
 

 

Abstract—The purpose of this paper is to study the Legendre 

wavelets for the solution of linear and nonlinear fractional 

integro-differential equations. The properties of Legendre 

wavelets together with the fractional order operational matrix 

of integration are used to reduce the problem to the solution of a 

system of algebraic equations. Also a reliable approach for 

convergence of the Legendre wavelets method is discussed. 

Further some numerical examples are shown to illustrate the 

accuracy and reliability of the proposed approach and the 

results have been compared with the exact solution. 
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I. INTRODUCTION 

N recent years, fractional calculus has attracted many 

researchers successfully in different disciplines of science 

and engineering. One of the main advantages of the fractional 

calculus is that the fractional derivatives provide a superior 

approach for the description of memory and hereditary 

properties of various materials and processes [1-3]. 

Differential equations involving fractional order derivatives 

are used to model a variety of systems, such as the field of 

viscoelasticity, heat conduction, electrode-electrolyte 

polarization, electromagnetic waves, diffusion equations and 

so on [4-6]. Since its tremendous applications in several 

disciplines, a considerable attention has been given to the 

exact and the numerical solutions of fractional differential 

equations and fractional integral equations. Even numerical 

approximation of fractional differentiation of rough 

functions is not easy as it is an ill-posed problem. 

Other than modeling aspects of these differential equations, 

the solution techniques and their reliability are rather more 

important. In order to obtain the goal of highly accurate and 

reliable solutions, several methods have been proposed to 

solve the fractional order differential and fractional order 

integral equations. The most commonly used methods are 

Variational Iteration Method [7], Adomian Decomposition 

Method [8-9], Generalized Differential Transform Method 

[10-11] and Wavelet Method [12-13]. 
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In this paper, the main objective of the present paper is to 

introduce the Legendre wavelets method to solve the linear 

and nonlinear fractional integro-differential equations. The 

method is based on reducing the equation to a system of 

algebraic equations by expanding the solution as Legendre 

wavelets with unknown coefficients. The main characteristic 

of an operational method is to convert a differential equation 

into an algebraic one. It not only simplifies the problem but 

also speeds up the computation. 

II. LEGENDRE WAVELETS AND THEIR PROPERTIES 

The Legendre wavelets ( )nm x are given by the 

following [14] 
1/2
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where 1,2, ,k  ˆ 2 1n n  , 
11,2, ,2kn  , 

0,1, , 1m M  is the degree of the Legendre 

polynomials and M is a fixed positive integer, ( )mP x are 

the Legendre polynomials of degree m . 

A function ( )f x defined over [0,1) may be expanded by 

the Legendre wavelets as 
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where ( ), ( )nm nmc f x x , and , is the inner product 

of ( )f x and ( )nm x . 

   If the infinite series in Eq.(2) is truncated, then Eq.(2) can 

be written as 
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where C and ( )x are 
1ˆ 2km M column vectors, given 

by 
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For simplicity, we write Eq.(5) as 
ˆ
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where 
i nmc c , 

i nm  . The index i is determined by 

the relation ( 1) 1i M n m    . Therefore, we have 
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Similarly, an arbitrary function of two variables ( , )u x y
 

defined over [0,1) [0,1) may be expanded into the 

Legendre wavelets basis as 
ˆ ˆ

1 1
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where [ ]ijU u and ( ), ( , ), ( )ij i ju x u x y y  . 

   We investigate the convergence of the Legendre wavelets 

expansion in the following theorems. 

Theorem 2.1 A function ( )f x , defined on [0,1] , is with 

bounded second derivative, say ( )f x M  , can be 

expanded as an infinite sum of Legendre wavelets, and the 

series converges uniformly to the function ( )f x , that is  

1 0

( ) ( )nm nm

n m

f x c x
 

 

 , 

where ( ), ( )nm nmc f x x  and , is the inner product 

of ( )f x and ( )nm x . 
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Hence, the series 
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 is absolute convergent, it 

follows that 

1 0
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 converges to the functions 

( )f x uniformly. 

