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Abstract—Nowadays, the dynamical modeling has been an
important approach to macroscopically study the propagation
behaviors of computer virus on the Internet, and a large number
of models have been established in this field. To our knowledge,
however, the existing models did not take into account the
difference in the ability of computer security defense. As it
is known, in reality, due to the different nature and usefulness,
not all computers in a system have the same security defense
ability. In this paper, a new computer virus propagation model,
which addresses the impact of different security defense abilities
on computer virus spreading, is proposed and analyzed. In this
context, a threshold is given to determine when the computer
security defense level is need to be upgraded. Then, three
potential equilibria are obtained, and their local and global
asymptotic stability are fully studied. Furthermore, the optimal
control problem of proposed model is formulated. On this basis,
some numerical experiments are made to justify our results.

Index Terms—Computer virus, Adaptive defence strategy,
Dynamical model, Global stability, Optimal control.

I. INTRODUCTION

W ITH the rapid development of information and com-
munication technology, the Internet has become a

necessity in daily life. The openness, interactivity and dis-
persion of the Internet meet the needs of sharing, opening,
flexibility and fast, so that work, life and learning have been
greatly improved than before. The Internet is widely used for
sharing, communication and service to create the ideal space,
provide a huge impetus to the progress of human society.
However, it is precisely because of the above characteristics
of the Internet, it is inevitable to produce a lot of network
security issues which seriously affect our lives, and even
personal safety[1]. At present, the electronic commerce ages
has arrived, network security has become our most concern
while enjoying the convenience of the Internet.

In recent years, researchers have achieved great progress
in the study of mathematical modelling in virology[2]. Since
Kephart and White modeled the computer virus propagation
by using epidemiological dynamics firstly[3], [4], the study
of the macro spreading behaviors of computer viruses has
received more and more global attentions. In recent years,
multifarious computer virus propagation models have been
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proposed by modifying their corresponding biological coun-
terparts, ranging from conventional models [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], to delayed models [14],
[15], [16], [17], [18], [19], [20], to impulsive models [21],
to stochastic models [22], [23], [24], and optimal control
models[25], [26], [27], [28].

As early as 1985, Trusted Computer System Evaluation
Criteria (TcsEC)[29] was issued by the United States Depart-
ment of Defense in order to protect the security of computer.
Following this criteria, the security level of computer can be
divided into four divisions, gradually improved from low to
high, they are D , C, B and A respectively.

D - Minimal protection : It is the lowest level of security,
providing minimal security for the system. There is no limit
to the access control of the system, and the data can be
accessed without landing system. such as DOS.

C - Discretionary protection : It has the function of self-
protection and audit in the design, which can be used to
audit and restrain the behavior of the subject. Its security
strategy is mainly autonomous access control, ensuring that
unauthorized users cannot access and security management
of personal data can be achieved. C level users must provide
proof of identity to be able to achieve normal access control,
such as password mechanism.

B - Mandatory protection : It can provide mandatory
safety protection. The owner of the information resource does
not have the authority to change itself. And the system data
is under the supervision of the access control management.

A - Verified protection : The formal security verification
method is used to ensure that the system can effectively
protect the secret information or other sensitive information
stored and processed in the system.

In reality, due to the different nature and usefulness,
computers have different levels of security defense in a
network autonomous system. However, in the pre-proposed
compartment-based computer virus propagation models, they
did not take into account the difference in the ability of
computer security defense. Inspired by the above criteria,
in order to macroscopically study the impact of security
defense ability on virus spreading, the security level of
computers is divided two divisions: low and high. In this way,
a new compartment-based propagation model, in which the
traditional S-compartment is divided into SL-compartment
with low security level and SH -compartment with high
security level, is proposed.

As it is known, the computer connected to the Internet
is constantly under the threats of viruses. To defend against
various computer viruses, a network system needs to fast
respond to the complex and dynamical cyber conditions.
Therefore, it is of great importance to find a dynamical
defense approach that can automatically adjust its parameters
to fight against the virus spreading. In the new model, an
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adaptive defense strategy based on security level of computer
is introduced, which can adaptively adjust its configurations
according to network conditions to suppress the spread of
computer virus in the network. In this model, a threshold is
given, which determines when the computer security defense
level should be automatically upgraded. Besides, in this
paper, the existence of equilibria is studied. Both their local
and global asymptotic stability are analyzed. The optimal
control problem based on this model is also presented. And
some numerical experiments are also made to justify the
result that computer virus has been effectively controlled
after carrying out the adaptive defense strategy. And some
measures for containing the propagation of computer virus
are recommended.

