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Abstract— In this paper, we study the white noise
from the stock model and obtained some interesting
properties. Moreover such white noise can be applied
to the black-scholes equation in the form of white
noise and obtained the option price of such equation.
We also found the kernel which has interesting prop-
erties.

Keywords: Black-Scholes equation, white noise, kernel

1 Introduction

We know that the white noise is the cause of the fluctua-
tion of the price of stock. In the past, the white noise has
not been computed properly from the stock model. For-
tunately, we can compute such white noise by using the
idea of generalized function or distribution theory. When
we get the valued of white noise we can understand how
much the fluctuation of any kind of stock. Moreover we
know the interesting properties such as the tempered dis-
tribution and a generalized stochastic process and also
the Gaussian normal distribution. Moreover, we have
applied such white noise to the Black-Scholes equation
in the form of white noise. It is well known that the
Black-Scholes equation plays an important role in finan-
cial mathematics, particularly in finding the option price
of the stock market. In this work we start with the stock
model

ds = µsdt+ σsdB (1)

where s is the price of stock at the time t, µ is the drift of
stock, σ is the volatility of stock and B is the Brownian

motion. From (1) we define the white noise ξ =
dB

dt
. Ac-
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tually,
dB

dt
does not exist in the classical sense or New-

tonian sense. But it has meaning in the distributional
sense that is in the space of tempered distribution. By
applying the Ito’s formula and the tempered distribution
to (1) we obtained the white noise ξ in the form

ξ =
1

tσ
ln
(s
s0

)
− µ

σ
+

σ

2
(2)

where s0 is the price of stock at t = 0. We can relate (2)
to the Black-Scholes equation which is given by

∂u(s, t)

∂t
+ rs

∂u(s, t)

∂s
+

σ2

2
s2

∂2u(s, t)

∂s2
− ru(s, t) = 0 (3)

with the terminal condition

u(s, t) = (s− p)+ (4)

(see [1], pp(637-654)) for 0 ≤ t ≤ T where u(s, t) is the
option price at time t, σ is the volatility of stock and p is
the strike price. Let u(s, t) = V (ξ, t) where ξ is given by
(2). Then (3) is transformed to the equation

∂V (ξ, t)

∂t
+

1

2t2
∂2V (ξ, t)

∂ξ2
+
( r

tσ
− σ

2t

) ∂V (ξ, t)

∂ξ
−rV (ξ, t) = 0

(5)
with the condition

∂V (ξ, t)

∂t
= f(ξ), 0 ≤ t ≤ 1 (6)

where f(ξ) is the given generalized function. We obtain
the solution V (ξ, t) of (5) with (6) in the convolution form

V (ξ, t) = K(ξ, t) ∗ f(ξ) (7)

where

K(ξ, t) =

√
t

2π(1− t)
exp−(1−t)r exp[

−t(ξ − (
r

σ
− σ

2
) ln t)2

2(1− t)
]

(8)
is the kernel (see [2], pp 1627-1634)

2 Preliminary Notes

Recall the stock model

ds = µsdt+ σsdB (9)
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or

ds = µsdt+ σsḂ(t)dt

where Ḃ(t) =
dB

dt
is the white noise denoted by ξ(t) =

Ḃ(t). Apply the Ito’s formula to (9), we obtain∫ t

0

d(ln s(τ)) =

(
µ− σ2

2

)∫ t

0

dτ + σ

∫ t

0

Ḃ(τ)dτ

where 0 ≤ τ ≤ t Thus

ln s(t)− ln s0 =

(
µ− σ2

2

)
t+ σ

∫ t

0

ξ(τ)dτ (10)

where ξ(τ) = Ḃ(τ) and s(0) = s0. Since Ḃ(t) =
dB

dt
does

not exist in classical sense or Newtonian sense. But it
can be show that ξ(t) = Ḃ(t) is a tempered distribution,
that is ξ ∈ Ś(R)- the space of tempered distribution (see
[3], pp 6-8). Thus for any testing function φ ∈ S(R)-the

Schwartz space, define ⟨ξ, φ⟩ =
∫ t

0
ξ(τ)φ(τ)dτ .

