Numerical Solutions of the Modified Burger’s Equation using FTCS Implicit Scheme

Surattana Sungnul, Bubpha Jitsom and Mahosut Punpocha

Abstract—In this paper, we investigate the behavior of a modified Burger’s equation in the form

\[u_t + (c + bu)u_x = (\mu_0 + \mu_1 u)u_{xx}, \]

where \(c, b, \mu_0 \) and \(\mu_1 \) are arbitrary parameters. Numerical solutions of this problem is obtained by the finite difference method in FTCS implicit scheme. The results obtained by advantages of mathematical software are compared between the numerical solutions and the exact solutions for some given initial and boundary conditions.

Index Terms—Burger’s equation, FTCS implicit scheme, finite difference method.

I. INTRODUCTION

Burger’s equation is a nonlinear partial differential equation, describing an evolutionary process in which a convective phenomenon is in balance with a diffusive phenomenon. The complete nonlinear Burger’s equation is given by [13]

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \mu_0 \frac{\partial^2 u}{\partial x^2}, \quad (x,t) \in D, \tag{1}
\]

where \(u \) is fluid velocity, \(\mu_0 \) is viscosity coefficient and \(D \) is a continuous domain.

Equation (1) is a parabolic PDE, which can serve as a model equation for the boundary-layer equations. For the steady boundary-layer and "parabolized" Navier-Stokes equation, the independent variables \(t \) and \(x \) can be replaced by \(x \) and \(y \), respectively to give

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \mu_0 \frac{\partial^2 u}{\partial y^2}, \quad (x,y) \in D, \tag{2}
\]

where \(x, y \) are the marching direction. For simplicity, the linear Burger’s equation

\[
\frac{\partial u}{\partial t} + c u \frac{\partial u}{\partial x} = \mu_0 \frac{\partial^2 u}{\partial x^2}, \tag{3}
\]

is often used in place of equation (1). Note that if \(c = 0 \), equation (3) represents the heat equation. The exact steady-state solution of equation (3) with the boundary conditions,

\[
\begin{align*}
 u(0,t) &= u_0 \equiv \text{constant}, \\
 u(l,t) &= 0,
\end{align*}
\]

is given by

\[
u = u_0 \left\{ \frac{1 - \exp[R_l(\xi - 1)]}{1 - \exp(-R_l)} \right\}, \tag{6}
\]

where

\[
R_l = \frac{cl}{\mu_0}.
\]

The exact unsteady solution of equation (3) and the initial condition [13] can be expressed as

\[
u(x,0) = \sin(kx),
\]

where \(k \) is a constant. The periodic boundary condition is given by

\[
u(x,t) = \exp(-k^2 \mu_0 t) \sin(k(x-ct)). \tag{7}
\]

Equations (1) and (3) can be combined into a generalized Burger’s equation has arbitrary parameters. Note that if \(b = 0 \), the linear equation is obtained. Moreover if \(c = 0 \) and \(b = 1 \), the nonlinear Burger’s equation is obtained. For the case that \(c = \frac{1}{2} \) and \(b = -1 \), the generalized Burger’s equation has the stationary solution

\[
u = -\frac{c}{b} \left[1 + \tanh \left(\frac{c(x-x_0)}{2\mu_0} \right) \right]. \tag{9}
\]

Hence, if the initial distribution of \(u \) is given by equation (9), the exact solution does not vary with time but it remains fixed at the initial distribution. Additional exact solution of Burger’s equation can be found by Platzman (1972), which describes 35 different exact solutions.

Equation (8) can be put into conservative form

\[
u_t + F_x = 0, \tag{10}
\]

where \(F \) is defined by

\[
F = cu + \frac{bu^2}{2} - \mu_0 u_x. \tag{11}
\]

Alternatively, equation (8) can be rewritten as

\[
u_t + F_x = \mu_0 u_{xx}, \tag{12}
\]

where \(F \) is defined by

\[
F = cu + \frac{bu^2}{2}. \tag{13}
\]

For the linearized case \(b = 0 \), \(F \) is reduced into

\[
F = cu.
\]

In 2010, Blandin et al [1] considered the problem of stabilization of the inviscid Burgers equation using boundary conditions. Wu [2] suggested a fractional Lie group method to solve fractional partial differential equation. A time-fractional Burgers equation is used as an example to illustrate the effectiveness of the Lie group method and a few classes

\[\text{(Advance online publication: 10 February 2018)}\]
of the exact solution were obtained. Pandey and Verma [3] generated the numerical solutions of the Burger’s equation by applying the Crank-Nicolson method directly to the Burger’s equation.

