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Abstract—Recently a generalization of the quaternion
Fourier transform over quaternion domains so-called the
quaternion domain Fourier transform (QDFT) has been in-
troduced, including its properties such as shift, modulation,
convolution theorem and uncertainty principle. In the present
paper we explore more properties of the QDFT such as the
correlation and product theorems and propose its application
in probability theory and mathematical statistics.

Index Terms—quaternion domain Fourier transform, quater-
nion random variable

I. INTRODUCTION

It is well known that in signal and image processing, the
classical Fourier transform is a very important tool (see,
e.g., [6], [16]). The quaternion Fourier transform (QFT) (for
e.g., [1], [2], [3], [4], [5], [7]) is also very useful tool
for signal processing for quaternion signals with domain
R2. The quaternion domain Fourier transform (QDFT) is a
generalization of the QFT over the quaternion domain. The
first work concerning the definition of the QDFT and its
relation to the definition of the QFT was done by Hitzer
[15]. The QDFT also can regarded as an extension of the
classical Fourier transform (FT) using quaternion algebra. It
transforms quaternion valued signals defined over a quater-
nion domain from a quaternion position space to a quaternion
frequency space. A number of useful properties of the QDFT
have been found including shift, modulation, convolution,
correlation, differentiation, energy conservation, uncertainty
principle and so on. It is well known that the classical
Fourier transform plays crucial roles in probability theory
and mathematical statistics. It is related to the characteristic
function of any real-valued random variable to compute the
distribution function. Therefore, in the present paper, we
first investigate some important properties of the QDFT such
as derivative, convolution, correlation and product theorems.
We then establish the relationship between the quaternion
characteristic function and the QDFT. We finally apply this
relation to derive the properties of quaternion probability
function and quaternion moments in the framework of the
quaternion algebra of mathematical statistics.

The remainder of this paper is organized as follows.
In Section II we briefly review the basic knowledge of
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quaternion and derivative operators used in the next section.
In Section III we derive some useful properties of the QDFT
such as the convolution, correlation and product theorems.
In Section IV we discuss the application of the QDFT in
probability theory and mathematical statistics. Finally, in
Section V we give conclusion.

II. QUATERNIONS

We first review the basic concepts and definition of quater-
nions. The quaternions, a generalization of complex numbers,
are an associative but noncommutative over R. The set of
quaternions is denoted by H. Every element of H can be
written in the following form

H = {q = qa + iqb + jqc + kqd ; qa, qb, qc, qd ∈ R}, (1)

which obeys the following multiplication rules:

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = ijk = −1. (2)

For a quaternion q = qa + iqb + jqc + kqd ∈ H, qa is called
the scalar part of q denoted by Sc(q) and iqb + jqc + kqd
is called the vector (or pure) part of q. The vector part of
q is conventionally denoted by q. Let p, q ∈ H and p, q
be their vector parts, respectively. From (2) we obtain the
quaternionic multiplication qp as

qp = qapa − q · p + qap + paq + q× p, (3)

where

q · p = qbpb + qcpc + qdpd (4)
q× p = i (qcpd − qdpc) + j (qdpb − qbpd) + k (qbpc − qcpd).

(5)

Analogously as in the complex case, the quaternion con-
jugate of q is defined by

q̄ = qa − iqb − jqc − kq3, qa, qb, qc, qd ∈ R. (6)

It is an anti-involution, i.e.

qp = p̄q̄. (7)

Notice that conjugate switches the order of multiplication.
From (6) we obtain the norm or modulus of q ∈ H defined
as

|q| =
√
qq̄ =

√
q2
a + q2

b + q2
c + q2

d. (8)

It is routine to check that

|qp| = |q||p| and |q + p| ≤ |q|+ |p|, ∀p, q ∈ H. (9)

Using the conjugate (6) and the modulus of q, we get the
inverse of a non-zero quaternion q ∈ H as

q−1 =
q̄

|q|2
, (10)
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which shows that H is a normed division algebra. When
|q| = 1, q is a unit quaternion. A quaternion q with qa = 0
is called a pure quaternion and its square is negative sum of
three squares:

q2 = −(q2
a + q2

b + q2
c ) = −1. (11)

According to (4) we can get a scalar part of two quaternions
p, q as

p · q = Sc(p̄q) =
1

2
(pq̄ + qp̄) = paqa + pbqb + pcqc + pdqd.

