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Abstract—By using some new analytical techniques, modified
inequalities and Mawhin’s continuous theorem of coincidence
degree theory, some new sufficient conditions for the existence
of positive almost periodic solutions to a mutualism model
with bounded and unbounded delays are obtained. Further, the
boundedness and global asymptotic stability have been studied.
To the best of the author’s knowledge, so far, the result of this
paper is completely new. The work of this paper extends and
improves some results in recent years. Finally, some examples
are given to illustrate the main results in this paper.

Index Terms—Almost periodicity; Coincidence degree; Mu-
tualism model; Bounded and unbounded delays.

I. INTRODUCTION

LEt R, Z and N+ denote the sets of real numbers,
integers and positive integers, respectively. Related to a

continuous function f , we use the following notations:

f l = inf
s∈R

f(s), fM = sup
s∈R

f(s),

|f |∞ = sup
s∈R
|f(s)|, f̄ = lim

T→∞

1

T

∫ T

0

f(s) ds.

Mutualism, or cooperation, is found in many types of com-
munities. For example, some species of Acacia require the
ant Pseudomyrmex in order to survive (see [1]), blue-green
algae can grow and reproduce in the absence of zooplankton
grazers, but growth and reproduction are enhanced by the
presence of the zooplankton (see [2]).

In [3], Gopalsamy had proposed the following model to
describe the mutualism mechanism:

dN1(t)
dt = r1(t)N1(t)

[
K1(t)+α1(t)N2(t)

1+N2(t) −N1(t)
]
,

dN2(t)
dt = r2(t)N2(t)

[
K2(t)+α2(t)N1(t)

1+N1(t) −N2(t)
]
,
(1.1)

where ri denotes the intrinsic growth rate of species Ni,
i = 1, 2. The carrying capacity of species Ni is Ki in the
absence of other species, while with the help of the other
species, the carrying capacity becomes [Ki + αiN3−i]/[1 +
N3−i], i = 1, 2. The above mutualism can be classified as
facultative, obligate or a combination of both.

Naturally, more realistic and interesting models of popula-
tion interactions should take into account both the seasonality
of the changing environment and the effects of time delay.
In system (1.1), the mutualistic or cooperative effects are
not realized instantaneously but take place with time delays.
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Therefore, by way of Mawhin’s continuous theorem of
coincidence degree theory, Li [4] investigated the existence
of positive periodic solutions for a periodic mutualism model
with bounded delays:

dN1(t)
dt = r1(t)N1(t)

[
K1(t)+α1(t)N2(t−µ2(t))

1+N2(t−µ2(t))

−N1(t− ν1)

]
,

dN2(t)
dt = r2(t)N2(t)

[
K2(t)+α2(t)N1(t−µ1(t))

1+N1(t−µ1(t))

−N2(t− ν2)

]
,

(1.2)

where ri,Ki, αi ∈ C(R, (0,∞)), αi > Ki, µi, νi ∈
C(R, [0,∞)), ri,Ki, αi, µi, νi are functions of period ω > 0,
i = 1, 2.

Next, Li and Xu [5] studied the following model of two
species mutualism with unbounded delays:

dN1(t)
dt = r1(t)N1(t)

[
H1(t)+β1(t)

∫∞
0
J2(s)N2(t−s) ds

1+
∫∞
0
J2(s)N2(t−s) ds

−N1(t− ν1(t))

]
,

dN2(t)
dt = r2(t)N2(t)

[
H2(t)+β2(t)

∫∞
0
J1(s)N1(t−s) ds

1+
∫∞
0
J1(s)N1(t−s) ds

−N2(t− ν2(t))

]
.

(1.3)

Under the assumption that ri, Hi, βi and νi are continu-
ous periodic functions with common period ω, ai > Ki,
Ji ∈ C([0,∞), [0,∞)) and

∫∞
0
Ji(s) ds = 1, i = 1, 2,

they showed that system (1.3) admits at least one positive
ω-periodic solution by way of Mawhin’s continuous theorem
of coincidence degree theory.

In real world phenomenon, the environment varies due to
the factors such as seasonal effects of weather, food supplies,
mating habits, harvesting. So it is usual to assume the
periodicity of parameters in the systems. However, if the var-
ious constituent components of the temporally nonuniform
environment is with incommensurable (nonintegral multiples,
see Example 1.1) periods, then one has to consider the
environment to be almost periodic [6-12] since there is no a
priori reason to expect the existence of periodic solutions.
Hence, if we consider the effects of the environmental
factors, almost periodicity is sometimes more realistic and
more general than periodicity.

Example 1. Let us consider the following simple population
model:

Ṅ(t) = N(t)
[
| sin(

√
2t)| − | sin(

√
3t)|N(t)

]
. (1.4)

In Eq. (1.4), | sin(
√

2t)| is
√

2π
2 -periodic function and

| sin(
√

3t)| is
√

3π
3 -periodic function, which imply that E-

q. (1.4) is with incommensurable periods. Then there is no
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a priori reason to expect the existence of positive periodic
solutions of Eq. (1.4). Thus, it is significant to study the
existence of positive almost periodic solutions of Eq. (1.4).

So, the aim of this paper is to investigate the following
almost periodic mutualism model with bounded and un-
bounded delays:

dN1(t)
dt = r1(t)N1(t)

[
K1(t)+α1(t)N2(t−µ2(t))

1+N2(t−µ2(t))

+
H1(t)+β1(t)

∫∞
0
J2(s)N2(t−s) ds

1+
∫∞
0
J2(s)N2(t−s) ds

−N1(t− ν1(t))

]
,

dN2(t)
dt = r2(t)N2(t)

[
K2(t)+α2(t)N1(t−µ1(t))

1+N1(t−µ1(t))

+
H2(t)+β2(t)

∫∞
0
J1(s)N1(t−s) ds

1+
∫∞
0
J1(s)N1(t−s) ds

−N2(t− ν2(t))

]
,

(1.5)

where ri,Ki, Hi, αi, βi, µi and νi are continuous nonnega-
tive almost periodic functions, Ji ∈ C([0,∞), [0,∞)) and∫∞

0
Ji(s) ds = 1, i = 1, 2.

Obviously, systems (1.1)-(1.3) are special cases of system
(1.5).