In 2012, Jiwari [4] used uniform Haar wavelet and the quasilinearization process to propose for the numerical simulation of time dependent nonlinear Burgers equation. The following year, he studied a fractional Burgers equation arising in nonlinear acoustics was presented by Lombard, et al [5].

In 2014, WongsaAi et al [6] proposed a compact finite difference method to solve the Rosenau-RLW equation. A numerical tool is applied to the model by using a three-level singly diagonally implicit Runge-Kutta method for solving the Rosenau-RLW equation. A finite difference approximation to it that satisfies the consistent condition, stability is the necessary and sufficient condition for convergence. 1) Consistency: A finite difference representation of a PDE is said to be consistent [13] if we should be able to show that the difference between the PDE and its difference representation vanishes as the mesh is refined, i.e., the truncation error (T.E.) goes to zero as the mesh size go to zero. This should always be the case if the order of the T.E. vanishes under grid refinement.

It is said that FDS (16) approximate with order k of BVP (15) if

\[\| T.E. \|_{H_h} \leq C h^k \quad \text{as} \quad h \to 0, \]

where the constant C does not depend on h.

2) Stability: The finite difference scheme defined by (16) with linear operator \(L_h \) is called stable, if there exist \(h_0 > 0 \) such that for arbitrary \(h < h_0 \) and for any discrete function \(f^h \in H_h \), the solution of FDS, \(u^h \), which satisfies

\[L_h u^h = f^h, \]

exists uniquely and satisfies the inequality

\[\| u^h \|_{\Omega_h} \leq C \| f^h \|_{H_h}, \]

where the constant C does not depend on h. The scheme defined by (16) is called stable for \((x, t) \in D \cup \partial D \), if there exist a constant C independent of h and \(\tau \) such that

\[\max_{i \in N} | u_{i}^n | \leq C [\max_{i \in N} | \psi_{i}^n | + \max_{i \in N} | \varphi_{i}^n |], \]

\[i = 0, \pm 1, \pm 2, \ldots, M, n = 0, 1, \ldots, \lfloor T/\tau \rfloor - 1, \]

The inequality (18) has to hold for any functions \(\psi_i \) and \(\varphi_i^T \). For a particular case when \(\varphi_i^T \equiv 0 \), we have only necessary condition for stability.

By Fourier or Von Neumann Analysis [13], we will seek solution to FDS (16) in the form

\[u_i^n = \lambda^n(\alpha) e^{I \alpha}, \quad i = 0, \pm 1, \ldots, \quad n = 0, \pm 1, \ldots, \quad I = \sqrt{-1}. \]
where \(e^{loa}\) are eigenvectors corresponding to an eigenvalue \(\lambda\) and \(\alpha\) is a wave number.

Necessary condition for stability of FDS (16) will be true for all \(\alpha \in R\) which the following inequality (20) holds

\[|\lambda(\alpha)| \leq 1.\]

(20)

III. Numerical Results

This section presents the examples of linear and nonlinear modified Burger’s equation (14).

A. Linear Burger’s equation

In the modified Burger’s equation (14) if \(b = 0\) and \(\mu_1 = 0\) is called the linear Burger’s equation and written in the form

\[u_t + cu_x = \mu_0 u_{xx}\]

(21)

In paper [14], B. Jitsom and et. al presented that the numerical solution by FTCS implicit scheme converge to an exact solution. They found that FTCS implicit scheme has properties of consistency with \(T.E. = (O(\Delta t, (\Delta x)^2))\) and unconditional stability with

\[\lambda = \frac{1}{1 + 4Q\sin^2(\frac{\alpha}{2}) + IP\sin \alpha},\]

then

\[|\lambda| = \frac{1}{\sqrt{[1 + 4Q\sin^2(\frac{\alpha}{2})]^2 + P^2\sin^2 \alpha}} \leq 1,
\]

where \(P = \frac{c\Delta t}{\Delta x}\) and \(Q = \frac{\mu_0\Delta t}{(\Delta x)^2}\).

An example of linear Burger’s equation is shown in problem A1.