The rest parts of this paper are organized as following:
The new model is established in Section 2. The analysis of
equilibria are addressed in Section 3. The local and global
stabilities of the equilibria are studied in Section 4 and 5,
respectively. Section 6 derives the optimal control solution
of proposed model. Numerical experiments are presented in
Section 7. Finally, this work is summarized in Section 8.

II. MODEL FORMULATION

It is assumed that all the computers connected to the net-
work are divided into three compartments : SL-compartment,
SH -compartment and Infected compartment.
(1) SL-compartment: the set of susceptible computers in

low security level.
(2) SH -compartment: the set of susceptible computers in

high security level.
(3) I-compartment: the set of infected computers.
For the modeling purpose, a series of parameters are intro-
duced and some assumptions are made as follows :
(1) It is assumed that the probability per unit time of

external computers through the network connect to the
system is b.

(2) Every computer in the system is removed for some
reasons with probability per unit time µ, where µ is
a positive constant.

(3) It is possible that susceptible computers contact with
infected computers in the system, every computer in
the SL-compartment is infected with probability per
unit time β1 and in the SH -compartment is infected
with probability per unit time β2, where β1 and β2 are
positive constants and β1 > β2.

(4) For some reasons, every infected computer in the system
is cured with probability per unit time γ, where γ is a
positive constant.

(5) Susceptible computers from SH -compartment into SL-
compartment with probability per unit time δ, where δ
is a positive constant.

(6) Imax denotes the threshold which determine when the
upgrade of security level is required.

(7) To control the number of infected computers in the
system, some measures are taken to upgrade the security
level of susceptible computers, the probability per unit
time is denoted by a piecewise function f(I). The
expression of f(I) as follows :

f(I) =

{
0 if 0 6 I < Imax
αI, if Imax 6 I

Let SL(t), SH(t), and I(t) denote, at time t, the average
numbers of SL, SH and I-compartment computers,
respectively. Let N(t) denote the total number of all
computers in the system at time t. Unless other stated
in the following content, they will be abbreviated as
N,SL, SH and I respectively. Then, SL+SH +I = N .
The collection of the above parameters and assumptions
can be schematically depicted in Fig.1, from which
the dynamical model is formulated as the following
differential system:

Fig. 1. The transfer diagram of model.


ṠL = b+ γI + δSH − f(I)SL − β1SLI − µSL
˙SH = f(I)SL − δSH − β2SHI − µSH
İ = β1SLI + β2SHI − γI − µI

(1)

Considering that SL + SH + I = N . System (1) can be
reduced to the following system :

Ṅ = b− µN
˙SH = f(I)(N − SH − I)− δSH − β2SHI − µSH
İ = β1(N − SH − I)I + β2SHI − γI − µI

(2)
Let N∗ = b

µ . Solving the first equations of system (2), it is
easy to obtain lim

t→∞
N = N∗. Therefore, system (2) can be

reduced to the following limiting system:{
Ṡ2 = f(I)(N∗ − S2 − I)− δS2 − β2S2I − µS2

İ = β1(N∗ − S2 − I)I + β2S2I − γI − µI
(3)

The feasible region for system (3) is

Ω = {(SH , I)|SH > 0, I > 0, 0 6 SH + I 6 N∗}

which is positively invariant.

III. EQUILIBRIA

In this section, the equilibria of system (3) are deduced. To
obtain its equilibria, system (3) can be rewritten as follows:{

−δSH − β2SHI − µSH = 0
β1(N∗ − SH − I)I + β2SHI − γI − µI = 0

(4)

if 0 6 I < Imax, and

{
αI(N∗ − SH − I)− δSH − β2SHI − µSH = 0
β1(N∗ − SH − I)I + β2SHI − γI − µI = 0

(5)

if Imax 6 I .
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System (4) has a virus-free equilibrium E∗0 = (0, 0). Let
R0 = β1b

µ(µ+γ) . If R0 > 1, then (4) admits a unique positive
solution E∗1 (S∗H1, I

∗
1 ), where

S∗H1 = 0, I∗1 = (R0 − 1)
µ+ γ

β1
.