Thus, from (10)

ln
s(t)

s0
=

(
µ− σ2

2

)
t+ σ

∫ t

0

φ(τ)

φ(τ)
ξ(τ)dτ

for φ(τ) ̸= 0. Now ξ(τ) ∈ Ś(R), also
1

φ(τ)
ξ(τ) ∈ Ś(R).

Let F (τ) =
1

φ(τ)
ξ(τ) thus

∫ t

0

ξ(τ)

φ(τ)
=

∫ t

0

F (τ)φ(τ)dτ.

Since F (τ)φ(τ) is a smooth function of τ . By mean value
theorem, there exist τ∗ for 0 ≤ τ∗ ≤ t such that∫ t

0

F (τ)φ(τ)dτ

= F (τ∗)φ(τ∗)

∫ t

0

dτ

= F (τ∗)φ(τ∗)t

=
ξ(τ∗)

φ(τ∗)
φ(τ∗)t

= ξ(τ∗)t

Thus from (10)

ln
s(t)

s0
=

(
µ− σ2

2

)
t+ σξ(τ∗)t.

Thus

ξ =
1

tσ
ln

(
s

s0

)
− µ

σ
+

σ

2
(11)

for t ̸= 0. By changing the variable s to ξ from (11) and
let u(s, t) = V (ξ, t) we have

∂u

∂s
=

∂V

∂s

=
∂V

∂ξ

∂ξ

∂s

=
1

tσs

∂V

∂ξ
,

and

∂2u

∂s2
=

∂2V

∂s2

=
∂

∂ξ

(
1

tσs

∂V

∂ξ

)
∂ξ

∂s

=
1

t2σ2s2
∂2V

∂ξ2
− 1

tσs2
∂V

∂ξ
.

Thus (3) is transformed to

∂V (ξ, t)

∂t
+

1

2t2
∂2V (ξ, t)

∂ξ2
+
( r

tσ
− σ

2t

) ∂V (ξ, t)

∂ξ
−rV (ξ, t) = 0

(12)
where 0 < t ≤ T with the terminal condition of (4) and
(11)

V (ξ, T ) =

(
s0 exp

[
(µ− σ2

2
)T + σTξ

]
− p

)+

. (13)

Let f(ξ) =

(
s0 exp

[
(µ− σ2

2
)T + σTξ

]
− p

)+

thus

V (ξ, T ) = f(ξ) (14)

Definition 2.1 Let f(x) is a locally integrable function.

The Fourier transform f̂(ω) of f(x)is definition by

f̂(ω) =

∫ ∞

−∞
e−iωxf(x)dx (15)

and the inverse Fourier transform of f̂(ω) also defined by

f(x) = F−1f̂(ω) =
1

2π

∫ ∞

−∞
eiωxf̂(ω)dω (16)

3 Main Results

Theorem 3.1 The equation given by (12) with the ter-
minal condition given by (14) has a solution V (ξ, t) =
K(ξ, t) ∗ f(ξ) in the convolution form, where

K(ξ, t) =

√
tT

2π(T − t)
e−(T−t)rexp

[−tT
(( r

σ
− σ

2

)
ln

T

t
+ ξ
)2

2(T − t)

]

is the kernel of (12)
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Proof . Take the Fourier transform defined by (15) to
(12), we obtain

∂V̂ (ω, t)

∂t
− ω2

2t2
V̂ (ω, t)+

1

t

( r
σ
−σ

2

)
iωV̂ (ω, t)−rV̂ (ω, t) = 0.