Problem A1: Let us consider linear Burger’s equation (22)

\[u_t + \frac{1}{10} u_x = \frac{1}{2} u_{xx},\ 0 \leq x \leq 1, \ 0 \leq t \leq 1.\]

(22)

With initial condition :

\[u(x, 0) = \frac{1}{2} \left[1 - \tanh \left(\frac{1}{2}(x - 15)\right)\right],\]

and boundary conditions:

\[u(0, t) = \frac{1}{2} \left[1 - \tanh \left(\frac{1}{2}(15 - \frac{1}{2}t)\right)\right],\]

\[u(1, t) = \frac{1}{2} \left[1 - \tanh(-7 - t)\right].\]

Grid system :

\[D_h = \{(x_i, t_n) | x_i = (i - 1)\Delta x, \ t_n = (n - 1)\Delta t,\ i = 1, 2, ..., M, \ n = 1, 2, ..., T\}.\]

By FTCS implicit scheme, we have

\[u_i^{n+1} - u_i^n = \frac{1}{10} \left[u_{i+1}^{n+1} - u_{i+1}^n + u_{i-1}^{n+1} - u_{i-1}^n\right] + \frac{1}{2} \left[u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1}\right] = 0, \mu_0 = 1/2.\]

(23)

The exact solution of (22) with the initial and boundary conditions is

\[u(x, t) = \frac{1}{2} \left[1 - \tanh \left(\frac{1}{2}(x - 15 - \frac{1}{2}t)\right)\right].\]

(24)

Table I presents the absolute error between exact and numerical solutions of problem A1 with \(\Delta t = \Delta x = 0.05\) and the graphs of exact solution and numerical solutions of linear Burger’s equation for FTCS implicit scheme are shown in Fig. 1 and Fig. 2 respectively. Moreover, The graph of absolute error between exact and numerical solutions of problem A1 is shown in Fig. 3. We can see that maximum of absolute error occurred at the middle space \(x\) in each time step \(t\).

TABLE I

<table>
<thead>
<tr>
<th>(t)</th>
<th>0.25</th>
<th>0.50</th>
<th>0.505</th>
<th>0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.10</td>
<td>2.16 \times 10^{-4}</td>
<td>2.76 \times 10^{-4}</td>
<td>2.77 \times 10^{-4}</td>
<td>2.55 \times 10^{-4}</td>
</tr>
<tr>
<td>0.20</td>
<td>3.46 \times 10^{-4}</td>
<td>4.63 \times 10^{-4}</td>
<td>4.63 \times 10^{-4}</td>
<td>4.13 \times 10^{-4}</td>
</tr>
<tr>
<td>0.30</td>
<td>4.28 \times 10^{-4}</td>
<td>5.81 \times 10^{-4}</td>
<td>5.81 \times 10^{-4}</td>
<td>5.11 \times 10^{-4}</td>
</tr>
<tr>
<td>0.40</td>
<td>4.78 \times 10^{-4}</td>
<td>6.54 \times 10^{-4}</td>
<td>6.53 \times 10^{-4}</td>
<td>5.71 \times 10^{-4}</td>
</tr>
<tr>
<td>0.50</td>
<td>5.08 \times 10^{-4}</td>
<td>6.98 \times 10^{-4}</td>
<td>6.96 \times 10^{-4}</td>
<td>6.07 \times 10^{-4}</td>
</tr>
<tr>
<td>0.60</td>
<td>5.24 \times 10^{-4}</td>
<td>7.23 \times 10^{-4}</td>
<td>7.21 \times 10^{-4}</td>
<td>6.27 \times 10^{-4}</td>
</tr>
<tr>
<td>0.70</td>
<td>5.33 \times 10^{-4}</td>
<td>7.36 \times 10^{-4}</td>
<td>7.34 \times 10^{-4}</td>
<td>6.37 \times 10^{-4}</td>
</tr>
<tr>
<td>0.80</td>
<td>5.36 \times 10^{-4}</td>
<td>7.41 \times 10^{-4}</td>
<td>7.39 \times 10^{-4}</td>
<td>6.41 \times 10^{-4}</td>
</tr>
<tr>
<td>0.90</td>
<td>5.36 \times 10^{-4}</td>
<td>7.41 \times 10^{-4}</td>
<td>7.39 \times 10^{-4}</td>
<td>6.41 \times 10^{-4}</td>
</tr>
<tr>
<td>1.00</td>
<td>5.34 \times 10^{-4}</td>
<td>7.38 \times 10^{-4}</td>
<td>7.36 \times 10^{-4}</td>
<td>6.38 \times 10^{-4}</td>
</tr>
</tbody>
</table>

![Exact solutions of linear Burger’s equation](image-url)
Numerical solutions of linear Burger's equation

Fig. 2. The plot of numerical solutions for Problem A1 with \(c = 1/10, \ b = 0, \mu_0 = 1/2, \Delta t = 0.05 \) and \(\Delta x = 0.05 \).