It is well known that Mawhin’s continuation theorem
of coincidence degree theory is an important method to
investigate the existence of positive periodic solutions of
some kinds of non-linear ecosystems (see [13-26]). However,
it is difficult to be used to investigate the existence of
positive almost periodic solutions of non-linear ecosystems.
Therefore, to the best of the author’s knowledge, so far,
there are scarcely any papers concerning with the existence
of positive almost periodic solutions of system (1.5) by
using Mawhin’s continuation theorem. Motivated by the
above reason, our purpose of this paper is to establish
some new sufficient conditions on the existence of positive
almost periodic solutions for system (1.5) by using Mawhin’s
continuous theorem.

The paper is organized as follows. In Section 2, we give
some basic definitions and necessary lemmas which will be
used in later sections. In Section 3, we obtain some new
sufficient conditions for the existence of at least one positive
almost periodic solution of system (1.5) by way of Mawhin’s
continuous theorem. Some illustrative examples are given in
Section 4.

II. PRELIMINARIES

Definition 1. ([27, 28]) x ∈ C(R,Rn) is called almost
periodic, if for any ε > 0, it is possible to find a real
number l = l(ε) > 0, for any interval with length l(ε),
there exists a number τ = τ(ε) in this interval such that
‖x(t + τ) − x(t)‖ < ε, ∀t ∈ R, where ‖ · ‖ is arbitrary
norm of Rn. τ is called to the ε-almost period of x, T (x, ε)
denotes the set of ε-almost periods for x and l(ε) is called
to the length of the inclusion interval for T (x, ε). The
collection of those functions is denoted by AP (R,Rn). Let
AP (R) := AP (R,R).

Lemma 1. ([27, 28]) If x ∈ AP (R), then x is bounded and
uniformly continuous on R.

Lemma 2. ([27, 28]) If x ∈ AP (R), then
∫ t

0
x(s) ds ∈

AP (R) if and only if
∫ t

0
x(s) ds is bounded on R.

Next, we present and prove several useful lemmas which
will be used in later section.

Lemma 3. ([12]) Assume that x ∈ AP (R) ∩ C1(R) with
ẋ ∈ C(R). For arbitrary interval [a, b] with b− a = ω > 0,
let ξ, η ∈ [a, b] and

I =
{
s ∈ [ξ, b] : ẋ(s) ≥ 0

}
,

then ones have

x(t) ≤ x(ξ) +

∫
I

ẋ(s) ds, ∀t ∈ [ξ, b].

Lemma 4. ([12]) If x ∈ AP (R), then for arbitrary interval
[a, b] with b− a = ω > 0, there exist ξ ∈ [a, b], ξ ∈ (−∞, a]
and ξ̄ ∈ [b,+∞) such that

x(ξ) = x(ξ̄) and x(ξ) ≤ x(s), ∀s ∈ [ξ, ξ̄].

Lemma 5. ([12]) If x ∈ AP (R), then for arbitrary interval
[a, b] with I = b − a = ω > 0, there exist η ∈ [a, b], η ∈
(−∞, a] and η̄ ∈ [b,+∞) such that

x(η) = x(η̄) and x(η) ≥ x(s), ∀s ∈ [η, η̄].

Lemma 6. ([12]) If x ∈ AP (R), then for ∀n ∈ N+, there
exists αn ∈ R such that x(αn) ∈ [x∗ − 1

n , x
∗], where x∗ =

sups∈R x(s).

Lemma 7. ([28]) Assume that x ∈ AP (R) and x̄ > 0, then
for ∀t0 ∈ R, there exists a positive constant T0 independent
of t0 such that

1

T

∫ t0+T

t0

x(s) ds ∈
[
x̄

2
,

3x̄

2

]
, ∀T ≥ T0.

Lemma 8. ([4]) Let

f(x, y) =

(
a1 −

a1 − b1
1 + ey

− c1ex, a2 −
a2 − b2
1 + ex

− c2ey
)

and Ω = {(x, y)T ∈ R2 : |x| + |y| < M}, where
M , ai, bi and ci are constants, ai ≥ bi, i = 1, 2, and
M > max{2| ln(ai/ci)|, 2| ln(bi/ci)|, i = 1, 2}. Then

deg{f(x, y),Ω, (0, 0)T } 6= 0.

Lemma 9. Let

f(x, y) =

(
a1 +

b1 − a1

1 + ey
− c1ex, a2 +

b2 − a2

1 + ex
− c2ey

)
and Ω = {(x, y)T ∈ R2 : |x| + |y| < M}, where
M , ai, bi and ci are constants, bi ≥ ai, i = 1, 2, and
M > max{2| ln(ai/ci)|, 2| ln(bi/ci)|, i = 1, 2}. Then

deg{f(x, y),Ω, (0, 0)T } 6= 0.

Proof: Set

Ψ(x, y, ι) =

(
a1 +

b1 − a1

1 + ιey
− c1ex, a2 +

b2 − a2

1 + ιex
− c2ey

)
,

ι ∈ [0, 1]. For ∀(x, y, ι) ∈ R2 × [0, 1], it is then easy to see
that

a1 +
b1 − a1

1 + ιey
− c1ex < b1 − c1ex < 0, as x ≥ M

2
,

a2 +
b2 − a2

1 + ιex
− c2ey < b2 − c2ey < 0, as y ≥ M

2
,

a1 +
b1 − a1

1 + ιey
− c1ex ≥ a1 − c1ex > 0, as x ≤ −M

2
,
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a2 +
b2 − a2

1 + ιex
− c2ey ≥ a2 − c2ey > 0, as y ≤ −M

2
.