Theorem 2.2 If a continuous function ( , )u x y defined on 

[0,1) [0,1) has bounded mixed fourth partial derivative 

4

2 2

( , ) ˆu x y
M
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, then the Legendre wavelets expansion of 

( , )u x y converges uniformly to it. 

Proof. Let ( , )u x y be a function defined on [0,1] [0,1]
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, where M̂ is a positive constant. The 

Legendre wavelet coefficients of function ( , )u x y are 

defined as 
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by change of ˆ2k x n t  , and 
1

2k
dx dt , we get 
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By solving this equation, we have 
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This means that the series 
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 is absolutely 

convergence. 

III. OPERATIONAL MATRIX OF THE INTEGRATION FOR 

LEGENDRE WAVELETS 

A. Fractional calculus 

Before we introduce the Legendre wavelets operational 

matrix of the fractional integration, we first review some 

basic definitions of fractional calculus, which have been 

given in [15]. 

Definition 1. The Riemann-Liouville fractional integral 

operator J 
of order  is given by 
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Definition 2. The Caputo definition of fractional differential 
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The Caputo fractional derivatives of order  is also defined 

as * ( ) ( )r rD f x J D f x  . The relation between the 

Riemann-Liouville operator and Caputo operator are : 

* ( ) ( )D J f x f x                                                           (13) 
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B. Fractional order Legendre wavelets operational matrix 

of integration. 

In this part, we may simply introduce the operational 

matrix of fractional integration of Legendre wavelets, more 

detailed introduction can be found in the Ref. [14]. 

Apart from the Legendre wavelets, we consider another 

basis set of block pulse functions. The set of these functions, 

over the interval [0,1) , is defined as [16] 

1, ( 1)
( )

0, ,
i

ih x i h
b x

otherwise

  
 


 ˆ0,1,2, , 1i m    (15) 

with a positive integer value for m̂ and 
1

ˆ
h

m
 .  

The following properties of block pulse functions will be 

used in this paper 
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There is a relation between the block pulse functions and 

Legendre wavelets, namely 
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i
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If J 
is fractional integration operator of Legendre wavelets, 

we can get: 

( ) ( )J x P x                                                          (20) 

where P
is called the Legendre wavelets operational matrix 

of fractional integration. Using Eq.(18) and Eq.(19), we have  

( ) ( ) ( ) ( )J x J B t J B t F B t                        

                    (21) 

From Eq.(20) and Eq.(21), we can obtain 

( ) ( ) ( )P x P B x F B x                                    (22) 

Then, the matrix P
is given by 
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IV. THE ALGORITHM FOR FINDING NUMERICAL SOLUTION OF 

FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS 

A. Linear multi-order fractional integro-differential 

equations 

 Consider the linear multi-order fractional integro- 

differential equations 
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subject to initial conditions 
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where Q is a m̂ -vector with elements equal to the diagonal 

entries of the following matrix 
1

1 ( )TQ K diag E F                                                   (32) 

and 
1

2
0

1

2
0

2

2

( , ) ( )

( ) ( ) ( )[ ]

1
( ) [ ]

ˆ

1
( )

ˆ

T T T T

T T T

T T

k x t y t dt

x K t t C P dt

x K C P
m

C P K B x
m







   

 

 




                     (33) 

Substituting the above equations into Eq.(24), we have 
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Dispersing Eq.(35), we get 
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which is a linear system of algebraic equations. By solving 

this system we can obtain the approximation of Eq.(30). 

B. Nonlinear multi-order fractional integro-differential 

equations 

In this section we deal with nonlinear multi-order fractional 

integro-differential equation of the form 
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Following the procedure of section 4.1and using the Eq.(38) 

and Eq.(39), the Eq.(37) is transformed into a nonlinear 

system of algebraic equations 
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where W is a m̂ -vector with elements equal to the diagonal 

entries of the following matrix 
1

1 ( )T

pW K diag E F                                                (41) 

Solving the system of equations given by Eq.(40), the 

approximate numerical solution ( )y x is obtained. The 

Eq.(40) can be solved by iterative numerical technique such 

as Newton’s method.  