Error between exact and numerical solutions of linear Burger's equation

Fig. 3. The plot of absolute error between exact and numerical solutions for Problem A1.

\[\text{Error between exact and numerical solutions of linear Burger's equation} \]

<table>
<thead>
<tr>
<th>(\Delta x)</th>
<th>(\Delta t)</th>
<th>Maximum of absolute errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>(7.162 \times 10^{-3})</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>(7.141 \times 10^{-3})</td>
</tr>
<tr>
<td>0.005</td>
<td>0.005</td>
<td>(6.979 \times 10^{-3})</td>
</tr>
<tr>
<td>0.001</td>
<td>0.001</td>
<td>(7.178 \times 10^{-4})</td>
</tr>
</tbody>
</table>

Table II presents the maximum of absolute errors, which we can see that maximum of absolute error goes to zero as the grid sizes \(\Delta x \) and \(\Delta t \) go to zero.

B. Nonlinear Burger’s equations

Nonlinear Burger’s equations are investigated by comparing the results between numerical solutions in FTCS implicit scheme and exact solutions. We then study the behaviour of solutions of modified Burger’s equation (14) as follows,

\[u_t + (c + bu)u_x = (\mu_0 + \mu_1 u)u_{xx}. \]

In this work, nonlinear Burger’s equation of 3 cases are studied as follows,

Case B1 : Nonlinear modified Burger’s equation in conservative form with \(\mu_1 = 0 \),

Case B2 : Nonlinear modified Burger’s equation

with \(0 \leq \mu_1 \leq 1 \).

Case B3 : Nonlinear modified Burger’s equation for stationary solution with \(\mu_1 = 0 \).

Case B1 : Nonlinear modified Burger’s equation in conservative form with \(\mu_1 = 0 \).

We consider nonlinear generalized Burger’s equation (8) in the conservative form,

\[u_t + F_x = \mu_0 u_{xx} \quad \text{where} \quad F = cu + \frac{bu^2}{2}. \]

To obtain numerical solutions, we use FTCS implicit scheme as follows,

\[\frac{u_i^{n+1} - u_i^n}{\Delta t} + \frac{F_{i+1}^n - F_i^n}{2\Delta x} - \mu_0 \frac{u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1}}{(\Delta x)^2} = 0. \]

Where \(\Delta t = \tau \) and \(\Delta x = h \), we have

\[
\frac{\partial u}{\partial t} - \frac{\partial F}{\partial x} = \frac{\partial}{\partial x} \left(\frac{1}{2} u^2 \right) \quad \text{or} \quad \alpha_i u_{i+1}^{n+1} - b_i u_i^{n+1} + c_i u_{i-1}^{n+1} = u_i^n + d_i (F_{i+1} - F_{i-1}),
\]

\[i = 2, ..., M - 1, \quad n = 1, ..., T/\tau - 1, \]

where

\[a_i = - \frac{\mu_0 \tau}{h^2}, \quad b_i = -1 - 2\mu_0 \tau, \quad c_i = \frac{\mu_0 \tau}{h^2}, \quad d_i = - \frac{\tau}{h} \]

The equation (28) can be written as the system of tridiagonal matrix, which we can solve this system by the sweep method.

Problem B1 : Let us consider nonlinear modified Burger’s equation (29) for \(c = 0, \ b = 1, \) and \(\mu_0 = \frac{1}{4} \),

\[u_t + uu_x = \frac{1}{4} u_{xx}, \quad 0 \leq x \leq 1, \quad 0 \leq t \leq 1. \]

With initial condition: \(u(x,0) = \frac{1}{1 + e^{x^2}}, \) and boundary conditions:

\[u(0,t) = \frac{1}{1 + e^{x^2}}, \quad u(1,t) = \frac{1}{1 + e^{x^2}}. \]

Grid system:

\[D_\tau = \{(x_i, t_n) \mid x_i = (i - 1) \Delta x, \ t_n = (n - 1) \Delta t, \}

\[i = 1, 2, ..., M, \quad n = 1, 2, ..., T \} \]

