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Abstract—In this paper, we perform an empirical analysis
of the dependence structure of international equity and bond
markets using the regime-switching copula model. In equity
markets, it is observed that negative returns are more strongly
dependent than positive returns. This phenomenon is known as
asymmetric dependence. The regime-switching copula model,
which includes symmetric and asymmetric regimes, is suitable
for describing asymmetry. We apply two kinds of flexible
multivariate copulas, a skew t copula and a vine copula, to
the asymmetric regime to deal with dependencies between two
asset classes. In this paper, we analyze three country pairs: the
United Kingdom and United States (UK-US), Japan-US, and
Italy-US. We find three implications of our empirical analysis.
First, highly dependent regimes are different according to the
asset pairs. Second, the strength of the asymmetry of each
country pair varies, and that of the Japan-US pair is weak.
Third, the skew t copula is a better fit to the data, but is not
flexible enough to capture extreme dependencies, while the vine
copula fits well in spite of having fewer parameters, but cannot
express the different extreme dependencies of each asset pair.

Index Terms—International market correlation, Asymmetry,
Copulas, Regime-switching model.

I. I NTRODUCTION

RESEARCH on the dependence structure of international
equity markets has shown that negative returns are

more dependent than positive returns. This phenomenon is
called “asymmetric dependence”. It has important implica-
tions for the risk of international portfolios. If investors
neglect increasing dependence in times of crisis, they might
overestimate the effects of diversification and lose benefits.
To evaluate the full risk of asset allocation, both equity
and bond markets must be considered together, because
a typical diversification method is to invest both equities
and bonds at domestic and international levels. However,
most previous research has only focused on dependence in
equity markets because of the difficulty of describing the
dependence structures of different asset classes.

Many researchers have investigated asymmetric depen-
dence using the exceedance correlation concept, which is
defined as the correlation calculated from returns above or
below a certain threshold. [1] used extreme value theory
to capture the asymptotic dependence of returns in equity
markets, and evaluated the asymmetry using exceedance
correlation. The advantage of extreme value theory is that
the asymptotic property is maintained regardless of the
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distribution of returns, but its shortcoming is that it cannot
determine if the return process from a given model has an
asymmetric exceedance correlation. [2] developed a method
to test asymmetric correlation. [3] applied a Gaussian regime-
switching (RS) model and found two regimes: a bear regime
with negative returns, high volatilities, and high dependence,
and a bull regime with positive returns, low volatilities, and
low dependence. However, [4] analytically showed that mul-
tivariate GARCH or RS models with Gaussian innovations
cannot reproduce extreme asymmetric dependence. Thus, to
correctly investigate asymmetry, we need models that use
more complex innovations than the Gaussian.

More flexible models have been proposed by combining
copulas with time series models. Copulas are functions that
represent dependence structures of multivariate distributions.
[5] presented that a nested Archimedean copulas can success-
fully explained the dependence structures between default
probabilities and recovery rates. The advantages of copulas
are that they separate dependence structures from marginal
models, and that they can express variable dependence
structures such as asymmetry. [6] analyzed international
correlation in equity markets with a copula-GARCH model.
[7] proposed a copula model with time-varying parameters,
and investigated asymmetry in foreign exchange markets. [8]
examined systemic risk in the U.S. equity market and showed
the validity of vine Copula-based ARMA-GARCH model.
Other than financial applications, [9] used copula functions in
their empirical study to examine monthly precipitation. [10]
proposed a reliability assessment model with copula function.

To describe asymmetry more properly, researchers such
as [11] and [12] proposed an RS copula model. It allows
us to switch copulas depending on two regimes: symmetric
and asymmetric. [11] used bivariate copulas to evaluate the
asymmetry of equity pairs. [12] investigated asymmetric de-
pendences in equity markets with a multivariate vine copula.
They used the flexible multivariate model, which is more
complicated than a bivariate copula model. However, they
only examined the dependence structure of equities, which
is not enough to consider the risk of portfolios composed of
equities and bonds.

To analyze international market correlation among dif-
ferent asset classes, we must use a flexible multivariate
copula for dependencies in an asymmetric regime. This
is because different asset classes exhibit various behavior
and dependence structures. To describe them properly, we
assume that the following two features are necessary for
flexible copulas. First, the strength of the dependence of
each pair should be described separately. Second, we should
use a model that can express asymmetric tail dependence.
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Tail dependence refers to the dependence between extremely
large or small pairs. The well-known multivariate copulas
only satisfy one of these features. For example, multivariate
elliptical copulas such as the Gaussian ort copulas are able
to express different dependencies for each pair, but their tail
dependencies are symmetric. Other examples belong to the
multivariate Archimedean copula family such as the Clayton
or Gumbel copulas. Their tail dependences are asymmetric,
but their dependence structures are dominated by only one
parameter. Thus, constructing flexible multivariate copulas is
challenging.