V. NUMERICAL EXAMPLES 

In order to illustrate the effectiveness of the proposed method, 

we consider numerical examples of linear and nonlinear 

nature. 

Example 5.1. Consider the following linear equation: 
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. 

The exact solution of this problem is 
2 3( )y x x x  . 

Table I shows the approximate solutions and exact solutions 

for different k , 2M  . 
TABLE I 

THE APPROXIMATE SOLUTION AND EXACT SOLUTION FOR 

DIFFERENT k , 2M  . 

x  4k   5k   6k   7k   
Exact 

solution 

0 0.000024 0.000012 0.000007 0.000000 0.00000 

1/8 0.015822 0.016551 0.017198 0.017566 0.017578 

2/8 0.075531 0.077098 0.077920 0.078115 0.078125 

3/8 0.192880 0.193159 0.193317 0.193351 0.193359 

4/8 0.361498 0.368505 0.373205 0.374988 0.375000 

5/8 0.622950 0.626293 0.631080 0.634693 0.634765 

6/8 0.930901 0.963194 0.981423 0.984162 0.984375 

7/8 1.391340 1.408939 1.422946 1.434649 1.435546 

From the Table I, we can see clearly that the numerical 

solutions are more and more close to the exact solution when 

k increases. 

Example 5.2. Consider this equation: 
2 1.6 2 1.2 2 0.75

1
2.3

0 0

( 1) ( ) ( 1) ( ) ( )

1 1
( ) ( ) ( ) ( ) ( )

4 2

x

x D y x x D y x x D y x

D y x x t y t dt xty t dt f x

    

    
   (43) 

where 

3.9 1.9 4.3 2.3

5.5
4.75 1.2

(4.5) (4.5)
( ) ( ) ( )

(2.9) (3.3)

(4.5) (4.5)

(3.75) (2.2) 99 11

f x x x x x

x x
x x

 
   
 

 
   
 

, 

such that (0) (0) (0) 0y y y    , the exact solution is 

7

2( )y x x . The numerical results for 3,4,5,6k  , 

2M  are shown in Figs.1-4. From the Figs.1-4, we can 

find easily that the numerical solutions are in good agreement 

with the exact solutions. The absolute errors for different 

values of k are shown in Table II. Through Table II, we can 

also see that the errors are smaller and smaller when k  

increases. 
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Fig. 1 Comparison of Num. sol. and Exa. Sol. of 3, 2k M  . 
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Fig. 2 Comparison of Num. sol. and Exa. Sol. of 4, 2k M  . 
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Fig. 3 Comparison of Num. sol. and Exa. Sol. of 5, 2k M  . 
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Fig. 4 Comparison of Num. sol. and Exa. Sol. of 6, 2k M  . 

TABLE II.  

THE ABSOLUTE ERRORS FOR DIFFERENT VALUES OF , 2k M  . 

x  3k   4k   5k   6k   

0 0 0 0 0 

1/8 2.24755e-004 4.86626e-005 6.63916e-006 7.06361e-006 

2/8 5.68826e-004 8.92015e-005 4.52890e-005 8.47627e-006 

3/8 8.06345e-004 7.09312e-005 3.13733e-005 4.04433e-006 

4/8 2.37124e-003 2.36345e-004 7.36812e-005 9.10813e-006 

5/8 2.80843e-003 7.10940e-004 2.44000e-004 3.74311e-005 

6/8 3.16123e-003 2.50721e-003 3.80861e-004 4.30647e-005 

7/8 3.35997e-003 3.03684e-003 6.01802e-004 6.80648e-005 

  

VI. CONCLUSIONS 

In the present manuscript, the application and scope of the 

Legendre wavelets have been extended to fractional order 

linear and nonlinear integro-differential equations 

successfully. We construct fractional orders generalized 

Legendre wavelets operational matrix of integration and use 

this to solve the fractional linear and nonlinear integro- 

differential equations numerically. By solving the linear and 

nonlinear system, numerical solutions are obtained. The 

convergence analysis of Legendre wavelets is proposed. The 

numerical results show that the approximation is in very good 

coincidence with the exact solution. 
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