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Abstract—We investigate the possibility of analyzing indoor
location estimation under the NLoS environment by radial
distribution model. In this study, we assume that the observed
distance between the transmitter and receiver is a statistical
radial distribution. The proposed method is based on the
marginal likelihoods of radial distribution generated by positive
distribution among several transmitter radio sites placed in a
room. In this paper, we consider the two radial distribution
model – radial Weibull distribution [9] and radial extreme value
Weibull distribution [18]. To demonstrate the effectiveness of
the two methods, we carried out a simulation study to assess the
accuracy of the location estimation. Results indicate that high
accuracy was achieved when the radial extreme value Weibull
distribution based method was implemented for indoor spatial
location estimation.

Index Terms—Indoor Location Estimation, Radial Distribu-
tion, Extreme Value Distribution, Weibull Distribution

I. INTRODUCTION

In this study, we investigated the possibility of analyzing
indoor spatial location estimation under the NLoS environ-
ment by radial extreme value distribution model. In recent
times, the global positioning systems (GPS) are used daily
to obtain locations for car navigation. These systems are
very convenient, but sometimes we also require location
estimation in indoor environments, for instance, to obtain
nursing care information in hospitals. Indoor location estima-
tion based on the GPS is very difficult because it is difficult
to receive GPS signals.

A study on indoor spatial location estimation is very
important in the fields of marketing science and design for
public space. For instance, indoor spatial location estimation
is an important tool for space planning based on the evac-
uation model and shop layout planning [13], [12], [7], [6],
[11] .

Recently, indoor spatial location estimation is mostly
based on the received signal strength (RSS) method [8], [27],
[22] , angle of arrival (AoA) method [15], [24], and time of
arrival (ToA) method [23], [5], [26].

The RSS is a cost-effective method that uses general
radio signals (e.g., Wi-Fi networks). However, the signal
strength is affected by signal reflections and attenuation,
and hence, it is not robust. Therefore, location estimation
accuracy using the RSS method is very low. The AoA is a

This work was supported by JSPS KAKENHI Grant Number 30636907,
40150031.

K. Okusa is with the Department of Communication Design Science,
Faculty of Design, Kyushu University, Fukuoka, 8158540 Japan, e-mail:
okusa@design.kyushu-u.ac.jp.

T. Kamakura is with the Department of Industrial and Systems Engineer-
ing, Faculty of Science and Engineering, Chuo University, Tokyo, 112-8551
Japan, e-mail: kamakura@indsys.chuo-u.ac.jp.

highly accurate method that uses signal arrival directions and
estimated distances. However, this method is very expensive
because array signal receivers are required. The ToA method
only makes use of the distance between the transmitter and
the receiver. The accuracy of this method is higher than that
of the RSS method and its cost is also lower than that of the
AoA method. For this reason, it has been suggested that the
ToA method is the most suitable method for practical indoor
location estimation system [20].

In this study, we made use of the ToA data-based measure-
ment system. The location estimation algorithm implemented
in previous studies were mostly based on the least-squares
method. However, using the least-squares method to process
the outlier value is difficult, and such data is frequently
encountered in the ToA method .

To address this problem, we propose a method based on
the marginal likelihoods of radial distribution generated by
positive distribution among several transmitter radio sites
placed within a room – radial distribution based approach [9]
and radial extreme value based approach [18]. These method
shows good performance for indooor location estimation,
however, we still not compare the performance of two
methods. In this paper, a comparison of the two methods
was carried out to demonstrate its potential for practical use.

To demonstrate the effectiveness of our method, we carried
out a simulation study to assess the accuracy of the location
estimation. The results indicate that high accuracy was
achieved when the extreme distribution based method was
implemented for indoor spatial location estimation.

The rest of this paper is organized as follows. In Section
II, the features and problems of ToA signals are discussed.
In Section III, we will present models for indoor location
estimation under the NLoS environment based on the radial
extreme value distribution. In Section IV, we will present
some performance results from a simulation study to demon-
strate the effectiveness of our model. We will conclude with
a summary in Section V.

II. TIME OF ARRIVAL (TOA) DATA

ToA is one of the methods used to estimate the distance
between the transmitter and receiver. This method is com-
puted from the travel time of radio signals between the
transmitter and receiver. When the transmitter ’ time and
the receiver’s time have been completely synchronized, the
distance d between the transmitter and receiver is calculated
as follows:

d = C(rr − rt), (1)
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where rt and rr are transmitted and received time, respec-
tively. C is the speed of light. In an ideal circumstance,
d provides accurate distance between the transmitter and
receiver called the Line-of-Sight. In this case, the location
of the subject is easily estimated by trilateration (Figure 1).