Obviously, E∗1 is a viral equilibrium of (4) if R0 > 1.

From (5) a quadratic equation in I , one can get :

AI2 +BI + C = 0 (6)

where

A = (α+ β1)β2

B = (µ+ γ)(α+ β2) + (µ+ δ)β1 − β2N
∗(α+ β1)

C = (µ+ δ)(µ+ γ − β1N
∗)

From (5), we have the following system:{
β1(N∗ − SH − I) + β2SH = µ+ γ
(N∗ − SH − I) + SH + I = N∗

(7)

That is (β2 − β1)SH − β1I = µ+ γ − β1N
∗. Therefore,

µ+γ−β1N
∗ < 0, that is to say, C < 0. ∆ = B2−4AC > 0,

then (6) admits a unique positive solution I∗2 = −B+
√

∆
2A .

E∗2 (S∗H2, I
∗
2 ) can be deduced, where

S∗H2 =
(µ+ γ)(R0 − 1)− β1I

∗
2

β1 − β2
, I∗2 =

−B +
√

∆

2A

Obviously, E∗2 is a viral equilibrium of (5) if R0 > 1+
β1I

∗
2

µ+γ .

From (4) and (5), we have:{
β1(N∗ − S∗H1 − I∗1 ) + β2S

∗
H1 − γ − µ = 0

β1(N∗ − S∗H2 − I∗2 ) + β2S
∗
H2 − γ − µ = 0

(8)

Thus, β1(I∗2 − I∗1 ) + (β1 − β2)S∗H2 = 0, I∗2 < I∗1 can be
deduced.

By summarizing above analysis, we have
Theorem 1: Consider model (3), the following assertions

hold.
(1.1) E∗0 always exists;
(1.2) E∗1 exists if and only if R0 > 1 and I∗1 < Imax;
(1.3) E∗2 exists if and only if R0 > 1 +

β1I
∗
2

µ+γ and Imax 6 I∗2 .

IV. LOCAL STABILITY

To examine the local stability of the equilibria, system
(3) can be written as the following :{

ṠH = −δSH − β2SHI − µSH
İ = β1(N∗ − SH − I)I + β2SHI − γI − µI

(9)

if 0 6 I < Imax, and{
ṠH = αI(N∗ − SH − I)− δSH − β2SHI − µSH
İ = β1(N∗ − SH − I)I + β2SHI − γI − µI

(10)
if Imax 6 I . For their Jacobian matrices at the equilibria are
:

J1 =

(
−δ − β2I − µ −β2SH
−β1I + β2I J22

1

)

and
J2 =

(
−αI − δ − β2I − µ J12

2

−β1I + β2I J22
2

)
where

J22
1 = β1N

∗ − β1SH − 2β1I + β2SH − γ − µ
J12

2 = αN∗ − αSH − 2αI − β2SH
J22

2 = β1N
∗ − β1SH − 2β1I + β2SH − γ − µ.

(1) The corresponding eigenvalues of system (3) at E∗0 are
:

λ1 = −δ − µ
λ2 = (R0 − 1)(µ+ γ)

By the Lyapunov theorem[30], if only if R0 < 1, the two
eigenvalues are both negative, which means E∗0 is locally
asymptotically stable.

(2) The corresponding characteristic equation of system
(3) at E∗1 is

λ2 + a1λ+ a2 = 0,

where
a1 = δ + µ+ (β1 + β2)I∗1
a2 = (δ + µ+ β2I

∗
1 )β1I

∗
1

By the Hurwitz criteria[30], if only if R0 > 1 and
I∗1 < Imax, E∗1 is locally asymptotically stable.

(3) The corresponding characteristic equation of system
(3) at E∗2 is

λ2 + a3λ+ a4 = 0,

where
a3 = δ + µ+ (α+ β1 + β2)I∗2
a4 = (δ + µ+ β2I

∗
2 )β1I

∗
2 + αβ2(I∗2 )2 + (β1 − β2)(δ + µ)S∗H2

By the Hurwitz criteria, if only if R0 > 1 +
β1I

∗
2

µ+γ and
Imax 6 I∗2 , E∗2 is locally asymptotically stable.