Thus

V̂ (ω, t) = C(ω)erte
−
ω2

2t
− iω

( r
σ
− σ

2

)
lnt

and from (14),

V̂ (ω, t) = f̂(ω)

and

V̂ (ω, T ) = C(ω)erT e
−
ω2

2T
−iω

( r
σ
− σ

2

)
lnT

Thus

C(ω) =
f̂(ω)

e
rT−

ω2

2T
− iω(

r

σ
− σ

2
) lnT

= f̂(ω)e
−rT+

ω2

2T
+ iω(

r

σ
− σ

2
) lnT

Thus

V̂ (ω, t)

= e(−T−t)rexp
(
(
1

2T
− 1

2t
)ω2 + (lnT − ln t)iω

( r
σ
− σ

2

))
f̂(ω),

as a solution of (12) for 0 < t ≤ T . Now

|V̂ (ω, t)| ≤ |e−(T−t)r||e

( 1

2T
− 1

2t

)
ω2

||f̂(ω)|

Let M = max |f̂(ω)|. Now |e−(T−t)r| and|e
−
1

2
(
1

t
− 1

T
ω2

|
are bounded, thus

|V̂ (ω, t)| ≤ |e−(T−t)r||e
−
1

2

( 1

T
− 1

t

)
ω2

|M ≤ K

is bounded. Thus the inversion

V (ξ, t)

=
1

2π

∫ ∞

−∞
eiωξV̂ (ω, t)dω

=
1

2π

∫ ∞

−∞
eiωξe−(T−t)r

exp
[
− 1

2

(1
t
− 1

T

)
ω2 − ln

T

t
iω
( r
σ
− σ

2

)]
f̂(ω)dω

=
1

2π
e−(T−t)r

∫ ∞

−∞

∫ ∞

−∞
e(ξ−y)iω

exp
[
− 1

2

(1
t
− 1

T

)
ω2 − ln

T

t
iω
( r
σ
− σ

2

)]
f(y)

dydω

=
1

2π
e−(T−t)r

∫ ∞

−∞

∫ ∞

−∞

exp
[
− (T − t)

2tT

[
ω2 − 2tT

( ln T

t
(
r

σ
− σ

2
) + ξ − y

T − t

)
iω
]]

f(y)dydω

=
1

2π
e−(T−t)r

∫ ∞

−∞

∫ ∞

−∞

exp
[
− (T − t)

2tT

[
ω − tT

( ln T

t
(
r

σ
− σ

2
) + ξ − y

T − t

)
i
)2

− tT
( ln T

t
(
r

σ
− σ

2
) + ξ − y

2(T − t)

)2]
f(y)dydω

Put u =

√
(T − t)

2tT

(
ω −

itT (ln
T

t
(
r

σ
− σ

2
) + ξ − y)

T − t

)
,

then du =

√
(T − t)

2tT )
dω or dω =

√
2tT

T − t
du. Thus

V (ξ, t) =
1

2π
e−(T−t)r

∫ ∞

−∞
e−u2

du

√
2tT

T − t∫ ∞

−∞
exp

[
−

−tT (ln T
t (

r
σ − σ

2 )ξ − y)2

2(T − t)

]
f(y)dy

=
1

2π

√
2tT

T − t
e−(T−t)r

√
π∫ ∞

−∞
exp

[
−

−tT (ln T
t (

r
σ − σ

2 )ξ − y)2

2(T − t)

]
f(y)dy,
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since

∫ ∞

−∞
e−u2

du =
√
π.

Thus

V (ξ, t) =

√
tT

2π(T − t)
e−(T−t)r

∫ ∞

−∞

exp
[−tT (ln

T

t
(
r

σ
− σ

2
) + ξ − y)2

2(T − t)

]
f(y)dy.

Actually K(ξ, t) is the kernel of (12).
Thus V (ξ, t) = K(ξ, t) ∗ f(ξ) in the convolution form.

Now,K(ξ, t) =

√√√√ 1

2π
(T − t)

tT

e−(T−t)r

exp

[−( ln T
t

(
r
σ − σ

2

)
+ ξ
)2

2
(T − t)

tT

]
.