By FTCS implicit scheme, we have

\[
\frac{u_i^{n+1} - u_i^n}{\Delta t} + \frac{F_{i+1}^n - F_i^n}{2\Delta x} - \frac{1}{4} \frac{u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1}}{(\Delta x)^2} = 0
\]

\[
u_i^n = \frac{1}{1 + e^{x_i^n}}, \quad u_{i+1}^n = \frac{1}{1 + e^{x_{i+1}^n}}.
\]

(Advance online publication: 10 February 2018)
The exact solution of (29) with the initial and boundary conditions is

\[u(x, t) = \frac{1}{1 + e^{\frac{x}{\mu_0}}}. \]

Table III presents the absolute error between exact and numerical solutions for problem B1 with \(\Delta t = \Delta x = 0.05 \) and the graphs of an exact and numerical solutions are shown in Fig. 4 and Fig. 5 respectively. Moreover, the graph of absolute errors is shown in Fig. 6. We can see that maximum of absolute error occurred at the middle space \(x \) in each time step \(t \).

Table III

<table>
<thead>
<tr>
<th>(t)</th>
<th>(x)</th>
<th>(0.25)</th>
<th>(0.50)</th>
<th>(0.50^5)</th>
<th>(0.75)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.00</td>
<td>4.91 \times 10^{-4}</td>
<td>4.08 \times 10^{-4}</td>
<td>3.67 \times 10^{-4}</td>
<td>1.92 \times 10^{-4}</td>
</tr>
<tr>
<td>0.20</td>
<td>0.00</td>
<td>8.32 \times 10^{-4}</td>
<td>8.21 \times 10^{-4}</td>
<td>7.59 \times 10^{-4}</td>
<td>4.39 \times 10^{-4}</td>
</tr>
<tr>
<td>0.30</td>
<td>1.00 \times 10^{-3}</td>
<td>1.20 \times 10^{-3}</td>
<td>1.10 \times 10^{-3}</td>
<td>7.12 \times 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td>1.30 \times 10^{-3}</td>
<td>1.60 \times 10^{-3}</td>
<td>1.50 \times 10^{-3}</td>
<td>9.91 \times 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>1.40 \times 10^{-3}</td>
<td>1.90 \times 10^{-3}</td>
<td>1.80 \times 10^{-3}</td>
<td>1.30 \times 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td>1.50 \times 10^{-3}</td>
<td>2.10 \times 10^{-3}</td>
<td>2.20 \times 10^{-3}</td>
<td>1.50 \times 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td>1.60 \times 10^{-3}</td>
<td>2.30 \times 10^{-3}</td>
<td>2.30 \times 10^{-3}</td>
<td>1.80 \times 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td>1.60 \times 10^{-3}</td>
<td>2.50 \times 10^{-3}</td>
<td>2.50 \times 10^{-3}</td>
<td>2.20 \times 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td>1.60 \times 10^{-3}</td>
<td>2.60 \times 10^{-3}</td>
<td>2.70 \times 10^{-3}</td>
<td>2.10 \times 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>1.50 \times 10^{-3}</td>
<td>2.70 \times 10^{-3}</td>
<td>2.70 \times 10^{-3}</td>
<td>2.30 \times 10^{-3}</td>
<td></td>
</tr>
</tbody>
</table>

Table IV shows the maximum of absolute errors, we can see that the maximum of absolute error goes to zero as the mesh sizes \(\Delta x \) and \(\Delta t \) go to zero.

Table IV

<table>
<thead>
<tr>
<th>(\Delta x)</th>
<th>(\Delta t)</th>
<th>Maximum of absolute errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>1.855 \times 10^{-3}</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>3.794 \times 10^{-4}</td>
</tr>
<tr>
<td>0.005</td>
<td>0.005</td>
<td>1.902 \times 10^{-4}</td>
</tr>
<tr>
<td>0.001</td>
<td>0.001</td>
<td>3.811 \times 10^{-5}</td>
</tr>
</tbody>
</table>

Case B2: Nonlinear modified Burger’s equation with \(0 \leq \mu_1 \leq 1 \).

We consider a modified Burger’s equation (14) in the form,

\[u_t + R(u)u_x = S(u)u_{xx}, \]

where \(R(u) = c + bu \) and \(S(u) = \mu_0 + \mu_1 u \).