Hence

Ψ(x, y, ι) 6= 0 for (x, y, ι) ∈ ∂Ω× [0, 1].

It follows from the property of invariance under a homotopy
that

deg{f(x, y),Ω, (0, 0)T } = deg{Ψ(x, y, 0),Ω, (0, 0)T }

= −1 6= 0.

The proof is complete.

III. MAIN RESULTS

The method to be used in this paper involves the appli-
cations of the continuation theorem of coincidence degree.
This requires us to introduce a few concepts and results from
Gaines and Mawhin [29].

Let X and Y be real Banach spaces, L : DomL ⊆ X→ Y
be a linear mapping and N : X → Y be a continuous map-
ping. The mapping L is called a Fredholm mapping of index
zero if ImL is closed in Y and dimKerL = codimImL <
+∞. If L is a Fredholm mapping of index zero and there
exist continuous projectors P : X→ X and Q : Y→ Y such
that ImP = KerL, KerQ = ImL = Im(I − Q). It follows
that L|DomL∩KerP : (I − P )X → ImL is invertible and its
inverse is denoted by KP . If Ω is an open bounded subset of
X, the mapping N will be called L-compact on Ω̄ if QN(Ω̄)
is bounded and KP (I − Q)N : Ω̄ → X is compact. Since
ImQ is isomorphic to KerL, there exists an isomorphism
J : ImQ→ KerL.

Lemma 10. ([29]) Let Ω ⊆ X be an open bounded set, L
be a Fredholm mapping of index zero and N be L-compact
on Ω̄. If all the following conditions hold:

(a) Lx 6= λNx, ∀x ∈ ∂Ω ∩DomL, λ ∈ (0, 1);
(b) QNx 6= 0, ∀x ∈ ∂Ω ∩KerL;
(c) deg{JQN,Ω∩KerL, 0} 6= 0, where J : ImQ→ KerL

is an isomorphism.
Then Lx = Nx has a solution on Ω̄ ∩DomL.

For f ∈ AP (R), we denote by

Λ(f) =

{
$ ∈ R : lim

T→∞

1

T

∫ T

0

f(s)e−i$sds 6= 0

}
the set of Fourier exponents of f .

Now we are in the position to present and prove our result
on the existence of at least one positive almost periodic
solution for system (1.5).

Let

ν0 := max{νM1 , νM2 } = max{sup
s∈R

ν1(s), sup
s∈R

ν2(s)}.

Theorem 1. Assume that
(F1) infs∈R[Ki(s)− αi(s)] ≤ 0, i = 1, 2.
(F2) infs∈R[Hi(s)− βi(s)] ≤ 0, i = 1, 2.
(F3) Φ̄i > 0, where Φi := ri(s)

[
Ki(s) +Hi(s)

]
, i = 1, 2.

Then system (1.5) admits at least one positive almost peri-
odic solution.

Proof: Under the invariant transformation (N1, N2)T =
(eu, ev)T , system (1.5) reduces to

du(t)
dt = r1(t)

[
K1(t)+α1(t)ev(t−µ2(t))

1+ev(t−µ2(t))

+
H1(t)+β1(t)

∫∞
0
J2(s)ev(t−s) ds

1+
∫∞
0
J2(s)ev(t−s) ds

− eu(t−ν1(t))

]
:= F1(t),

dv(t)
dt = r2(t)

[
K2(t)+α2(t)eu(t−µ1(t))

1+eu(t−µ1(t))

+
H2(t)+β2(t)

∫∞
0
J1(s)eu(t−s) ds

1+
∫∞
0
J1(s)eu(t−s) ds

− ev(t−ν2(t))

]
:= F2(t).

(3.0)

It is easy to see that if system (3.0) has one almost periodic
solution (u, v)T , then (N1, N2)T = (eu, ev)T is a positive
almost periodic solution of system (1.5). Therefore, to com-
pletes the proof it suffices to show that system (3.0) has one
almost periodic solution.

Take X = Y = V1

⊕
V2, where

V1 =

{
z = (u, v)T ∈ AP (R,R2) :

∀$ ∈ Λ(u) ∪ Λ(v), |$| ≥ θ0

}
,

V2 =
{
z = (u, v)T ≡ (k1, k2)T , k1, k2 ∈ R

}
,

where θ0 is a given positive constant. Define the norm

‖z‖ = max

{
sup
s∈R
|u(s)|, sup

s∈R
|v(s)|

}
, ∀z ∈ X = Y,

then X and Y are Banach spaces with the norm ‖ · ‖. Set

L : DomL ⊆ X→ Y, Lz = L(u, v)T = (u′, v′)T ,

where DomL = {z = (u, v)T ∈ X : u, v ∈ C1(R), u′, v′ ∈
C(R)} and

N : X→ Y, Nz = N

[
u(t)
v(t)

]
=

[
F1(t)
F2(t)

]
.

With these notations system (3.0) can be written in the form

Lz = Nz, ∀z ∈ X.

It is not difficult to verify that KerL = V2, ImL = V1 is
closed in Y and dim KerL = 2 = codim ImL. Therefore,
L is a Fredholm mapping of index zero (see Lemma 3.2 in
[31]). Now define two projectors P : X→ X and Q : Y→ Y
as

Pz = P

[
u
v

]
=

[
m(u)
m(v)

]
= Qz, ∀z =

[
u
v

]
∈ X = Y.