(12)
A quaternion number q may be defined as a complex

number with complex and imaginary parts.

q = z1 + jz2, z1 = qa + iqb, z2 = qc + iqd. (13)

Equation (13) is known as the Cayley-Dickson form.
We define derivative operators as

∂̃ = ∂xa + ∂xb i + ∂xcj + ∂xdk

∂ = ∂xa − ∂xb i− ∂xcj− ∂xdk, (14)

where ∂xa = ∂/∂xa and so on.
Using the orthogonal planes split of q ∈ H with respect

to the pure quaternion µ ∈ H, µ2 = −1 we define

q± =
1

2
(q ± µqµ), q− = qa + qµµ,

q+ = qνν + qηη = (qν + qηµ)ν (15)

where rotation operator R = (i + µ)i, ν = RjR−1 and η =
RkR−1, ν2 = η2 = −1, qa, qµ, qν , qη ∈ R.

Similar to the complex case, we may define an inner
product for two functions f, g : H −→ H as

(f, g)L2(H;H) =

∫
H
f(x)g(x) d4x, (16)

where x ∈ H, d4x = dxadxbdxcdxd ∈ R. Notice that
every quaternion domain function f maps H −→ H, its
decomposition will take the form

f(x) = fa(x) + fb(x)i + fc(x)j + fd(x)j (17)
= fa(xa, xb, xc, xd) + fb(xa, xb, xc, xd)i

+ fc(xa, xb, xc, xd)j + fd(xa, xb, xc, xd)k, x, y ∈ H,
(18)

where four coefficient functions fa, fb, fc and fd are in turn
real valued quaternion domain function.

In particular, for f = g, we also may define the L2(H;H)-
norm as

‖f‖ =

(∫
H
|f(x)|2 d4x

)1/2

. (19)

III. THE QUATERNION DOMAIN FOURIER TRANSFORM
AND ITS USEFUL PROPERTIES

In this section we introduce the quaternion domain Fourier
transform (QDFT) and its basic properties, which is taken
from [15]. We then make some observations about some
further properties related the QDFT such as the correlation
and product theorems, which will be very useful later.

Definition 1. The quaternion domain Fourier transform of
the quaternion function f ∈ L1(H;H) is given by the integral

Fµ{f)}(ω) =

∫
H
eµω·xf(x) d4x, (20)

where x, ω ∈ H and some constant µ ∈ H.

Notice that constant pure quaternion µ can be chosen
for each problem. For example, if we take µ = j and the
quaternion function f is decomposed as in (13), then the
QDFT takes the form

Fj{f}(ω) =

∫
H
ejω·xf(x) d4x. (21)

Expanding f in (21) into real and imaginary parts with
respect to i and using the Euler formula for the quaternion
Fourier kernel we obtain

Fj{f}(ω)

=

∫
H

(cos(ω · x) + j sin(ω · x)(f0(x) + f1(x)i) d4x

=

∫
H
f0(x) cos(ω · x) d4x+ j

∫
H
f0(x) sin(ω · x) d4x

+

∫
H
f1(x) cos(ω · x)i d4x+ j

∫
H
f1(x) sin(ω · x)i d4x.

(22)

Equation (22) clearly shows how the QDFT separates quater-
nion signal into the odd and even parts of real and imaginary
parts in four different components in the QDFT domain.

Definition 2. If f ∈ L1(H;H) and its QDFT Fµ{f} ∈
L1(H;H), then the inverse transform of the QDFT is given
by the integral

F−1
µ [Fµ{f}](x) = f(x) =

1

2π

∫
H
e−µω·xFµ{f}(ω) d4ω.

(23)

Like the polynomial Fourier transform [19], the convolu-
tion of two quaternion functions f, g ∈ L1(H;H) is defined
by

(f ∗ g)(x) =

∫
H
f(x− y)g(y) d4y. (24)

The following theorem provide the convolution theorem
which describes how the QDFT behaves under the quaternion
convolution.