In summary, we have
Theorem 2: Consider model (3), the following assertions

hold.
(2.1) E∗0 is locally asymptotically stable if and only if R0 <

1;
(2.2) E∗1 is locally asymptotically stable if and only if R0 > 1

and I∗1 < Imax;
(2.3) E∗2 is locally asymptotically stable if and only if R0 >

1 +
β1I

∗
2

µ+γ and Imax 6 I∗2 .

V. GLOBAL STABILITY

Theorem 3: Consider model (3), the following assertions
hold.

(3.1) E∗0 is globally asymptotically stable if and only if R0 <
1,;

(3.2) E∗1 is globally asymptotically stable if and only if R0 >
1 and I∗1 < Imax;

(3.3) E∗2 is globally asymptotically stable if and only if R0 >

1 +
β1I

∗
2

µ+γ and Imax 6 I∗2 ..
Proof: (3.1) Let

G(SH , I) = −δSH − β2SHI − µSH
H(SH , I) = β1( bµ − SH − I)I + β2SHI − γI − µI
B(SH , I) = 1

I
(11)
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Then, ∂(BG)
∂SH

+ ∂(BH)
∂I = − δ+µI − β1 − β2 < 0. By

Dulac’s criteria[30], (3) admits no limit cycle. Consider an
arbitrary point, ( SH , I ), on the boundary of Ω. From (3),
∂Ω consists of the following three possibilities:

(a) 0 6 SH 6 N∗, I = 0. Then, İ|(SH , I)
= 0.

(b) 0 < I < N∗, SH = 0. Then, ṠH |(S2, I)
= 0.

(c) SH + I = N∗. Then, d(SH+I)
dt |(SH , I)

=
−δSH − µSH − (µ+ γ)I < 0.

By the Poincaré-Bendixson theorem[30], if R0 < 1,
E∗0 is globally asymptotically stable. A similar analysis can
be conducted to obtain the result (3.2).

(3.3) Let

P (SH , I) = αI( bµ − SH − I)− δSH − β2SHI − µSH
Q(SH , I) = β1( bµ − SH − I)I + β2SHI − γI − µI
D(SH , I) = 1

I
(12)

Then, ∂(DP )
∂SH

+ ∂(DQ)
∂I = −α − δ+µ

I − β1 − β2 < 0.
By Dulac’s criteria, (3) admits no limit cycle. Consider an
arbitrary point, ( SH , I ), on the boundary of Ω. From (3),
∂Ω consists of the following three possibilities :

(a) 0 6 SH 6 N∗, I = 0. Then, İ|(SH , I)
= 0.

(b) 0 < I < N∗, SH = 0. Then, ṠH |(SH , I)
=

(N∗ − I)αI > 0.
(c) SH + I = N∗. Then, d(SH+I)

dt |(SH , I)
=

−δSH − µSH − (µ+ γ)I < 0.
By the Poincaré-Bendixson theorem, we can obtain the

result (3.3).

VI. THE OPTIMAL CONTROL MODEL

This section deals with the optimal control problem of
system (1). Firstly, by incorporating a Lebesgue square
integrable control function u(t)(0 6 u(t) 6 umax), the
controlled state system can be obtained as:


Ṡ = λ− βSI + θσ1IP + σ2I + γP − µS,
İ = βSI − σ1IP − (σ2 + µ)I − u(t)I,

Ṗ = (1− θ)σ1IP − (γ + µ)P + u(t)I.

(13)

Then the minimized objective functional is defined as
follow:

J =

∫ T

0

I +
1

2
wu2dt, (14)

where w is the weight index of control costs.
For applying Pontryagin’s minimum principle, one can

obtain the following corresponding Hamiltonian:

H = I +
1

2
wu2 + η1(λ− βSI + θσ1IP + σ2I + γP − µS)

+ η2(βSI − σ1IP − (σ2 + µ)I − u(t)I)

+ η3((1− θ)σ1IP − (γ + µ)P + u(t)I).
(15)

where ηi(i = 1, 2, 3) are the adjoint variables. By directly
calculation, we can obtain following results.