Then P and Q are continuous projectors such that ImP =
KerL and ImL = KerQ = Im(I−Q). Furthermore, through
an easy computation we find that the inverse KP : ImL →
KerP ∩DomL of LP has the form

KP z = KP

[
u
v

]
=

 ∫ t0 u(s) ds−m
[∫ t

0
u(s) ds

]
∫ t

0
v(s) ds−m

[∫ t
0
v(s) ds

]  .
Then QN : X→ Y and KP (I −Q)N : X→ X read

QNz = QN

[
u
v

]
=

[
m(F1)
m(F2)

]
,
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KP (I −Q)Nz =

[
f [u(t)]−Qf [u(t)]
f [v(t)]−Qf [v(t)]

]
, ∀z ∈ ImL,

where f(x) is defined by f [x(t)] =
∫ t

0

[
Nx(s) −

QNx(s)
]

ds. Then N is L-compact on Ω̄ (see Lemma 3.3
in [31]).

In order to apply Lemma 10, we need to search for an
appropriate open-bounded subset Ω.

Corresponding to the operator equation Lz = λz, λ ∈
(0, 1), we have

u̇(t) = λr1(t)

[
K1(t)+α1(t)ev(t−µ2(t))

1+ev(t−µ2(t))

+
H1(t)+β1(t)

∫∞
0
J2(s)ev(t−s) ds

1+
∫∞
0
J2(s)ev(t−s) ds

− eu(t−ν1(t))

]
,

v̇(t) = λr2(t)

[
K2(t)+α2(t)eu(t−µ1(t))

1+eu(t−µ1(t))

+
H2(t)+β2(t)

∫∞
0
J1(s)eu(t−s) ds

1+
∫∞
0
J1(s)eu(t−s) ds

− ev(t−ν2(t))

]
.

(3.1)

Suppose that (u, v)T ∈ DomL ⊆ X is a solution of system
(3.1) for some λ ∈ (0, 1), where DomL = {z = (u, v)T ∈
X : u, v ∈ C1(R), u̇, v̇ ∈ C(R)}. By Lemma 6, there exist
two sequences {Tn : n ∈ N+} and {Pn : n ∈ N+} such that

u(Tn) ∈
[
u∗ − 1

n
, u∗
]
, u∗ = sup

s∈R
u(s), n ∈ N+, (3.2)

v(Pn) ∈
[
v∗ − 1

n
, v∗
]
, v∗ = sup

s∈R
v(s), n ∈ N+. (3.3)

From Φ̄i > 0(i = 1, 2) and Lemma 7, for ∀a ∈ R, there
exists a constant ω0 ∈ (2ν0,+∞) independent of a such that

1

T

∫ a+T

a

ri(s) ds ∈
[
r̄i
2
,

3r̄i
2

]
,

1

T

∫ a+T

a

Φi(s) ds ∈
[

Φ̄i
2
,

3Φ̄i
2

]
,

∀T ≥ ω0

2
, i = 1, 2. (�)

For ∀n0 ∈ N+, we consider [Tn0
− ω0, Tn0

] and [Pn0
−

ω0, Pn0 ], where ω0 is defined as that in (�). By Lemma 4,
there exist ξ ∈ [Tn0 − ω0, Tn0 ], ξ ∈ (−∞, Tn0 − ω0] and
ξ̄ ∈ [Tn0

,+∞) such that

u(ξ) = u(ξ̄) and u(ξ) ≤ u(s), ∀s ∈ [ξ, ξ̄]. (3.4)

Integrating the first equation of system (3.1) from ξ to ξ̄ leads
to ∫ ξ̄

ξ

r1(s)

[
K1(s) + α1(s)ev(s−µ2(s))

1 + ev(s−µ2(s))

+
H1(s) + β1(s)

∫∞
0
J2(z)ev(s−z) dz

1 +
∫∞

0
J2(z)ev(s−z) dz

−eu(s−ν1(s))

]
ds = 0,

which yields that∫ ξ̄

ξ

r1(s)

[
α1(s)−K1(s)

1 + ev(s−µ2(s))
+

β1(s)−H1(s)

1 +
∫∞

0
J2(z)ev(s−z) dz

+eu(s−ν1(s)) − (α1(s) + β1(s))

]
ds = 0,

which implies from (F1)-(F2) that∫ ξ̄

ξ+ν0

r1(s)eu(s−ν1(s)) ds ≤
∫ ξ̄

ξ

r1(s)eu(s−ν1(s)) ds

≤
∫ ξ̄

ξ

r1(s)(α1(s) + β1(s)) ds.

By the integral mean value theorem and (�), there exists
s0 ∈ [ξ + ν0, ξ̄] (s0 − ν1(s0) ∈ [ξ, ξ̄]) such that

r̄1

4
eu(s0−ν1(s0))

≤
ξ̄ − ξ − ν0

ξ̄ − ξ
r̄1

2
eu(s0−ν1(s0))

≤
ξ̄ − ξ − ν0

ξ̄ − ξ
eu(s0−ν1(s0)) 1

ξ̄ − ξ − ν0

∫ ξ̄

ξ+ν0

r1(s) ds

=
1

ξ̄ − ξ

∫ ξ̄

ξ+ν0

r1(s)eu(s−ν1(s)) ds

≤ 1

ξ̄ − ξ

∫ ξ̄

ξ

r1(s)(α1(s) + β1(s)) ds

≤ 3r̄1

2
(αM1 + βM1 ),

which implies from (3.4) that

u(ξ) ≤ ln[6(αM1 + βM1 )]. (3.5)

Let I = {s ∈ [ξ, Tn0 ] : u̇(s) ≥ 0}. It follows from system
(3.1) that∫

I

u̇(s) ds =

∫
I

du(t)

dt
ds

=

∫
I

λr1(s)

[
K1(s) + α1(s)ev(s−µ2(s))

1 + ev(s−µ2(s))

+
H1(s) + β1(s)

∫∞
0
J2(z)ev(s−z) dz

1 +
∫∞

0
J2(z)ev(s−z) dz

− eu(s−ν1(s))

]
ds

=

∫
I

λr1(s)

[
(α1(s) + β1(s))− α1(s)−K1(s)

1 + ev(s−µ2(s))

− β1(s)−H1(s)

1 +
∫∞

0
J2(z)ev(s−z) dz

− eu(s−ν1(s))

]
ds

≤
∫
I

λr1(s)[α1(s) + β1(s)] ds

≤
∫ Tn0

Tn0
−ω0

r1(s)[α1(s) + β1(s)] ds

≤ rM1 (αM1 + βM1 )ω0. (3.6)

By Lemma 3, it follows from (3.5)-(3.6) that

u(t) ≤ u(ξ) +

∫
I1

u̇(s) ds

≤ ln[6(αM1 + βM1 )] + rM1 (αM1 + βM1 )ω0

:= ρ1, ∀t ∈ [ξn0
u , Tn0

],

which implies that

u(Tn0
) ≤ ρ1.