Theorem 1. Suppose f ∈ L1(H;H) and g ∈ L1(H;H) are
integral functions. Then we have

Fµ{f ∗ g}(ω)

= Fµ{f−}(ω)Fµ{g}(ω) + Fµ{f+}(ω)Fµ{g}(−ω). (25)

Moreover,

(f ∗ g)(x) = F−1
µ

[
Fµ{f−}(ω)Fµ{g}(ω)+

+ Fµ{f+}(ω)Fµ{g}(−ω)
]
(x). (26)

Proof: Let Fµ{f} and Fµ{g} denote the QDFT of f
and g, respectively. It follows from (20) and (24) that

Fµ{f ? g}(ω) =

∫
H
eµω·x(f ? g)(x) d4x

=

∫
H

(∫
H
eµω·xf(x− y)g(y) d4y

)
d4x

=

∫
H
eµω·xf(x− y)

(∫
H
g(y) d4y

)
d4x.

(27)
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After the change of variables z = x−y, the above expression
becomes

Fµ{f ? g}(ω)

=

∫
H

∫
H
eµω·(y+z)f(z)g(y) d4y d4z

=

∫
H

∫
H
eµω·z eµω·yf(z)g(y) d4z d4y

=

∫
H

∫
H
eµω·z eµω·y(f−(z) + f+(z))g(y) d4z d4y

=

∫
H

∫
H
eµω·z(f−(z)eµω·y + f+(z)e−µω·y)g(y) d4z d4y

=

∫
H

∫
H
eµω·zf−(z)eµω·yg(y) d4z d4y

+

∫
H

∫
H
eµω·zf+(z)e−µω·yg(y) d4z d4y

=

∫
H
eµω·zf−(z) d4z

∫
H
eµω·yg(y) d4y

+

∫
H
eµω·zf+(z) d4z

∫
H
e−µω·yg(y) d4y

= Fµ{f−}(ω)Fµ{g}(ω) + Fµ{f+}(ω)Fµ{g}(−ω). (28)

In view of (28) and inversion formula for the QDFT (23), the
relation (26) holds. This completes the proof of the theorem.

Definition 3. The correlation for the QDFT of two quater-
nion functions f, g ∈ L1(H;H) is given by

(f ◦ g)(x) =

∫
H
f(x+ y)g(y) d4y. (29)

We derive the following correlation theorem for the QDFT
using the relationship between the quaternion convolution
and quaternion correlation (compare to [17]).

Theorem 2. Suppose f ∈ L1(H;H) and g ∈ L1(H;H) are
integral functions. Thus

Fµ{f ◦ g}(ω)

= Fµ{f−}(ω)Fµ{ḡ}(−ω) + Fµ{f+}(ω)Fµ{ḡ}(ω). (30)

Proof: A simple computation yields

(f ◦ g)(x)

=

∫
H
f(x+ y)g(y) d4y

=

∫
H
f(x− u)g(−u) d4u

=

∫
H
f(x− u)h(u) d4u

= (f ∗ h)(x)
(26)
= F−1

µ

[
Fµ{f−}(ω)Fµ{h}(ω)

+ Fµ{f+}(ω)Fµ{h}(−ω)
]
(x). (31)

It is easily seen that

Fµ{h}(ω) =

∫
H
eµω·ug(−u) d4u = Fµ{ḡ}(−ω), (32)

and

Fµ{h}(−ω) =

∫
H
e−µω·ug(−u) d4u = Fµ{ḡ}(ω). (33)

Due to (32) and (33), equation (31) can be expressed as

(f ◦ g)(x)

= F−1
µ [Fµ{f−}(ω)Fµ{ḡ}(−ω) + Fµ{f+}(ω)Fµ{ḡ}(ω)] (x).

Or, equivalently,

Fµ{f ◦ g}(ω)

= Fµ{f−}(ω)Fµ{ḡ}(−ω) + Fµ{f+}(ω)Fµ{ḡ}(ω),

which was to be proved.

