was produced with a relative error of 0.021%, absolute error of 0.00039, and 129 support nodes.

II. METHODOLOGY

A. Sparse Grid Interpolation

In sparse grid interpolation, the support nodes are selected
in a predefined manner; a nested, hierarchical sampling
scheme [17]–[19] recycles nodes from lower levels of reso-
lution to use in higher levels.

A mathematical formulation of sparse grids now follows
from [16]–[18], [29]–[31]. Consider a function f : [0, 1]d →
R that is to be interpolated on a finite number of support
nodes. Dimensions that are not of unit length can be rescaled.
Here, f represents the sample average and standard deviation
of multiple SDE trajectories sampled at discrete time points.
For a given f , a univariate interpolation function can be
constructed:

U i(f) =

mi∑
j=1

aij · f(xij), (2)

where i ∈ N, aij ∈ C([0, 1]), aij(x
i
l) = δjl, l ∈ N are the

univariate basis functions, and xij ∈ Xi = {xi1, . . . , ximi
},

xij ∈ [0, 1], 1 ≤ j ≤ mi, are the support nodes.
Extending this interpolation function to multi-dimensional

cases (i.e. d ≥ 1), the corresponding multivariate formula,
using the full tensor product formulation, is as follows:

(U i1 ⊗ · · · ⊗ U id)(f) =
mi1∑
j1=1

· · ·
mid∑
jd=1

(ai1j1 ⊗ · · · ⊗ a
id
jd

)f(xi1j1 , . . . , x
id
jd

). (3)

The number of support nodes required for the full tensor
product representation is

∏d
j=1mij , which is computation-

ally intractable for high dimensions d.
The Smolyak construction aims to substantially decrease

the number of support nodes used while preserving the
interpolation properties observed in the 1-dimensional case.
Define the difference function ∆i = U i−U i−1, U0 = 0 and
multi-index i ∈ Nd, |i| = ii1 + · · · + iid . Now, define the

Smolyak interpolant as:

An+d,d(f) =
n∑
k=0

∑
|i|=k+d

(∆i1 ⊗ · · · ⊗∆id)(f). (4)

The inner sum can be further expressed as∑
|i|=k+d

∑
j

(ai1j1⊗· · ·⊗a
id
jd

)(f(xi
j)−Ak+d−1,d(f(xi

j))), (5)

where j is the multi-index (j1, . . . , jd), jl = 1, . . . ,m∆
il

, l =

1, . . . , d, and the points xi
j = (xi1j1 , . . . , x

id
jd

), xiljl is the jlth
element of Xi1

∆ = Xil\Xil−1, X0 = ∅, and m∆
il

= |Xil
∆|.

The support nodes can be chosen in an hierarchical manner
such that Xi ⊂ Xi+1, i ∈ {i1, . . . , id}.

It is also useful to compute the absolute (Enabs) and relative
(Enrel) errors of the Smolyak interpolant using correction
terms known as hierarchical surpluses (wk,ij ):

wk,ij = f(xi
j)−Ak+d−1,d(f(xi

j)), (6)

Enabs = max
i,j

wn,ij , (7)

Enrel =

max
i,j

wn,ij

max
i,j

f(xi
j)−min

i,j
f(xi

j)
. (8)

The conventional sparse grid fails to consider the impact
errors can have on the quality of the interpolant produced.
Adaptive sparse grids [16] build on the conventional for-
mulation by using generalized error indicators that consider
the influence of the error in comparison to the necessary
computational work:

gj = max

{
w
|∆jf |
|∆1f |

, (1− w)
n1
nj

}
, (9)

where w ∈ [0, 1] is a weight for the error indicator gj, nk
is the number of function evaluations for an index set k.
Conventional sparse grids are formed when w = 0, and only
the number of function evaluations are considered. When
w = 1, the error indicators will decay with increasing
indices. Intermediate values of w compromise between ex-
cessive work and high error.
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Fig. 2. Compared to randomly (left), and uniformly (center) sampled grids, sparsely sampled grids, like the Chebyshev-Gauss-Lobatto grid (right),
strategically sample the parameter space to produce error controlled surrogate models that use fewer samples.