Fig. 1. Location estimation by trilateration (ideal case)

However, in many cases, the distance d includes error com-
ponents called Non Line-of-Sight (NLoS) [3], [25] (Figure
2).

!

"

Line-of-Sight Non Line-of-Sight

"

Fig. 2. LoS, NLoS illustration

NLoS conditions are mainly due to obstacles between the
transmitter and receiver, i.e., signal reflections. In this case,
the observed distance d will be longer than the true distance.
Fujita et. al. [4] reported that the observed distance of LoS
and NLoS are defined as follows:

dk,LoS =
√

(x− ck1)2 + (y − ck2)2 + ek (2)

dk,NLoS =
√

(x− ck1)2 + (y − ck2)2 + ek + bk (3)

In the LoS case, the observed value is distributed from
the true distance with error term ek ∼ N(0, σ2

k), where
N(·) is the normal distribution. However, in the NLoS
case, the observed value contains an additional bias term
bk ∼ U(0, Bmax), where U(·) is the uniform distribution.
Bmax is the possible maximum bias value of the observed
value.

Figure 3 shows an example of the error density between
the true distance and observed distance. Here, solid line
represents the LoS case density, and dashed line represents
the NLoS case density. Figure 3 indicates that for the NLoS
case, the estimated distance is not distributed in true distance.

To address this, some studies implemented the model-
based MLE approach[10], [19], [14]; however, these methods
were modelized by 1-D distribution. ToA signals indicate
only the distance, and not the angle. We can assume that
the observed signal is a 2-D distribution and we propose the
statistical radial distribution.

From the viewpoint of 2-D distribution, Kamakura &
Okusa [9] proposed the radial distribution-based location
estimation. However, this method did not consider the NLoS
situation. For the NLoS case, Okusa & Kamakura [16], [17]
proposed the NLoS bias correction approach, but this method
requires iteration calculation. Therefore, it is not suitable for
real-time location estimation.

In this study, we assumed that the minimum value of the
observed signal is the true distance between the transmitter
and receiver (Figure 5). We modeled the distribution of
the minimum value (extreme value distribution) for indoor
location estimation.

LoS Case

NLoS Case

Fig. 3. Error density between true distance and observed distance

III. INDOOR LOCATION ESTIMATION ALGORITHM

In this section, the indoor location estimation algorithm
is presented. The proposed method is based on the marginal
likelihoods of radial distribution generated by positive dis-
tribution. In this paper, we focus on the radial weibull
distribution and radial extreme value weibull distribution.

A. Radial Weibull Distribution

Considering that the obtained distances were all positive,
we propose the following circular distribution based on the
Weibull distribution [9]:

f(r, θ) =
1

2π

(m
η

)( r
η

)m−1

exp
{
−
( r
η

)m}
(r, η,m > 0, 0 ≤ θ < 2π). (4)

Here, η and m are the shape and scale parameters of the
Weibull distribution, respectively.
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Fig. 4. Radial Weibull Distribution (m = 3, λ = 0.5)

From Eq.4, we can convert from Polar to Cartesian coor-
dinates:

g(x, y) =
λm

2π
(
√
x2 + y2)m−2 exp

{
− λ(

√
x2 + y2)m

}
(x, y, λ,m > 0). (5)

Here, λ = 1/ηm (Figure 4).
Assuming that each transmitter station observes indepen-

dent measurements, the likelihood based on the data set is
calculated as follows:

L(λ1,m1, ..., λK ,mK) =
K∏
i=1

ni∏
j=1

λimi

2π
(
√
(xij − ci1)2 + (yij − ci2)2)

m−2

exp
[
− λi{

√
(xij − ci1)2 + (yij − ci2)2}m

]
. (6)

Here, K is the number of stations and for each station i,
the sample size is ni. The observed data set for station i
is (xij , yij). The coordinates (ci1, ci2) are given transmitter
station positions (Figure 1).