Theorem 3. Suppose f ∈ L1(R;H) such that f(x) is con-
tinuous n-times differentiable, then for limx→±∞ f(x) = 0
the following holds

Fµ{∂̃nf}(ω) = ωn (−µ)nFµ{f}(ω), n ∈ N. (34)

Proof: Consider first the case n = 1. Indeed, we have

Fµ{∂̃f}(ω)

=

∫
H
eµω·x(∂xa + ∂xb i + ∂xcj + ∂xdk)f(x) d4x

=

∫
H
eµω·x∂xaf(x) d4x+

∫
H
eµω·xi∂xaf(x) d4x

+

∫
H
eµω·xj∂xaf(x) d4x+

∫
H
eµω·xk∂xaf(x) d4x

= −
∫
H

(∂xae
µω·x)f(x) d4x−

∫
H

(∂xbe
µω·x)f(x) d4xi

−
∫
H

(∂xbe
µω·x)f(x) d4xj−

∫
H

(∂xbe
µω·x)f(x) d4xk

=

∫
H

(ωa + ωbi + ωcj + ωdk)(−µ) eµω·xf(x) d4x

= ω (−µ)

∫
H
eµt·xf(x) d4x.

Using mathematical induction we can finish the proof of the
theorem.

The following theorem describes the relationship between
the product of two quaternion functions and its QDFT.

Theorem 4. Let f, g ∈ L2(H;H). Then the QDFT of product
of two quaternion functions f and g is given by

Fµ{fg}(ω)

=
1

(2π)2

[
(Fq{f−} ∗ Fµ{g})(ω) + (Fµ{f̄+} ◦ Fq{g})(ω)

]
.

(35)
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Proof: Applying the QDFT definition we obtain

Fµ{fg}(ω)

=

∫
H
eµω·xf(x)g(x) d4x

=

∫
H
eµω·xf(x)

( 1

(2π)2

∫
H
e−µu·xFµ{g}(u) d4u

)
d4x

=

∫
H
eµω·xf(x)

( 1

(2π)2

∫
H
e−µu·xFµ{g}(u) d4u

)
d4x

=
1

(2π)2

∫
H
eµω·x(f−(x) + f+(x))

×
(∫

H
e−µu·xFµ{g}(u) d4u

)
d4x

=
1

(2π)2

∫
H

∫
H
e−µu·xeµω·xf−(x)Fµ{g}(u) d4u d4x

+
1

(2π)2

∫
H

∫
H
eµu·xeµω·xf+(x)Fµ{g}(u) d4u d4x

=
1

(2π)4

∫
H

∫
H

∫
H

(
e−µu·xeµω·xe−µv·x

×Fµ{f−}(v)Fµ{g}(u)
)
d4u d4v d4x

+
1

(2π)4

∫
H

∫
H

∫
H

(
eµu·xeµω·xe−µv·x

×Fµ{f+}(v)Fµ{g}(u)
)
d4u d4v d4x

=
1

(2π)4

∫
H

∫
H

[(∫
H
eµ(ω−u−v)·x d4x

)
×Fµ{f−}(v)Fµ{g}(u)

]
d4u d4v

+
1

(2π)4

∫
H

∫
H

](∫
H
eµ(ω+u−v)·x d4x

)
×Fµ{f+}(v)Fµ{g}(u)|bigg] d4u d4v

=
1

(2π)2

∫
H

∫
H
δ(w − u− v)Fµ{f−}(v)Fµ{g}(u) d4u d4v

+
1

(2π)2

∫
H

∫
H
δ(ω + u− v)Fµ{f+}(v)Fµ{g}(u) d4u d4v

=
1

(2π)2

∫
H
Fµ{f−}(ω − u)Fµ{g}(u) d4u

+
1

(2π)2

∫
H
Fµ{f+}(ω + u)Fµ{g}(u) d4u. (36)

This gives the required result.
As an immediate consequence of the above theorem, we

get the following corollary.

Corollary 1. Let f, g ∈ L2(H;H). Assume that the QDFT
of g is a real-valued function, then Theorem 4 will reduce to

Fq{fg}(ω) =
1

(2π)2
(Fq{f} ∗ Fq{g})(ω). (37)

IV. APPLICATION OF THE QUATERNION DOMAIN
FOURIER TRANSFORM IN MATHEMATICAL STATISTICS

Following [8], [9] we define the probability density func-
tion of a quaternion random variable, which is algebraically
similar to real probability density function of the correspond-
ing associated probability quantity [6].