1) Grid Type: The approximation properties of the sparse
grid rely on basis functions to select the required support
nodes. Chebyshev-based node distributions can be used for
higher-order polynomial interpolation, where the function to
be interpolated is smooth and higher accuracy is required
[32]. In this work, we use Chebyshev-Gauss-Lobatto nodes
(Fig. 2) [30], which are defined as follows:

mi =

{
1, i = 1

2i−1 + 1, i > 1
(10)

xij =

{
− cos π·(j−1)

mi−1 , mi > 1

0, mi = 1,
(11)

where mi is the number of support nodes for level i, and xij
is the position of the jth node at level i, j = 1, . . . ,mi.

2) Time Domain Interpolation: In addition to inteprola-
tion across the parameter space, there is also the issue of time
domain interpolation. Choosing nodes in the time domain to
accurately represent a trajectory may influence the accuracy
of the resulting sparse grid interpolant. Time intervals can
be either uniform or non-uniform. With non-uniform time
points, a possibility is to utilize the extrema of the Chebyshev
polynomials as was done in [14], [15] for ODE models:

T `s = T `min +
(

1− cos
(πs`
d

))T `max − T `min
2

, (12)

where ` ∈ {1, . . . , n} is a vector of indices correspond-
ing to model outputs, d is the degree of the interpolating
Lagrange polynomial, T `s is a vector of sampling times,
T `min is the minimum time, T `max is the maximum time,
and s` = [0, . . . , d]. Choosing the extrema of Chebyshev
polynomials can reduce the effect of poor interpolation on
the edges of an interval that occur when using equidistant
nodes, a problem known as the Runge phenomenon [33].

Once the model outputs are sampled at these times, they
can be evaluated at other times t, T `min ≤ t ≤ T `max:

ỹ`(θ, t) = L`d(t) · ŷ`(θ, T `s ), (13)

where ỹ`(θ, t) is the interpolated model output with param-
eters θ at time t, ŷ`(θ, T is) is the sparse grid model output
sampled at the times T `s , L`d is the Lagrange interpolating
polynomial for the `th model output with degree d, defined
in [34].

3) Simulation Conditions: Matlab was used as the simu-
lation environment for the models discussed here. The Euler-
Maruyama method, a first-order stochastic Taylor expansion,
was used to integrate SDEs [35]–[37]:

X(tq+1) =X(tq) + f(X(tq), qδt,θ)δt+

g(X(tq), qδt,θ)(B(tq)−B(tq−1)),
(14)

where δt is the integration time step, and q = 0, . . . , T/δt.
Sparse grid interpolation was performed using the Sparse
Grid Interpolation Toolbox [32].

Each model had to be tuned for compatibility with sparse
grid interpolation by choosing both the simulation conditions
and the number of realizations. Simulation conditions for
the model, such as initial conditions, timespan of the sim-
ulation, desired model states, and parameters to include in
the parameter space, were determined first. These conditions
were defined in large part to conform with the scope of the
examples presented in this work.

III. COMPUTATIONAL EXPERIMENTS

A. SIVR Model

We first examine a model describing the spread of
an infectious disease, known as the susceptible-infectious-
vaccinated-removed (SIVR) model [38]. This particular sys-
tem involves a vaccination mechanism by which certain
individuals may avoid infection. It is described as follows:

dS = [µ− βSI − (µ+ φ)S]dt− σSIdB(t) (15)
dI = [βSI + ρβV I − (λ+ µ)I]dt+ σ(S + ρV )IdB(t)

(16)
dV = [φS − ρβV I − µV ]dt− ρσV IdB(t) (17)
dR = [λI − µR]dt. (18)

Susceptible individuals (S) can contract the infection, after
which they are infected (I), and can infect other susceptible
individuals. Vaccinated individuals (V ) may be partially
resistant to infection upon vaccination, but are not completely
immune. After recovering from an infection, removed indi-
viduals (R) stay in the removed pool. The values of each
disease state are expressed as percentages by normalizing to
the overall population size. The parameters of interest in this
model and the predefined parameter ranges are described in
Table I. The stochastic perturbations in the SIVR model have
been integrated into models of real-world diseases, such as
HIV [39].
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Fig. 3. Plots of the Acceptable and Unacceptable Parameter Sets in 2-dimensional form. Plots of (a,b,c) λ vs µ, (d,e,f) λ vs β. Columns display results
with Ξ = 0.2, 0.3, and 0.4. Acceptable parameter sets are green dots, and unacceptable parameter sets are red diamonds. Black lines depict decision
boundaries generated with SVMs.