We calculate the estimates of x − y location parameters
by maximizing the joint estimated likelihoods:

g(α, β) =
K∏
i=1

λ̂im̂i

2π

{
(α− ci1)

2 + (β − ci2)
2
} m̂i

2 −1

× exp
[
− λ̂i

{
(α− ci1)

2 + (β − ci2)
2
} m̂i

2
]

(7)

The MLE of the TAG location is obtained from solving
numerically the following simultaneous equations:

F =
∂ log g

∂α
=

K∑
i=1

[ (m̂i − 2)(α− ci1)

(α− ci1)2 + (β − ci2)2

−λ̂im̂i(α− ci1)
{
(α− ci1)

2 + (β − ci2)
2
} m̂i

2 −1]
= 0

(8)

The asymptotic variance of the x-location is as follows:

AV ar
[
α(m̂i, λ̂i, · · · , m̂K , λ̂K)] = hT

11Σ̂h11

hT
11 =

( ∂α

∂m̂i
,
∂α

∂λ̂i

, · · · , ∂α

∂m̂K
,
∂α

∂λ̂K

)
(9)

Here we note that the tedious calculations are needed
for the differentiations by the theorem on implicit functions
for maximization. Similarly, asymptotic variance of the y-
location is as follows:

AV ar
[
β(m̂i, λ̂i, · · · , m̂K , λ̂K)] = hT

22Σ̂h22

hT
22 =

( ∂β

∂m̂i
,
∂β

∂λ̂i

, · · · , ∂β

∂m̂K
,
∂β

∂λ̂K

)
(10)

Then, the asymptotic covariance matrix becomes

ACov[(α̂, β̂)] = HT Σ̂H

HT =

(
∂α
∂m̂i

, ∂α
∂λ̂i

, · · · , ∂α
∂m̂K

, ∂α
∂λ̂K

∂β
∂m̂i

, ∂β

∂λ̂i
, · · · , ∂β

∂m̂K
, ∂β

∂λ̂K

)
(11)

Here we note that the following notation should be used.

∂α

∂m̂i
=

D(F,G)

D(βm̂i
/∆

∂α

∂λ̂i

=
D(F,G)

D(βλ̂i

/∆

∂β

∂m̂i
=

D(F,G)

D(αm̂i
/∆

∂β

∂λ̂i

=
D(F,G)

D(αλ̂i

/∆

D =
D(F,G)

D(α, β)
(for i = 1, ...,K) (12)

The above results come from the theorem on implicit
functions. Finally we can obtain the confidence region by
the following inequality equation.

(x− α̂, y − β̂)[HT Σ̂H]−1

(
x− α̂

y − β̂

)
≤ χ2

2(p) (13)

The asymptotic covariance matrix needed for calculation of
Eq.13 is as follows:

Σ =

I−1
1 · · · 0
...

. . .
...

0 · · · I−1
K


I−1
i =

6

niπ2
× m2
i miλi(γ + log λ− 1)

miλi(γ + log λ− 1) λ2
i {1 + (γ − 2)γ + π2

+2 log λi(γ + log λi − 1)}


(14)

B. Radial Extreme Value Distribution

In the NLoS case, we can assume that the minimum
value of the observed signals is the true distance between
the transmitter and receiver (Figure 5). It is reasonable to
assume that extreme value distribution is suitable for the
NLoS data case. The extreme value distribution of the 3-
parameter Weibull distribution is formulated as follows [18]:

Fz(z) = 1− {1− Fx(z)}n

= 1−
[
exp

{
−
(z
η

)m}]n
= 1− exp

{
−
( z

η/n
1
m

)m}
(15)
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True distance from transmitter

NLoS bias

Mode value of Weibull distribution

Fig. 5. ToA data NLoS bias

where z = min(X1, X2, ..., Xn). The shape and scale
parameters of the extreme value Weibull distribution are m
and ηn− 1

m , respectively. The shape and scale parameters
are estimated from the radial Weibull distribution parameters
(Eq.5). Considering the circular extreme value distribution,
we can rewrite Eq.15 as follows:

Fz(r, θ) =
1

2π

[
1− exp

{
−
( r

η/n
1
m

)m}]
(r, η,m > 0, 0 ≤ θ < 2π). (16)

From Eq.16, we can convert from Polar to Cartesian coordi-
nates, same as in Eq.5, as follows:

h(x, y) =

1

2π
√
x2 + y2

[
1− exp

{
−
(√x2 + y2

η/n
1
m

)m}]
(x, y, η,m > 0). (17)

Using a similar procedure as in Eq.6, and assuming that each
transmitter station observes independent measurements, the
likelihood based on the data set is calculated as follows:

L(η1,m1, g1, ..., ηK ,mK , gK) =
K∏
i=1

ni∏
j=1

1

2π
√

(xij − ci1)2 + (yij − ci2)2[
1− exp

{
−
(√(xij − ci1)2 + (yij − ci2)2 − gi

ηi/n
1

mi

)mi
}]

(18)

It is reasonable to assume that the highest probability
location (x̂, ŷ) is the estimated location of the subject (Figure
6). The highest probability location from the likelihood

function is calculated as follows:

(x̂, ŷ) = argmaxG(η̂1, m̂1, ..., η̂K , m̂K)

G(x, y; η1,m1, ..., ηK ,mK) =
K∏
i=1

1

2π
√
(x− ci1)2 + (y − ci2)2[

1− exp
{
−
(√(x− ci1)2 + (y − ci2)2

ηi/n
1

mi

)mi
}]

(19)

Fig. 6. Location estimation based on radial Weibull distribution

Calculation of maximizing the joint estimated likelihoods
is same as the radial weibull distribution case.

In the next section, a comparison of simulation result of
the two methods is presented.

IV. SIMULATION DETAILS AND RESULTS

To demonstrate the effectiveness of the two methods, we
carried out a simulation experiments.

We considered the 10.0 m × 10.0 m space chamber, four
transmitters at c1 = (0, 0), c2 = (10, 0), c3 = (0, 10), and
c4 = (10, 10). We generated the observation signal from the
Weibull distribution random number Xi ∼ Weibull(m,λ),
where Xi are the random numbers at station i, m is the
shape parameter, λ is the scale parameter calculated from
λ = l0/Γ(1+

1
m ), l0 is the location parameter calculated from

l0 =
√
(α− ci,1)2 + (α− ci,2)2, and α, β are the receiver’s

location. The number of random number generation was set
to N = 100. We estimated the radial extreme value Weibull
distribution parameters η̂, m̂ from the proposed method and
estimated the receiver’s location.

For the simulation, the receiver’s locations were at (5, 5),
(1, 1), (5, 2.5), and (2.5, 2.5).

Figure 7 shows the radial Weibull distribution’s marginal
likelihood in static experiment at receiver location (5, 5),
(1, 1), (5, 2.5), (2.5, 2.5).

In Figure 7, the upper left figure is location (5, 5), upper
right figure is location (1, 1), lower left figure is location
(5, 2.5), and lower right figure is location (2.5, 2.5). The
figure color indicates the marginal likelihood value, and light
tone indicates high probability. The black circle in the light
tone area is the receiver location.

Figure 8 shows the radial extreme value Weibull distri-
bution’s marginal likelihood in static experiment at receiver
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Fig. 7. Radial Weibull distribution’s marginal likelihood in static experiment at receiver location (5, 5) (upper left), (1, 1) (upper right), (5, 2.5) (lower
left), and (2.5, 2.5) (lower right).

location (5, 5), (1, 1), (5, 2.5), (2.5, 2.5) as same as the
Figure 8.

Table I shows average error distance and standard devia-
tion (SD) of two methods. From Table I, radial extreme value
Weibull distribution has high accuracy than radial Weibull
distribution based approach.

TABLE I
AVERAGE ERROR DISTANCE AND STANDARD DEVIATION (SD) OF TWO

METHODS

Average error distance [m] SD
Weibull 0.29 0.49

extreme value Weibull 0.15 0.24

From Figure 7, 8, Table I, the radial extreme value Weibull
distribution based method precisely estimated the location of
the subject during simulation.

V. CONCLUSIONS

In this article, we validated the performance of an in-
door location estimation model based on the radial Weibull
distribution, radial extreme value Weibull distribution. The
simulation result suggest that radial extreme value based
model can accurately estimate the subject’s spatial locations.

In next phase, we will compare our methods with other
state-of-the-are indoor location estimation methods, and eval-
uate its performance. The computational cost of our method
is lower than that of Okusa and Kamakura ’s method
[16]; however, its applicability for practical use is limited.
Therefore, to address this limitation, we intend to review the
location estimation process, especially (x̂, ŷ) estimation from
marginal likelihood of radial extreme value obtained from
the Weibull distribution. In addition, we intend to implement
the indoor location estimation system based on the proposed
method and demonstrate its applicability.
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Fig. 8. Radial extreme value Weibull distribution’s marginal likelihood in static experiment at receiver location (5, 5) (upper left), (1, 1) (upper right),
(5, 2.5) (lower left), and (2.5, 2.5) (lower right).
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