In view of (3.2), letting n0 → +∞ in the above inequality
leads to

u∗ = lim
n0→+∞

u(Tn0
) ≤ ρ1. (3.7)
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Similar to the argument as that in (3.7), we can obtain that

v∗ ≤ ln[6(αM2 + βM2 )] + rM2 (αM2 + βM2 )ω0 := ρ2. (3.8)

Taking

π0 = max

{
ω0,

4rM1 eρ1ν0(1 + eρ1)

Φ̄1
,

4rM2 eρ2ν0(1 + eρ2)

Φ̄2

}
.

For ∀n0 ∈ Z, by Lemma 5, we can conclude that there exist
η ∈ [n0π0, n0π0 + π0], η ∈ (−∞, n0π0] and η̄ ∈ [n0π0 +
π0,+∞) such that

u(η) = u(η̄) and u(η) ≥ u(s), ∀s ∈ [η, η̄]. (3.9)

Integrating the first equation of system (3.1) from η to η̄
leads to ∫ η̄

η

r1(s)

[
K1(s) + α1(s)ev(s−µ2(s))

1 + ev(s−µ2(s))

+
H1(s) + β1(s)

∫∞
0
J2(z)ev(s−z) dz

1 +
∫∞

0
J2(z)ev(s−z) dz

−eu(s−ν1(s))

]
ds = 0,

which yields from (3.7)-(3.8) that

1

1 + eρ2

∫ η̄

η

r1(s)
[
K1(s) +H1(s)

]
ds

≤
∫ η̄

η

r1(s)

[
K1(s) + α1(s)ev(s−µ2(s))

1 + ev(s−µ2(s))

+
H1(s) + β1(s)

∫∞
0
J2(z)ev(s−z) dz

1 +
∫∞

0
J2(z)ev(s−z) dz

]
ds

=

∫ η̄

η

r1(s)eu(s−ν1(s)) ds

=

∫ η̄

η+ν0

r1(s)eu(s−ν1(s)) ds+

∫ η̄+ν0

η

r1(s)eu(s−ν1(s)) ds

≤
∫ η̄

η+ν0

r1(s)eu(s−ν1(s)) ds+ rM1 eρ1ν0,

which implies from (F3) and (�) that

Φ̄1

2 + 2eρ2

≤ 1

1 + eρ2
1

η̄ − η

∫ η̄

η

r1(s)
[
K1(s) +H1(s)

]
ds

≤ 1

η̄ − η

∫ η̄

η+ν0

r1(s)eu(s−ν1(s)) ds+
rM1 eρ1ν0

η̄ − η

≤ 1

η̄ − η

∫ η̄

η+ν0

r1(s)eu(s−ν1(s)) ds+
rM1 eρ1ν0

π0

≤ 1

η̄ − η

∫ η̄

η+ν0

r1(s)eu(s−ν1(s)) ds+
Φ̄1

4 + 4eρ2
.(3.10)

In view of (3.10), by the integral mean value theorem and
(3.9), there exists s1 ∈ [η+ν0, η̄] (s1−ν1(s1) ∈ [η, η̄]) such
that

Φ̄1

4 + 4eρ2
≤ eu(s1−ν1(s1))

η̄ − η

∫ η̄

η+ν0

r1(s) ds

≤ rM1 eu(η)
η̄ − η − ν0

η̄ − η
≤ rM1 eu(η),

which implies that

u(η) ≥ ln
Φ̄1

4rM1 (1 + eρ2)
. (3.11)

Further, we obtain from system (3.1) that∫ n0π0+π0

n0π0

|u̇(s)|ds

=

∫ n0π0+π0

n0π0

λr1(s)

∣∣∣∣K1(s) + α1(s)ev(s−µ2(s))

1 + ev(s−µ2(s))

+
H1(s) + β1(s)

∫∞
0
J2(z)ev(s−z) dz

1 +
∫∞

0
J2(z)ev(s−z) dz

− eu(s−ν1(s))

∣∣∣∣ ds
≤ rM1

[
KM

1 + αM1 eρ2 +HM
1 + βM1 eρ2 + eρ1

]
π0

:= Θ1. (3.12)

It follows from (3.11)-(3.12) that

u(t) ≥ u(η)−
∫ n0π0+π0

n0π0

|u̇(s)|ds

≥ ln
Φ̄1

4rM1 (1 + eρ2)
−Θ1

:= ρ3, ∀t ∈ [n0π0, n0π0 + π0]. (3.13)

Obviously, ρ3 is a constant independent of n0. So it follows
from (3.13) that

u∗ = inf
s∈R

u(s) ≥ inf
n0∈Z
{ρ3} = ρ3. (3.14)

Similar to the argument as that in (3.14), we can obtain that

v∗ ≥ ln
Φ̄1

4rM1 (1 + eρ2)
− rM2

[
KM

2 + αM2 eρ1

+HM
2 + βM2 eρ1 + eρ2

]
π0 := ρ4.

Set C = |ρ1| + |ρ2| + |ρ3| + |ρ4| + C0 + 1, where C0 is
taken sufficiently large such that

C > max
i=1,2

{
2 ln

m[ri(αi + βi)]

m(ri)
, 2 ln

m[ri(Ki +Hi)]

m(ri)

}
.