For demonstration purposes, we investigate those epi-
demiological parameter values which result in the average
number of cases being less than some percentage of the
total population Ξ, an ideal disease eradication objective.
Expressed mathematically, our target is:

ΘA = {θ ∈ Θ|E[Cθ(T )] < Ξ}, (19)

where θ = {λ, β, µ, φ, ρ, σ}, and E[Cθ(T )] is the expected
number of cases simulated at time T with parameters θ.
We set T = 30 days, with X(0) = [0.8, 0.1, 0.05, 0.05]ᵀ.
Additionally, we define C as follows:

dC = [βSI + ρβV I]dt+ σ(S + ρV )IdB(t) (20)

with C(0) = 0.1. The sparse grid interpolant produced had
a relative error of 1% and an absolute error of 0.0692 with
6815 support nodes. Once the necessary number of real-
izations are found using the sparse grid interpolant, 10,000
parameter samples from the given ranges in Table I were
obtained through Latin Hypercube Sampling (LHS). Then,
model dynamics corresponding to these sampled parameters
were interpolated using the surrogate model. Acceptable
parameters satisfied the stated target, while unacceptable
parameters did not.

Once the acceptable and unacceptable parameters were
identified, a graphical analysis was done to determine if
both sets can be visually separated, and if so, what was
the nature of this separation in terms of parameter values.
Fig. 3 elucidates the apparent disparity between acceptable
and unacceptable parameter values in terms of the first three
parameters listed in Table I, with increasing values of Ξ. A

TABLE I
PARAMETERS OF SIVR MODEL, WITH DEFINITIONS AND RANGES USED

IN SPARSE GRID INTERPOLATION.

Parameter Definition Range
λ Fraction of recovered infected [0, 1]
µ Birth/death rate [0, 1]
β Transmission rate [0, 1]
φ Fraction of vaccinated susceptible [0, 1]
ρ Vaccination effectiveness [0, 1]
σ Environmental noise [0.01, 0.2]

decision boundary using support vector machines (SVMs)
was also deployed to classify both types of parameter values
and provide a clear visual partition.

The top row of Fig. 3 shows the relationship between
µ and λ. Clearly, higher values of both parameters, which
translate to higher birth and recovery rates, tend to bode well
for reduced case loads. Increasing Ξ from 0.2 to 0.4 boosts
the number of acceptable parameters with higher values of
both λ and µ. As Ξ increases, those parameters with more
moderate values are deemed acceptable, and the decision
boundary advances towards lower values of both parameters.

On the other hand, the bottom row of Fig. 3 depicts a
different scenario between λ and β. Obviously, a higher
transmission rate (high β), coupled with low recovery from
infection (low λ), led to more unfavorable outcomes. Lower
levels of λ in general mean lower levels of recovery, leading
to higher numbers of infected accumulating over the course
of the simulation. This explains why lower levels of λ often
lead to unfavorable outcomes.

A discussion of this example would be incomplete without
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mentioning the role of noise. For the noise range considered
here, there was no significant effect on transforming the
boundary between acceptable and unacceptable parameters.

B. MCF-7 Breast Cancer Model

The MCF-7 breast cancer model was developed to predict
tumor responses to radiotherapy and other therapeutic treat-
ments [40]. To capture the deleterious and variable effects
of radiation on cancer cells, the model added noise terms
to the cell death rates for the three cancer sub-populations
being studied. These sub-populations, sorted according to
radiotherapy sensitivity, represented various stages of the cell
cycle: the gap phase (G), the synthesis phase (S), and the
mitosis phase (M ). The model is described as follows:

dG = [−(α+ q1)G+ 2γM ]dt− σGdB1(t) (21)
dS = [αG− (β + q2)S]dt− σSdB2(t) (22)
dM = [βS − (γ + q3)M ]dt− σMdB3(t) (23)

where qi, i = 1, 2, 3 are the specific death rates for each
sub-population, α is the transition rate from G to S, β is the
transition rate from S to M , γ is the transition rate from M
to G, and σ is the magnitude of the stochastic noise.