FTCS implicit scheme is used in numerical solution, we get

\[
\frac{u^{n+1}_i - u^n_i}{\Delta t} + R(u^n_i) \frac{u^{n+1}_{i+1} - u^{n+1}_{i-1}}{2\Delta x} - S(u^n_i) \frac{u^{n+1}_{i+1} - 2u^{n+1}_i + u^{n+1}_{i-1}}{(\Delta x)^2} = 0.
\]

Where \(\Delta t = \tau \) and \(\Delta x = h \), we have

(Advance online publication: 10 February 2018)
\[u_i^{n+1} - u_i^n + R(u_i^n) \frac{\tau}{\Delta x} (u_{i+1}^{n+1} - u_{i-1}^{n+1}) + R(u_i^n) \frac{\tau}{2h} u_i^{n+1} - 2u_i^{n+1} + u_i^n = 0 \]

\[-S(u_i^n) \frac{\tau}{\Delta x} (u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1}) = 0 \]

where

\[a_i = -R(u_i^n) \frac{\tau}{\Delta x} - S(u_i^n) \frac{\tau}{\Delta x}, \]

\[b_i = -1 - 2S(u_i^n) \frac{\tau}{\Delta x}, \]

\[c_i = R(u_i^n) \frac{\tau}{2h} - S(u_i^n) \frac{\tau}{\Delta x}, \]

or

\[a_i u_{i+1}^{n+1} - b_i u_i^{n+1} + c_i u_{i-1}^{n+1} = u_i^n, \]

(33)

\[i = 2, ..., M - 1, \quad n = 1, ..., [T/\tau] - 1, \]

We can see that equation (33) is the system of tri-diagonal matrix. Numerical solutions are obtained by the sweep method.

Problem B2: Let us consider nonlinear modified Burger’s equation (34) for \(c = 0, b = 1, \mu_0 = \frac{1}{4} \) and \(0 \leq \mu_1 \leq 1 \) presents in the form,

\[u_t + uu_x = \left(\frac{1}{4} + \mu_1 u \right) u_{xx}, \quad 0 \leq x \leq 1, \quad 0 \leq t \leq 10 \] (34)

With initial condition : \(u(x, 0) = \frac{1}{1 + e^{-2x}}, \)

and boundary conditions :

\[u(0, t) = \frac{1}{1 + e^{-\tau}}, \quad u(1, t) = \frac{1}{1 + e^{2-\tau}}. \]

Grid system :

\[D_h = \{(x_i, t_n) | x_i = (i - 1)\Delta x, \quad t_n = (n - 1)\Delta t, \]

\[i = 1, 2, ..., M, \quad n = 1, 2, ..., T \}. \]

By FTCS implicit scheme, we have

\[\frac{u_i^{n+1} - u_i^n + R(u_i^n) \frac{\tau}{\Delta x} (u_{i+1}^{n+1} - u_{i-1}^{n+1})}{2\Delta x} + S(u_i^n) \frac{u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1}}{(\Delta x)^2} = 0 \] (35)

\[u_i^0 = \frac{1}{1 + e^{2x}}, \]

\[u_i^n = \frac{1}{1 + e^{-\tau_n}}, \quad u_{M} = \frac{1}{1 + e^{2-\tau_n}}. \]

Numerical solutions of a nonlinear modified Burger’s equation (34) at fixed \(\mu_1 = 0.5 \) and vary time \(0 \leq t \leq 10 \) are presented in Table V. We found that the numerical solutions will be increased and converge to 1.00 whereas time increases. In the case of fixed time, \(t = 5 \) and vary \(0 \leq \mu_1 \leq 1 \) are shown in Fig. 7. We can see that the numerical solutions will be slightly decreased when \(\mu_1 \) increased. The graphs of numerical solutions of nonlinear modified Burger’s equation for \(\mu_1 = 0, 0.1, 0.5, 1.0 \) are shown in Fig. 8 - Fig. 11.

Case B3: Nonlinear modified Burger’s equation for stationary solution with \(\mu_1 = 0 \).

We consider a modified Burger’s equation (14) in the form,

\[u_t + R(u)u_x = S(u)u_{xx}, \] (36)

where \(R(u) = c + bu \) and \(S(u) = \mu_0 + \mu_1 u \).