Clearly, C is independent of λ ∈ (0, 1). Consider the
algebraic equations QNz0 = 0 for z0 = (u0, v0)T ∈ R2

as follows:
m[r1(α1 + β1)]

−m[r1(α1+β1)]−m[r1(K1+H1)]
1+ev0 −m(r1)eu0 = 0,

m[r2(α2 + β2)]

−m[r2(α2+β2)]−m[r2(K2+H2)]
1+eu0 −m(r2)ev0 = 0.

Similar to the arguments as that in (3.7)-(3.8) and (3.14)-
(3.15), we can easily obtain that

ρ3 ≤ u0 ≤ ρ1, ρ4 ≤ v0 ≤ ρ2.

Then ‖z0‖X = |u0| + |v0| < C. Let Ω = {z ∈ X : ‖z‖X <
C}, then Ω satisfies conditions (a) and (b) of Lemma 10.

Finally, we will show that condition (c) of Lemma 10 is
satisfied. By Lemma 8, we have

deg
(
JQN,Ω ∩KerL, 0

)
= deg

(
QN,Ω ∩KerL, 0

)
6= 0,

where deg(·, ·, ·) is the Brouwer degree and J is the identity
mapping since ImQ = KerL. Obviously, all the conditions
of Lemma 10 are satisfied. Therefore, system (3.0) has one
almost periodic solution, that is, system (1.5) has at least one
positive almost periodic solution. This completes the proof.
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Remark 1. By Theorem 1, it is easy to obtain the existence
of at least one positive almost periodic solution of Eq. (1.4)
in Example 1, although there is no a priori reason to expect
the existence of positive periodic solutions of Eq. (1.4).

Assume that all the coefficients of system (1.5) are ω-
periodic functions, we have

Corollary 1. Assume that (F1)-(F3) hold. Suppose further
that all the coefficients of system (1.5) are ω-periodic
functions. Then system (1.5) admits at least one positive ω-
periodic solution.

Theorem 2. Assume that (F3) holds. Suppose further that
(F4) infs∈R[Ki(s)− αi(s)] ≥ 0, i = 1, 2.
(F5) infs∈R[Hi(s)− βi(s)] ≥ 0, i = 1, 2.
Then system (1.5) admits at least one positive almost peri-
odic solution.

Proof: Proceeding as in the proof of Theorem 1, we
see that (3.4) holds. Integrating the first equation of system
(3.1) from ξ to ξ̄ leads to∫ ξ̄

ξ

r1(s)

[
K1(s) + α1(s)ev(s−µ2(s))

1 + ev(s−µ2(s))

+
H1(s) + β1(s)

∫∞
0
J2(z)ev(s−z) dz

1 +
∫∞

0
J2(z)ev(s−z) dz

−eu(s−ν1(s))

]
ds = 0,

which yields from (F4)-(F5) that∫ ξ̄

ξ

r1(s)eu(s−ν1(s)) ds

=

∫ ξ̄

ξ

r1(s)

[
K1(s)− α1(s)

1 + ev(s−µ2(s))

+
H1(s)− β1(s)

1 +
∫∞

0
J2(z)ev(s−z) dz

+ (α1(s) + β1(s))

]
,

≤
∫ ξ̄

ξ

r1(s)

(
[K1(s)− α1(s)]

+[H1(s)− β1(s)] + (α1(s) + β1(s))

)
,

=

∫ ξ̄

ξ

r1(s)[K1(s) +H1(s)].

Similar to the argument as that in (3.7)-(3.8), we can obtain
that

u∗ ≤ ln[6(KM
1 +HM

1 )] + rM1 (KM
1 +HM

1 )ω0 := ρ′1, (3.15)

and

v∗ ≤ ln[6(KM
2 +HM

2 )] + rM2 (KM
2 +HM

2 )ω0 := ρ′2. (3.16)

By a parallel arguments as that in (3.14)-(3.15), there exist
ρ′3 and ρ′4 such that

u∗ ≥ ρ′3, v∗ ≥ ρ′4. (3.17)

Set C ′ = ρ′1 + ρ′2 + ρ′3 + ρ′4 +C ′0 + 1, where C ′0 is taken
sufficiently large such that

C ′ > max
i=1,2

{
2 ln

m[ri(αi + βi)]

m(ri)
, 2 ln

m[ri(Ki +Hi)]

m(ri)

}
.

Clearly, C ′ is independent of λ ∈ (0, 1). Consider the
algebraic equations QNz0 = 0 for z0 = (u0, v0)T ∈ R2

as follows:
m[r1(α1 + β1)]

+m[r1(K1+H1)]−m[r1(α1+β1)]
1+ev0 −m(r1)eu0 = 0,

m[r2(α2 + β2)]

+m[r2(K2+H2)]−m[r2(α2+β2)]
1+eu0 −m(r2)ev0 = 0.

Let Ω′ = {z ∈ X : ‖z‖X < C ′}. From the proof in
Theorem 1, it is easy to see that Ω′ satisfies conditions (a)
and (b) of Lemma 10. Further, by Lemma 9, condition (c)
of Lemma 10 is also satisfied. Obviously, all the conditions
of Lemma 10 are satisfied. Therefore, system (3.0) has one
almost periodic solution, that is, system (1.5) has at least one
positive almost periodic solution. This completes the proof.

From Theorem 2 and Corollary 1, we also have the
following corollary:

Corollary 2. Assume that (F3)-(F5) hold. Suppose further
that all the coefficients of system (1.5) are ω-periodic
functions. Then system (1.5) admits at least one ω-positive
periodic solution.

Now we give some assumptions:

(F6) infs∈R[K1(s) − α1(s)] ≥ 0 and infs∈R[K2(s) −
α2(s)] ≤ 0.

(F7) infs∈R[K1(s) − α1(s)] ≤ 0 and infs∈R[K2(s) −
α2(s)] ≥ 0.