TABLE II
PARAMETERS OF MCF-7 MODEL, WITH DEFINITIONS AND RANGES

USED IN SPARSE GRID INTERPOLATION.

Parameter Definition Range
α Transition rate from G to S [−0.0052, 0.0918]
β Transition rate from S to M [0.0315, 0.1333]
γ Transition rate from M to G [0.1744, 0.9055]
σ Environmental noise [0, 0.1]

In addition to introducing stochastic noise into the cancer
model, [40] introduced a measure known as the tumor
lifespan L, defined as the amount of time needed to eradicate
the cancer:

L = min{t : G(t) + S(t) +M(t) = 0}. (24)

The tumor lifespan was introduced to evaluate cancer treat-
ment effectiveness. Multiple treatment strategies could be
ranked based on how much they reduced L. A mean tu-
mor lifespan of 175 hours was calculated for the nominal
parameters presented in [40].

While L has been evaluated on parameters found to best
fit existing data on this form of breast cancer, understanding
the impact that the stochastic noise term has on L would
clarify its influence on cancer proliferation. To that end,
we employ sparse grid interpolation to observe the tumor
lifespan landscape for 200 MCF-7 cancer cells at the end
of 200 hours with varying noise levels. The parameters used
to form the parameter space, and their associated parameter
ranges as reported in [40], are described in Table II. The
sparse grid interpolant produced had a relative error of 0.93%
and an absolute error of 0.1719 with 249 support nodes.

Fig. 4 illustrates this landscape in 3-dimensional form for
10,000 uniformly sampled points in the parameter space,
with varying noise levels. If there were still cancer cells
present at the end of 200 hours, the tumor lifespan was set
to 200 hours. The top row, where only γ is varied, shows a
clear discrepancy between areas of decreased tumor lifespan
and the maximum plateau of 200 hours. Specifically, for

α ≤ 0.01 and β ≤ 0.08, the tumor lifespan declines to as
much as 110 hours. Lower transition rates tend to suspend
cell viability and lifespan. Higher transition rates, on the
other hand, retain the existing cellular machinery, promoting
cell growth and division. Increasing the noise levels also
did not significantly alter this landscape or the minimum
lifespans.

Observing the tumor lifespan landscape for α and γ, where
β is held constant reveals some interesting features. The bot-
tom row of Fig. 4 highlights two distinct regions of decreased
tumor lifespan, where α ≤ 0.005 and 0.17 ≤ γ ≤ 0.28,
0.55 ≤ γ ≤ 0.9. The minimum lifespan attained in these
areas are approximately 150 hours. While this area appears
for all three noise levels, what differentiates each level is the
prevalence of abnormal contours emblematic of noise. Noise
pervades the decreased lifespan areas in the form of peaks,
starting at the minima of both parameters. The quantity and
width of these peaks increase as the noise levels increases.

C. JAK-STAT Signaling Pathway

Parameter estimation in systems biology aims to recon-
struct dynamic inter- and intracellular biochemical relation-
ships from available data [41], [42]. The JAK-STAT signaling
pathway SDE, derived from an earlier ODE model [43], is
described as follows [44], [45]:

dx1 = [−k1x1EpoR+ 2k4z1]dt+ σx1dB(t) (25)

dx2 = [k1x1EpoR− k2x
2
2]dt (26)

dx3 = [−k3x3 +
1

2
k2x

2
2]dt (27)

dx4 = [k3x3 − k4z1]dt (28)
dz1 = Γ(t)[x3 − z1]dt (29)

Γ(t) =
α

1−Aα exp (−αt)
. (30)

This model of the JAK-STAT signaling pathway can be
described by a number of steps [43]. Erythropoietin receptor
(EpoR) is activated by erythropoietin hormone binding,
phosphorlyating cytoplasmic STAT5 (x1). Phosphorylated
STAT5 (x2) then proceeds to dimerize (x3), after which
it is then imported into the nucleus (x4). In the nucleus,
dissociation and dephosphorylation of STAT5 occur with a
time delay (z1).