In case \(c = \frac{1}{2}, b = -1 \) and \(\mu_0 = \frac{1}{4} \) and \(\mu_1 = 0 \). We have,

\[u_t + \left(\frac{1}{2} - u \right)u_x = \frac{1}{4} u_{xx}. \] (37)

FTCS implicit scheme is used in numerical solutions, we have

(Advance online publication: 10 February 2018)
Grid system:

\[D_h = \{ (x_i, t_n) | x_i = (i-1)\Delta x, \ t_n = (n-1)\Delta t \}, \]

\[i = 1, 2, \ldots, M, \ n = 1, 2, \ldots, T \}. \]

By FTCS implicit scheme, we get

\[\frac{u_i^{n+1} - u_i^n}{\Delta t} + R(u_i^n) \frac{u_{i+1}^{n+1} - u_{i-1}^{n+1}}{2\Delta x} - S(u_i^n) \frac{u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1}}{(\Delta x)^2} = 0. \] (40)

\[u_i^0 = \frac{1}{2} \left(1 + \tanh(x_i - 5) \right), \]

\[u_i^n = 0, \ u_M^n = 1. \]

The stationary solution of (39) with initial and boundary conditions has

\[u = \frac{1}{2} \left(1 + \tanh(x - 5) \right). \]

The graph of a stationary solution and absolute error of problem B3 at \(t = 1 \) are shown in Fig. 12, Fig. 13, Fig. 14 respectively.

<table>
<thead>
<tr>
<th>(\Delta x)</th>
<th>(\Delta t)</th>
<th>Maximum of absolute errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>(1.054 \times 10^{-3})</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>(5.742 \times 10^{-4})</td>
</tr>
<tr>
<td>0.005</td>
<td>0.005</td>
<td>(7.257 \times 10^{-5})</td>
</tr>
<tr>
<td>0.001</td>
<td>0.001</td>
<td>(5.832 \times 10^{-8})</td>
</tr>
</tbody>
</table>

Table VI shows the maximum of absolute errors, we can see that the maximum of absolute error goes to zero as the grid sizes \(\Delta x \) and \(\Delta t \) go to zero.
In this work, we have investigated the modified Burger’s equation in the form,

$$u_t + (c + bu)u_x = (\mu_0 + \mu_1 u)u_{xx}, \quad (41)$$

where the parameters c, b, μ_0 and μ_1 are given. An example of the linear Burger’s equation (21) and the solutions were computed using the MATLAB program. We have found that the numerical solutions in the FTCS implicit scheme converge to related exact solutions is agreed with the theoretical convergence results.

Three cases of the numerical solutions for the nonlinear Burger’s equation were obtained by the FTCS implicit scheme as follows.

Case B1 : Nonlinear modified Burger’s equation in conservative form with

$$c = 0, \ b = 1, \ \mu_0 = \frac{1}{4} \ \text{and} \ \mu_1 = 0.$$

In the case, we have found the numerical solutions obtained by the FTCS implicit scheme converges to the exact solution and the maximum of absolute error tends to zero when the grid sizes Δx and Δt close to zero.

Case B2 : Nonlinear modified Burger’s equation with

$$c = 0, \ b = 1, \ \mu_0 = \frac{1}{4} \ \text{and} \ 0 \leq \mu_1 \leq 1.$$

In the case, we have fixed time and varied the values of μ_1 in $0 \leq \mu_1 \leq 1$. The results showed that the numerical solutions are slightly decreased when μ_1 is increasing. Moreover, when μ_1 is fixed, we found that the numerical solutions are increased and they are converged to 1.00 for all x as t is increasing.

Case B3 : Nonlinear modified Burger’s equation for stationary solution with

$$c = \frac{1}{2}, \ b = -1, \ \mu_0 = \frac{1}{4} \ \text{and} \ \mu_1 = 0.$$

In this case, we obtained the numerical solutions by the FTCS implicit scheme. All solutions are converged to the stationary exact solution.

ACKNOWLEDGMENT

I would like to express my sincere thanks to the Department of Mathematics, King Mongkut’s University of Technology North Bangkok (KMUTNB) for supporting us during this research.

REFERENCES

Surattana Sungnul graduated Ph.D. in Applied Mathematics, 2006, Suranaree University of Technology, Thailand and is currently lecturer at the department of Mathematics, KMUTNB and a researcher in Centre of Excellence in Mathematics, THAILAND.

Bubpha Jitsom graduated M.Sc. in Applied Mathematics, 2016, King Mongkut's University of Technology North Bangkok, Thailand.

Mahosut Punpocha graduated Ph.D. in Mathematics, 2000, City University, UK and is currently lecturer at the department of Mathematics, KMUTNB.