Definition 4. Let X = Xa+Xbi+Xcj+Xdk be a quaternion
random variable. A quaternion function fX(x) = fXa(x) +

fXb(x)i + fXc(x)j + fXd(x)k of the quaternion variable
x = xa+xbi+xcj+xdk is called the quaternion probability
density function (qpdf) of X if∫
H
fXi(x) d4x = 1, and fXi(x) ≥ 0∀x ∈ H, i = a, b, c, d.

We also define the quaternion cumulative distribution func-
tion (compare to [18])

fX(x) = ∂̃FX(x),

where the probability Pr is related to FX given by

FX(x) = Pr(Xa ≤ xa, Xb ≤ xb, Xc ≤ xc, Xd ≤ xd).

Definition 5 (Expected value). Let X be a quaternion-valued
random variable with quaternion density function f(x). The
expected value m = E[X] is defined by

m = E[X]

=

∫
H
xfX(x) d4x

=

∫
H
x
(
fXa(x) + fXb(x)i + fXc(x)j + fXd(x)k

)
d4x

=

∫
H
xfXa(x) d4x+

∫
H
xfXb(x)i d4x

+

∫
H
xfXc(x)j d4x+

∫
H
xfXd(x)k d4x

= E[Xa] + E[Xb]i + E[Xc]j + E[Xd]k, (38)

provided the integral exists. The expected value of X ∈ H is
usually called the mean.

Two quaternion random variables X = Xa+Xbi+Xcj+
Xdk and Y = Ya + Ybi + Ycj + Ydk are independent if
(Xa, Ya), (Xb, Yb), (Xc, Yd) and (Xd, Yd) are independent.
Using (2) we can obtain the product of two quaternion
random variables X and Y . If the quaternion variables X
and Y are independent, then E[XY ] = E[X]E[Y ].

Corollary 2. If X and Y are quaternion random variables,
then

1) E[αX + βY ] = αE[X] + βE[Y ] for any constants
α, β ∈ H;

2) |E[X]| ≤ E[|X|] for any the quaternion probability
density function fX(x) ∈ R, fX(x) > 0∀x ∈ H.

Definition 6. If X is a quaternion random variable with the
quaternion density function fX(x), then the characteristic
function φX(t) of the random variable X or the distribution
function F (x) is defined by formula

φX(t) = E[eµt·X ]
(12)
= E[e

1
2µ(tX̄+Xt̄)]

=

∫
H
eµt·xfX(x) d4x. (39)

This shows that the characteristic function φX(t) can be
regarded as the quaternion domain Fourier transform of the
density function fX(x). Applying (12) we can rewrite (39)
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mentioned above in the form

φX(t)

=

∫
H
eµ(taxa+tbxb+tcxc+tdxd)

×
(
fXa(x) + fXb(x)i + fXc(x)j + fXd(x)k

)
d4x.

=

∫
H
eµ(taxa+tbxb+tcxc+tdxd)fXa(x) d4x

+

∫
H
eµ(taxa+tbxb+tcxc+tdxd)fXb(x) d4xi

+

∫
H
eµ(taxa+tbxb+tcxc+tdxd)fXc(x) d4xj

+

∫
H
eµ(taxa+tbxb+tcxc+tdxd)fXd(x) d4xk

= φXa(t) + φXb i + φXcj + φXdk. (40)

Some basic properties of the characteristic function are listed
in the following corollary.

Corollary 3. Let X be a quaternion random variable with
quaternion density function fX(x).

1) If quaternion random variables X and Y are indepen-
dent, then

φX+Y (t) = φX(t) + φY (t); (41)

2) φα+βX(t) = eµt·αφX(tβ).

Proof: For the first assertion, simple computations gives

φX+Y (t)

= E[eµt·(X+Y )]

= φXa+Ya(t) + φXb+Yb(t)i + φXc+Yc(t)j + φXd+Yd(t)k

=
(
φXa(t) + φXb(t)i + φXc(t)j + φXd(t)k

)
+
(
φYa(t) + φYb(t)i + φYc(t)j + φYd(t)k

)
= φX(t) + φY (t). (42)

For the second, In fact, we have

φα+βX(t)

= E[eµt·(α+βX)]

= eµt·αE[eµt·βX ]

= eµt·α
(
φβaXa(t) + φβbXb(t)i + φβcXc(t)j + φβdXd(t)k

)
= eµt·αφX(tβ). (43)

This is the desired result.
The following theorem is an extension of the Riemann-

Lebesgue lemma to the quaternion density function.