η̇1 =− ∂H

∂S
=βI(η1 − η2) + µη1

η̇2 =− ∂H

∂I
,

=− 1 + (βS − θσ1P − σ2)η1 − ((1− θ)σ1P + u(t))η3

+(−βS + σ1P + σ2 + µ+ u(t))η2,

η̇2 =− ∂H

∂P
=− (θσ1I + γ)η1 + σ1Iη2 − ((1− θ)σ1I − γ − µ)η3.

By using the optimality condition, we obtain
∂H

∂u(t)
= wu(t) + (η3 − η2)I = 0. (16)

Hence, the optimality solution respect to system (5) is

u(t) = min{max{ (η2 − η3)I

w
, 0}, umax}. (17)

VII. NUMERICAL EXAMPLES AND DISCUSSIONS

In this section, by choosing the appropriate value for each
parameter in the system, some numerical examples are given
to justify the global stability of each equilibrium and the
efficiency of the optimal control.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

Fig. 2. The virus-free equilibrium E∗
0 is globally asymptotically stable for

the case b = 0.1, δ = 0.01, β1 = 0.2, β2 = 0.1, γ = 0.2, µ = 0.1. In this
situation, R0 < 1.

R0 is the basic reproduction number which determines
whether the virus will die out or not. In order to study the
effect of parameters on R0, it can be got:

∂R0

∂β1
=

b

µ(µ+ γ)
> 0,
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Fig. 3. The viral equilibrium E∗
1 is globally asymptotically stable for the

case b = 0.1, δ = 0.01, β1 = 0.3, β2 = 0.1, γ = 0.1, µ = 0.1, and Imax =
0.4. In this situation, R0 > 1, I∗1 < Imax.

∂R0

∂b
=

β1

µ(µ+ γ)
> 0,

∂R0

∂µ
= −β1b(2µ+ γ)

µ2(µ+ γ)2
< 0,

∂R0

∂γ
= − β1b

µ(µ+ γ)2
< 0,

Obviously, R0 is increasing with β1, b, and is decreasing with
µ, γ.

As we can see from the above examples, Fig.2 shows us
that the computer virus in the system will die out ultimately,
all computers will be in the SL-compartment. Fig.3 shows us
that while the number of computers in the I-compartment is
less than the threshold, any initial point in the area above
Imax will converge to E∗1 . Fig.4 displays that while the
number of computers in the I-compartment exceeds the
threshold, it will be reduced due to the upgrade of security
level. And from Fig.5, one can clearly see that the number
of infected computers is significantly reduced after applying
the optimal control strategy.

Based on the numerical examples, the following policies
are recommended.

1. In the absence of necessity, computers do not connect
to the Internet, so that reduce the risk of infection.

2. According to their own situation, configure the security
level of firewall while accessing the Internet.

0 0.2 0.4 0.6 0.8 1
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0.2

0.4

0.6

0.8

1
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0.6

0.8

1

Fig. 4. The viral equilibrium E∗
2 is globally asymptotically stable for the

case b = 0.1, α = 0.5, δ = 0.01, β1 = 0.3, β2 = 0.1, γ = 0.1, µ = 0.1, and
Imax = 0.1. In this situation, R0 > 1, Imax < I∗2 .

0 10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

Fig. 5. The optimal control for the case b = 0.1, α = 0.5, δ = 0.01, β1 =
0.4, β2 = 0.2, γ = 0.05, µ = 0.1, Imax = 0.1, umax = 0.2 and w = 10.

3. If you installed antivirus software on your computer, it
can be set to autorun regularly.

VIII. CONCLUSIONS

This paper has studied the impact of adaptive defense
rate on virus spreading. Considering that the difference of
computer security defense ability, the S-compartment of
previous models is divided into two compartments: SL-
compartment with low security level and SH -compartment
with high security level. And a threshold named Imax is
given which determines when the security defense level
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of susceptible computers is upgraded. A thorough analysis
reveals the global stability of the virus-free equilibrium and
the two viral equilibria. This demonstrates that computer
virus will eventually die out when the basic reproduction
number is less than one, whereas it will persist if the basic
reproduction number exceeds one. What is more, while
the number of computers in the I-compartment exceeds a
threshold value which is given by Imax, the susceptible
computers in the SL-compartment become SH due to the
upgrade of the security defense level, and the number of
computers in the I-compartment thereby is reduced. Finally,
the propagation of computer virus in the system is controlled.
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