TABLE III
PARAMETERS OF JAK-STAT MODEL, WITH DEFINITIONS AND RANGES

USED IN SPARSE GRID INTERPOLATION.

Parameter Definition Range
k1 STAT5 phosphorylation rate [0.015, 0.025]
k2 STAT5 dimerization rate [0.015, 0.025]
k3 Nuclear import rate [0.1, 0.15]
k4 Nuclear export rate [0.05, 0.1]
α Delay function parameter [0.05, 0.5]
A Delay function parameter [10−4, 10−2]
σ Environmental noise [0.05, 0.2]

A readily measurable output of this system is the total
phosphorylated STAT5 y, defined as follows:

y = s(x2 + 2x3), (31)

where s is a scaling parameter.
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Fig. 4. Tumor lifespan landscape with varying noise levels. Top row varies α and β, with γ = 0.3655. Bottom row varies α and γ, with β = 0.0824.
Red circles denote regions distorted by noise.

We rely on a nonparametric simulated maximum like-
lihood approach using kernel density estimation for pa-
rameter estimation [46]. The approach approximates the
transition densities of the maximum likelihood function by
comparing all generated realizations with observed data. The
corresponding log likelihood function was then computed
at the support nodes and subsequently interpolated across
the parameter space described in Table III. The optimal
parameter estimates minimized the log likelihood function.
We set the duration of the simulation at 60 minutes, and
X(0) = [2.3, 0.01, 0.01, 0.01, 0]ᵀ. Data obtained from [43]
was used for parameter estimation. The sparse grid inter-
polant produced had a relative error of 0.52% and an absolute
error of 0.38 with 481 support nodes. 10,000 LHS sampled
parameters were generated from the prescribed parameter
ranges, and the corresponding trajectories were estimated
using the sparse grid interpolant. we plot and compare the
results for three different noise levels, shown in Figure 5.

Fig. 5. Results of parameter estimation with JAK-STAT pathway model
across three different noise levels. Dataset is in purple (mean ± SD).

The log likelihood values for σ = 0.05, 0.1, and 0.2, were
6.1893∗10−4, 4.353∗10−4, and 4.5854, respectively. Higher
noise levels resulted in a dramatic loss of fit quantitatively,

although all noise levels possessed great qualitative fits. This
example demonstrates the applicability of sparse grid inter-
polation to parameter estimation of SDEs within a maximum
likelihood framework.

IV. CONCLUSION

Sparse grids produce effective interpolants without sac-
rificing much of the modeling accuracy and incurring the
cost of unnecessary model evaluations. These unnecessary
model evaluations materialize in both the parameter and
uncertainty spaces, with multiple parameter values and re-
alizations necessary for an adequate model description. The
approach discussed here interpolates the solution provided
by an average SDE trajectory at each support node in a
parameter space of moderate dimension. The stochastic noise
was also considered as a dimension of the parameter space,
and played an important role in the examples presented.
Our work serves as a computationally efficient surrogate
modeling-based exploration of the stochastic dynamics of
SDE models.

In the future, we hope to incorporate adaptive sampling of
realizations in order to appropriately capture the variation
present in the underlying systems. Furthermore, we plan
to focus the sparse grid framework towards more targeted
applications, such as sensitivity analysis and optimal control.

REFERENCES

[1] R. M. May, “Uses and Abuses of Mathematics in Biology,”
Science, vol. 303, no. 5659, pp. 790–793, 2004. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/14764866

[2] H. W. Hethcote, “The Mathematics of Infectious Diseases,” SIAM
Review, vol. 42, no. 4, pp. 599–653, jan 2000. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/S0036144500371907

[3] H. Kitano, “Computational Systems Biology,” Nature, vol.
420, no. 6912, pp. 206–10, nov 2002. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/17052114
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