Theorem 5 (Riemann-Lebesgue lemma of density function).
For a quaternion density function fX ∈ L1(H;H) the
quaternion characteristic function φX(t) satisfies

lim
|t|→∞

|φX(t)| = 0, (44)

Proof: Because of

eµtx = −eµt·(x+ t̄π
|t|2

)
, (45)

we have

φX(t) =

∫
H
eµt·xfX(x) d4x = −

∫
H
e
µt·(x+ t̄π

|t|2
)
fX(x) d4x.

By substitution, we have

φX(t)

=
1

2

[∫
H
eµt·xfX(x) d4x−

∫
H
e
µt·(x+ t̄π

|t|2
)
fX(x) d4x

]
=

1

2

[∫
H
eµt·yf(y) d4y −

∫
H
eµt·yf(y − t̄π

|t|2
) d4y

]
=

1

2

∫
H
eµt·y

[
f(y)− f(y − t̄π

|t|2
)

]
d4y.

Hence,

lim
|t|→∞

|φX(t)| ≤ 1

2
lim
|t|→∞

∫
H
|eµt·y|

∣∣∣∣f(y)− f(y − t̄π

|t|2
)

∣∣∣∣ d4y

=
1

2
lim
|t|→∞

∫
H

∣∣∣∣f(y)− f(y − t̄π

|t|2
)

∣∣∣∣ d4y = 0.

The proof is complete.
The following theorem describes an important property of

the characteristic function.

Theorem 6 (Continuity). If the quaternion density function
f ∈ L1(H;H), then the characteristic function φX(t) of a
quaternion-valued random variable X is continuous function
on H.

Proof: It follow directly from the QDFT definition (20)
that

|φX(t+ h)− φX(t)|

=
∣∣∣E [eµ(t+h)·X

]
− E

[
eµt·X

]∣∣∣
=

∣∣∣∣∫
H
eµt·xeµh·xfX(x) d4x−

∫
H
eµt·xfX(x) d4x

∣∣∣∣
=

∣∣∣∣∫
H
eµt·x(eµh·x − 1)fX(x) d4x

∣∣∣∣
≤
∫
H
|(eµh·x − 1)||fX(x)| d4x. (46)

We know from the triangle inequality for quaternions that

|eµh·x − 1| ≤ |eµh·x|+ 1 = 2.

Therefore,

|φX(t+ h)− φX(t)| ≤ 2

∫
H
|fX(x)| d4x. (47)

Applying the Lebesgue dominated convergence theorem to
(46) gives

lim
h→0
|φX(t+ h)− φX(t)| = 0. (48)

This shows the characteristic function φX(t) is continuous
on H.

Theorem 7 (Parseval identity). If the quaternion character-
istic functions φX(t) and ψX(t) of the random variable X
are defined by

φX(t) =

∫
H
eµt·xfX(x) d4x, ψX(t) =

∫
H
eµt·xgX(x) d4x,

(49)
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where fX(x) and gX(x) are quaternion density functions
with respect to φX(t) and ψX(t), respectively. Then we have∫

H
gX(t)e−µt·yφ(t) d4t

=

∫
H
ψX−(x− y)fX(x) d4x+

∫
H
ψX+(y − x)fX(x) d4x.

(50)

Proof: Applying the characteristic function (39) we
obtain

e−µt·yφX(t) =

∫
H
eµt·(x−y)fX(x) d4x. (51)

Multiplying both sides of the above identity by gX(t) and
then integrating with respect to d4t we immediately get∫

H
gX(t)e−µt·yφX(t) d4t

=

∫
H

∫
H
gX(t)eµt·(x−y)fX(x) d4x d4t

=

∫
H

[∫
H

(gX−(t) + gX+(t)) eµ·t(x−y) d4t

]
fX(x) d4x

=

∫
H

(∫
H
eµt·(x−y)gX−(t) d4t

)
fX(x) d4x

+

∫
H

(∫
H
e−µt·(x−y)gX+(t) d4t

)
fX(x) d4x

=

∫
H
ψX−(x− y)fX(x) d4x+

∫
H
ψX+(y − x)fX(x) d4x.