Thus K(ξ, t) is a Gaussian function or normal distribu-
tion with mean
e−(T−t)r

(
σ
2 − r

σ

)
ln T

t and variance e−2(T−t)r
(T−t)

tT .

Thus K(ξ, t) ∗ f(ξ) we need to show that as
t → T, V (ξ, t) = δ(ξ) ∗ f(ξ) = f(ξ) that (14) holds.
That means limt→T K(ξ, t) = δ(ξ) where δ(ξ) is the
Dirac-delta distribution. Moreover, we see that the
kernel K(ξ, t) involving the white noise ξ which causes
the fluctuation of the price of stock as mentioned before.
Actually, such kernel plays the significant role for find the
particular solution of the nonhomogeneous differential
equation. For example, given the nonhomogeneous
differential equation Lu(x) = f(x) where L is the partial
differential operator, then we can find the particular
solution u(x) = K(x) ∗ f(x) where K(x) is the kernel of
such equation.

Corollary 3.2 From V (ξ, t) = K(ξ, t) ∗ f(ξ), 0 < t ≤ T.
We obtain the following conditions.

(i) V (ξ, T ) = f(ξ) that is the terminal condition.

(ii) limt→0+ V (ξ, t) = 0.

Proof. (i) We need to show that limt→T K(ξ, t) = δ(ξ).
Now,

K(ξ, t) =

√
tT

2π(T − t)
e−(T−t)exp

[−tT (ln
T

t
(
r

σ
− σ

2
) + ξ)2

2(T − t)

]
.

Thus

lim
t→T

K(ξ, t) = lim
t→T

e−(T−t) lim
t→T

√
tT

2π(T − t)

exp
[−tT (ln

T

t
(
r

σ
− σ

2
) + ξ)2

2(T − t)

]
.

= 1 · δ(ξ) = δ(ξ).

Thus V (ξ, t) = δ(ξ) ∗ f(ξ) = f(ξ).
(ii) We have limt→0+ V (ξ, t) = limt→o+ K(t, ξ, t) ∗ f(ξ).
By applying L’Hospital rule we obtain limt→0+ K(ξ, t) =
0. Thus

lim
t→0+

V (ξ, t) = 0 ∗ f(ξ) = 0.

Now, we have

V (ξ, t) = u(s, t) = u

(
s0 exp

[
(µ− σ2

2
)t+ σtξ

]
, t

)
but from (3.2), V (ξ, 0) = 0 it follows that V (ξ, 0) =
u(s0, 0) = 0. Now consider the option price at t = 0, s =
s0 and we have u(s0, 0) = 0 which is not really appear in
the real world. Actually when t = 0, s = s0 the option
price u(s0, 0) need not be zero. This can be conclude that
the initial condition V (ξ, 0) of (12) mat be different from
the initial condition u(s0, 0) of (3).

Theorem 3.3 Properties of K(ξ, t).

(i) K(ξ, T ) satisfies equation (12)

(ii) K(ξ, T ) is a tempered distribution, that is
K(ξ, T ) ∈ S ′(R).

(iii) K(ξ, T ) > 0 for 0 < t ≤ T.

(iv) e(T−t)r
∫∞
−∞ K(ξ, T )dξ = 1.

(v) limt→1 K(ξ, T ) = δ(ξ).

(vi) K(ξ, T ) is Guassian distribution with mean

e(T−t)r
(

σ
2 − r

σ

)
ln T

t

and variance e−2(T−t)r (T − t)

tT
. That is K(ξ, T ) is(

e(T−t)r
(

σ
2 − r

σ

)
ln
(

T
t

)
, e−2(T−t)r (T − t)

tT

)
.