(F8) infs∈R[H1(s)−β1(s)] ≥ 0 and infs∈R[H2(s)−β2(s)] ≤
0.

(F9) infs∈R[H1(s)−β1(s)] ≤ 0 and infs∈R[H2(s)−β2(s)] ≥
0.

From the proof of Theorems 1-2, we can easily show that

Theorem 3. Assume that (F2)-(F3) hold, suppose further
that (F6) or (F7) is satisfied. Then system (1.5) admits at
least one positive almost periodic solution.

Theorem 4. Assume that (F1) and (F3) hold, suppose
further that (F8) or (F9) is satisfied. Then system (1.5)
admits at least one positive almost periodic solution.

Theorem 5. Assume that (F3) and (F6) hold, suppose
further that (F8) or (F9) is satisfied. Then system (1.5)
admits at least one positive almost periodic solution.

Theorem 6. Assume that (F3) and (F7) hold, suppose
further that (F8) or (F9) is satisfied. Then system (1.5)
admits at least one positive almost periodic solution.

From Theorems 3-6, we can easily show that

Corollary 3. Assume that all the coefficients of system (1.5)
are ω-periodic functions and (F2)-(F3) hold, suppose further
that (F6) or (F7) is satisfied. Then system (1.5) admits at
least one positive ω-periodic solution.

Corollary 4. Assume that all the coefficients of system (1.5)
are ω-periodic functions and (F1) and (F3) hold, suppose
further that (F8) or (F9) is satisfied. Then system (1.5)
admits at least one positive ω-periodic solution.

Corollary 5. Assume that all the coefficients of system (1.5)
are ω-periodic functions and (F3) and (F6) hold, suppose
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further that (F8) or (F9) is satisfied. Then system (1.5)
admits at least one positive ω-periodic solution.

Corollary 6. Assume that all the coefficients of system (1.5)
are ω-periodic functions and (F3) and (F7) hold, suppose
further that (F8) or (F9) is satisfied. Then system (1.5)
admits at least one positive ω-periodic solution.

In [4], Li obtained that

Corollary 7. ([4]) Assume that (F1)-(F3) hold. Suppose
further that all the coefficients of system (1.2) are ω-periodic
functions. Then system (1.2) admits at least one positive ω-
periodic solution.

Remark 2. Obviously, the works in this paper extend and
improve the result in [4].

IV. BOUNDEDNESS

Theorem 7. In system (1.5), assume that
(S1) HM

i = βMi = νMi = 0, µi(t) ≡ µi for all t ∈ R,
i = 1, 2.

Then every solution of system (1.5) satisfies
lim supt→∞Ni(t) ≤ N∗i = KM

i + αMi , i = 1, 2,
∀t ∈ R.

Proof: From system (1.5), it leads
dN1(t)

dt ≤ rM1 N1(t)

[
KM

1 + αM1 −N1(t)

]
,

dN2(t)
dt ≤ rM2 N2(t)

[
KM

2 + αM2 −N2(t)

]
.

By the comparison theorem of differential equations, we
have

lim sup
t→∞

Ni(t) ≤ KM
i + αMi , i = 1, 2.

This completes the proof.

V. GLOBAL ASYMPTOTIC STABILITY

Let
ki := sup

s∈R
|Ki(s)− αi(s)|, i = 1, 2.

Theorem 8. Assume that (S1) holds, then system (1.5) is
globally asymptotically stable.

Proof: From Theorem 1, we know that system (1.5)
has at least one positive almost periodic solution (N1, N2)T .
Suppose that (N̄1, N̄2)T is another solution of system (1.5).

Let (x1, x2)T = (lnN1, lnN2)T and (x̄1, x̄2)T =
(ln N̄1, ln N̄2)T , then system (1.5) is transformed into

dx1(t)
dt = r1(t)

[
K1(t)+α1(t)N2(t−µ2)

1+N2(t−µ2) −N1(t)

]
,

dx2(t)
dt = r2(t)

[
K2(t)+α2(t)N1(t−µ1)

1+N1(t−µ1) −N2(t)

]
,

dx̄1(t)
dt = r1(t)

[
K1(t)+α1(t)N̄2(t−µ2)

1+N̄2(t−µ2)
− N̄1(t)

]
,

dx̄2(t)
dt = r2(t)

[
K2(t)+α2(t)N̄1(t−µ1)

1+N̄1(t−µ1)
− N̄2(t)

]
.

(5.1)

Define

V (t) = V0(t) + V1(t) + V2(t),

where

V0(t) = |x1(t)− x̄1(t)|+ |x2(t)− x̄2(t)|,

V1(t) = rM1 k1

∫ t

t−µ2

|N2(s)− N̄2(s)|ds,

V2(t) = rM2 k2

∫ t

t−µ1

|N1(s)− N̄1(s)|ds.

By calculating the upper right derivative of V0 along
system (5.1), it follows that

D+V0(t)

= sgn[x1(t)− x̄1(t)][x′1(t)− x̄′1(t)]

+sgn[x2(t)− x̄2(t)][x′2(t)− x̄′2(t)]

≤ −rl1|N1(t)− N̄1(t)| − rl2|N2(t)− N̄2(t)|
+rM1 k1|N2(t− µ2)− N̄2(t− µ2)|
+rM2 k2|N1(t− µ1)− N̄1(t− µ1)|. (5.2)

Further, by calculating the upper right derivative of V1, V2

and V3 along system (5.1), it follows that

D+V1(t) = rM1 k1|N2(t)− N̄2(t)|
−rM1 k1|N2(t− µ2)− N̄2(t− µ2)|, (5.3)

D+V2(t) = rM2 k2|N1(t)− N̄1(t)|
−rM2 k2|N1(t− µ1)− N̄1(t− µ1)|. (5.4)

Together with (5.2)-(5.4), it follows that

D+V (t) ≤ −(rl1 − rM2 k2)|N1(t)− N̄1(t)|
−(rl2 − rM1 k1)|N2(t)− N̄2(t)|, ∀t ≥ T.