(52)

This is the desired result.
The next, we first observe that

Fµ{∂̃FX}(t) = Fµ{f}(t) = φX(t), (53)

where FX(x) is quaternion distribution function of random
variable X . Furthermore, application of (34) we easily get

φ(t) = t (−µ)Fµ{FX}(t), (54)

and thus

Fµ{FX}(t) = t−1µφX(t). (55)

As easy consequence of (55), we obtain the following
corollary.

Corollary 4. Let X be a quaternion random variable. If the
composition of two quaternion distribution functions FX(x)
and GX(x) is given by

H(x) = FX(x) ∗GX(x) =

∫
H
F (x− y)∂̃G(y) d4y (56)

the following holds

ϕ(t) = φX−(t)ψX(t)) + φX+(t)ψX(−t)), (57)

where φX(t) and ψX(t) are the characteristic functions of
the distributions functions FX(x) and GX(x), respectively.

Proof: Simple computation shows that

t−1 µϕ(t)

= Fµ
{∫

H
F (x− y)∂̃G(y) d4y

}
(t)

(55)
= Fµ{FX−}(t)Fµ{∂̃G}(t) + Fµ{FX+}(t)Fµ{∂̃G}(−t)
= t−1µφX−(t)ψX(t)) + t−1µφX+(t)ψX(−t)).

The proof is complete.
From (38) we introduce the nth moment of a quaternion-

valued random variable X defined by

mn = E[Xn] =

∫
H
xnfX(x) d4x, n = 1, 2, 3, . . . , (58)

provided the integral exists. It is obvious that for n = 1 in
(58) we obtain the first moment m1 (simply m), which is
called the expectation of X . This gives the following result.

Theorem 8. If X is quaternion random variable, then
there exists n-th continuous derivatives for the quaternion
characteristic function φX(t) which is given formula

∂̃kφX(t) = µk
∫
H
xkeµt·xfX(x) d4x. (59)

Moreover,

mk = E[Xk] = (−µ)k∂̃kφX(0), k = 1, 2, 3, . . . , n.
(60)

Proof: The proof of this theorem is quite similar to the
proof of Theorem 3.

Definition 7. Let X be a any quaternion random variable.
The variance of X is defined by

σ2 = var(X)

= E
[
(X − E[X])(X − E[X])

]
=
(
E[X2

a ]− E[Xa]
)2

+
(
E[X2

b ]− E[Xb]
)2

+
(
E[X2

c ]

− E[Xc]
)2

+
(
E[X2

d ]− E[Xd]
)2

= var(Xa) + var(Xb) + var(Xc) + var(Xd). (61)

Next, we can obtain the variance σ2 of a quaternion
random variable in terms of the characteristic function as

σ2 =

∫
H

(x−m)(x−m)fX(x) d4x

= (−µ)2∂̃2φX(0)− {(−µ)∂̃φX(0)}2

= {∂̃φX(0)}2 − ∂̃2φX(0).

Example 1. Find the moments of the normal distribution
defined by the density function (compare to [6])

f(x) =
1

σ
√

2π
e−

(x−m)(x−m)

2σ2 . (62)

It follows from (39) that

φ(t) =

∫
H

1

σ
√

2π
e−
|x−m|2

2σ2 eµt·x d4x.

Making the change of variable x−m = y we obtain

φ(t) =

∫
H

1

σ
√

2π
e−
|y|2

2σ2 eµt·(m+y) d4y

=
eµt·m

σ
√

2π

∫
H
e−
|y|2

2σ2 eµt·y d4y

=
eµt·m

σ
√

2π

√
2σ2π e−

σ2|t|2
2

= eµt·m−
σ2|t|2

2 .

Therefore,

∂̃φ(t) = (µm− tσ2)eµtm−
σ2|t|2

2 . (63)
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Combining (60) and (63) yields

m1 = (−µ)∂̃φ(0)

= (−µ)(µm) = m

m2 = m2 + σ2

m3 = m(m2 + 3σ2). (64)

This means that the variance of the normal distribution is

σ2 = m2 −m2
1. (65)

V. CONCLUSION

In this paper, we derived more properties of the QDFT
such as the convolution, correlation and product theorems.
We presented the probability density function of a quaternion
random variable in the framework of quaternion algebra. We
studied the application of the QDFT in probability theory
and mathematical statistics.
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