Proof . (i) By computing directly,K(ξ, T ) satisfies (12).
(ii) Since K(ξ, T ) is a Gaussian function and
K(ξ, T ) ∈ L(R)- the space of integrable function on the
real R. It follows that K(ξ, T ) is N a tempered distribu-
tion.
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(iii) K(ξ, T ) > 0 for 0 < t ≤ T is obvious.
(iv)

e(T−t)r

∫ ∞

−∞
K(ξ, t)dξ

= e(T−t)r

∫ ∞

−∞

√
tT

2π(T − t)
e−(T−t)r

exp
[−tT

(( r
σ
− σ

2

)
ln

T

t
+ ξ
)2

2(T − t)

]
dξ

=

√
tT

2π(T − t)

∫ ∞

−∞
exp
[−tT

(( r
σ
− σ

2

)
ln

T

t
+ ξ
)2

2(T − t)

]
dξ.

Let u =

√
tT

2π(T − t)
[ξ + (

r

σ
− σ

2
) ln

T

t
,

then du =

√
tT

2π(T − t)
dξ or dξ =

√
2(T − t)

tT
du.

Thus

e(T−t)r

∫ ∞

−∞
K(ξ, t)dξ

=

√
tT

2π(T − t

∫ ∞

−∞
e−u2

√
2(T − t)

tT
du

=

√
tT

2π(T − t

√
2(T − t)

tT

√
π

= 1

(v) limt→1 K(ξ, T ) = δ(ξ) by Corollary (3.2)
(vi) Since

K(ξ, t)

=

√
tT

2π(T − t)
e−(T−t)r exp

[−tT
(( r

σ
− σ

2

)
ln

T

t
+ ξ
)2

2(T − t)

]

= e−(T−t)r

√
1

2π

(1
t
− 1

T

)
exp

[−(ξ − (σ
2
− r

σ

)
ln

T

t

)2
2
(1
t
− 1

T

) ]

Thus K(ξ, t) is a Gaussian distribution with

mean = E

(
e−(T−t)r

√√√√ 1

2π
(

1
t −

1
T

)

exp

[−(ξ − (σ
2 − r

σ

)
ln T

t

)2
2
(

1
t −

1
T

) ])

= e−(T−t)r
(σ
2
− r

σ

)
ln

T

t
,

where E is expectation.
And

variance = V

(
e−(T−t)r

√√√√ 1

2π
(1
t
− 1

T

)

exp

[−(ξ − (
σ

2
− r

σ
) ln

T

t
)2

2
(1
t
− 1

T

) ])

= e−(T−t)rV

(√√√√ 1

2π
(1
t
− 1

T

)

exp

[−(ξ − (
σ

2
− r

σ
) ln

T

t
)2

2
(1
t
− 1

T

) ])

= e−2(T−t)r
(1
t
− 1

T

)

where V is variance.
Thus K(ξ, T ) is(

e(T−t)r
(σ
2
− r

σ

)
ln
(T
t

)
, e−2(T−t)r (T − t)

tT

)
.

Note : The solution V (ξ.t) of (12) is called the option
price in the white noise form where the white noise ξ can
be computed from (11) , now

V (ξ, t) =

√
tT

2π(T − t)
e−(T−t)r

∫ ∞

−∞
exp

[−tT (ln
T

t
(
r

σ
− σ

2
) + ξ − y)2

2(T − t)

]
f(y)dy.

or

V (ξ, t)e−(T−t)r =

√
tT

2π(T − t)

exp

[−tT (ln
T

t
(
r

σ
− σ

2
+ ξ − y)2

2(T − t)

]
∗ f(ξ)

The left hand side of the above equation is the value
of money that the option price V (ξ, t) put in the Bank
with the riskless interest r at the time T − t(0 ≤ t ≤ T ).

4 Conclusion

It is well known that the volatility σ causes the fluctua-
tion of the price of stock. But there is another factor that
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called the white noise ξ which is not really well known.
Such white noise ξ also cause the fluctuation of the price
of stock. We are succeeded in formulating the white noise
ξ given in (2). Such white noise ξ is helpful for the in-
vestor to estimate the expected return of the price of
stock for trading.
Moreover, we can relate such white noise ξ to the Black-
Scholes equation which is the important area of studying
the option prices of the stock market.
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