Therefore, V is non-increasing. Integrating of the last in-
equality from T to t leads to

V (t) + (rl1 − rM2 k2)

∫ t

T

|N1(s)− N̄1(s)|ds

+(rl2 − rM1 k1)

∫ t

T

|N2(s)− N̄2(s)|ds ≤ V (0)

< +∞, ∀t ≥ T,

that is, ∫ +∞

0

|N1(s)− N̄1(s)|
∣∣ds < +∞,

∫ +∞

0

|N2(s)− N̄2(s)|ds < +∞,

which implies that

lim
s→+∞

|N1(s)− N̄1(s)| = lim
s→+∞

|N2(s)− N̄2(s)| = 0.

This completes the proof.

Theorem 9. Assume that (F1)-(F3) and (S1) hold. Then
the almost periodic solution of system (1.5) is globally
asymptotic stable.
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VI. SOME EXAMPLES AND SIMULATIONS

Example 2. Consider the following almost periodic system:

dN1(t)
dt = N1(t)

[
K1(t)+α1(t)N2(t−1)

1+N2(t−1)

+
H1(t)+β1(t)

∫∞
0
e−sN2(t−s) ds

1+
∫∞
0
J2(s)N2(t−s) ds

−N1(t− sin2(
√

3t))

]
,

dN2(t)
dt = N2(t)

[
K2(t)+α2(t)N1(t−2)

1+N1(t−2)

+
H2(t)+β2(t)

∫∞
0
e−sN1(t−s) ds

1+
∫∞
0
J1(s)N1(t−s) ds

−N2(t− 0.5)

]
,

(6.1)

where (
K1(t)
K2(t)

)
=

(
| sin
√

10t|
| cos
√

10t|

)
,

(
H1(t)
H2(t)

)
=

(
sin2(

√
2t)

cos2(
√

2t)

)
,

(
α1(t)
α2(t)

)
=

(
2| sin

√
10t|

2| cos
√

10t|

)
,

(
β1(t)
β2(t)

)
=

(
sin2(

√
2t) + 0.5

cos2(
√

2t) + 0.5

)
.

By a easy computation, it is not difficult to verify that (F1)-
(F3) in Theorem 1 are satisfied. By Theorem 1, system (6.1)
admits at least one positive almost periodic solution.

Example 3. In system (6.1), let(
K1(t)
K2(t)

)
=

(
| sin t|
| cos t|

)
,

(
H1(t)
H2(t)

)
=

(
sin2 t
cos2 t

)
,

(
α1(t)
α2(t)

)
=

(
2| sin t|
2| cos t|

)
,

(
β1(t)
β2(t)

)
=

(
sin2 t+ 0.5
cos2 t+ 0.5

)
.

By a easy computation, it is not difficult to verify that (F1)-
(F3) in Corollary 1 are satisfied. By Corollary 1, system
(6.1) admits at least one positive π-periodic solution.

Example 4. In system (6.1), let(
K1(t)
K2(t)

)
=

(
1.5 + | sin

√
10t|

2.5 + | cos
√

10t|

)
,

(
H1(t)
H2(t)

)
=

(
0
0

)
,

(
α1(t)
α2(t)

)
=

(
| cos
√

5t|
| sin
√

5t|

)
,

(
β1(t)
β2(t)

)
=

(
0
0

)
.

By a easy computation, it is not difficult to verify that (F3)-
(F5) in Theorem 3 and (S1) in Theorem 8 are satisfied. By
Theorem 3 and Theorem 8, system (6.1) admits at least one
positive almost periodic solution (see Figure 4.1), which is
globally asymptotic stable.
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0 5 10 15 20 25 30
0.5

1

1.5

2

2.5

3

 

 

N1

N2

Fig. 1 State variables N1 and N2 of Example 2

Remark 3. In Example 4, | sin
√

10t| is
√

10π
10 -periodic

function and | cos(
√

5t)| is
√

5π
5 -periodic function. So sys-

tem (6.1) is with incommensurable periods. Through all
the coefficients of system (6.1) are periodic functions, the
positive periodic solutions of system (6.1) could not possibly
exist. However, by Theorem 3, the positive almost periodic
solutions of system (6.1) exactly exist (see Figure 1).

Example 5. In system (6.1), let(
K1(t)
K2(t)

)
=

(
| sin
√

5t|+ | cos
√

10t|
| cos
√

10t|

)
,

(
H1(t)
H2(t)

)
=

(
sin2(

√
2t)

cos2(
√

2t)

)
,

(
α1(t)
α2(t)

)
=

(
2| sin

√
5t|+ 2| cos

√
10t|

2| cos
√

10t|

)
,

(
β1(t)
β2(t)

)
=

(
sin2(

√
2t) + 0.5

cos2(
√

2t) + 0.5

)
.

In Example 4, | sin
√

5t| + | cos
√

10t| is almost periodic
function, which is not periodic function. Similar to the
argument as that in Example 2, it is easy to obtain that system
(6.1) admits at least one positive almost periodic solution.

Example 6. In system (6.1), let(
K1(t)
K2(t)

)
=

(
1.5 + | sin t|
2.5 + | cos t|

)
,(

H1(t)
H2(t)

)
=

(
0.5 + sin2 t
0.5 + cos2 t

)
,(

α1(t)
α2(t)

)
=

(
sin2 t
cos2 t

)
,

(
β1(t)
β2(t)

)
=

(
sin2 t
cos2 t

)
.

By a easy computation, it is not difficult to verify that (F3)-
(F5) in Corollary 5 are satisfied. By Corollary 5, system
(6.1) admits at least one positive π-periodic solution.

Remark 4. It is obvious that the results in papers [4,5,30]
couldn’t obtain the existence of positive (almost) periodic
solutions for the models in Example 2 and Examples 4-5.
Therefore, our works extend the results in papers [4,5,30].
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