To overcome this problem we need to introduce more
complex copulas. When considering copulas that satisfy
these two features, a trade-off exists between the power of
expression and parsimony. The skewt copula (suggested
by [13] and [14]) and vine copula (introduced by [15]
and [16]) focus more on the ability to express various
dependence structures. The hierarchical Archimedean copula
(proposed by [17]) and mixture copula (used in [4]) pay
more attention to retaining the number of parameters. [4]
incorporated the mixture copula into the RS copula model,
and analyzed the dependence structure of international equity
and bond markets. This is one of few studies that focused
on dependences among different asset classes. However,
they neglected the correlation of some pairs to simplify
the model, which makes it less flexible. Moreover, as [12]
indicated, their model cannot be applied to pairs with strong
dependencies. Thus, the model of [4] is not flexible enough
to evaluate diversification risks. In this paper, we focus on the
former copulas because they are flexible enough to describe
the complicated dependence structures among different asset
classes, even though the number of parameters becomes
large. To the best of our knowledge, our research is the first to
analyze dependence structures among different asset classes
with a multivariate flexible model.

In this paper, we perform an empirical analysis of the de-
pendence structure of international equity and bond markets
using the RS copula model. We use the Gaussian copula in a
symmetric regime, while applying the skewt or vine copula
in an asymmetric regime. The model itself is the same as
in existing research, but it uses flexible multivariate copulas
to enable us to properly investigate complicated dependence
structures among different asset classes. We use the skew
t copula of [14], which is constructed using the skewt
distribution expressed in the simple form of [18]. We use the
skewt GARCH model of [19] as a marginal distribution that
considers skewness. We assume that the marginal distribu-
tions are not dependent on regimes. Although this assumption
might be less flexible, our empirical study demonstrates that
it is reasonable and practical from a parsimonious viewpoint.
Furthermore, from a technical viewpoint, it allows us to
estimate parameters in a two-step procedure, which makes
the estimation procedure possible. In the proposed method,
we first estimate the parameters of the marginal models.
Next, we infer the parameters of the dependence structure
and RS using the results from the first step. We apply
the Hamilton filter proposed by [20]. To further investigate
the asymmetry and evaluate the model fit, we calculate the
exceedance correlation, Value at Risk, and expected shortfall.

We choose three pairs of countries to examine empirical
evidence of asymmetry: the United Kingdom and United

States (UK-US), Japan-US, and Italy-US. The data are from
2003 to 2013, which covers the credit crunch period and
the Greek sovereign crisis. By analyzing the correlation
coefficients, we find that the three country pairs have dif-
ferent levels of correlation. The UK and US are strongly
correlated, but there is only a small correlation between
Japan and the US. In addition, the data for Italy and the US
have a particular behavior caused by the Greek sovereign
crisis. Our empirical analysis finds that highly dependent
regimes are different according to the asset pairs. This is
implicitly indicated by [4], but in this paper we explicitly
compare all asset pairs. Our findings imply that we should
consider the dependence of each pair when constructing
international diversified portfolios, to properly estimate the
benefits of diversification. If we incorporate asset pairs that
are less dependent in asymmetric regimes into a portfolio,
we may avoid the risk that all assets in the portfolio have
extreme negative returns in the asymmetric regime. Our
empirical findings clearly indicate that we should evaluate
the dependence structure and asymmetry among all asset and
country pairs to correctly capture the benefits of international
diversification.

The paper is organized as follows. We introduce the
concept of copulas in Section 2, reviewing their definition
and features, and the skewt and vine copulas. Section
3 explains the RS copula model. It includes a definition
of the model and the marginal models, and introduces the
estimation method. Section 4 presents the empirical analysis.
First, we explain the data and descriptive statistics. Next, we
show the results of the marginal models, and then we present
the results of the dependence structure of each country pair.
In Section 5, we discuss more implications of the dependence
structures using the exceedance correlation, Value at Risk,
and expected shortfall for each model. Section 6 concludes
the paper.

II. COPULAS

In the following section, we introduce the concept of
copulas. First, we define them and describe their features.
Then, we discuss some specific multivariate copulas: the
skew t and vine copulas.

A. Definition and features of copulas

Supposed is a natural number. A copula is a multivari-
ate joint distribution function,C, with uniform marginal
distributions on[0, 1]. HenceC is a mapping of the form
C : [0, 1]d → [0, 1]. A copulaC has the following properties,
and conversely a function with the following properties is a
copula.

(1) C(u1, . . . , ud) is increasing in each componentui.
(2) C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈

{1, . . . , d}, ui ∈ [0, 1].
(3) For all (a1, . . . , ad), (b1, . . . , bd) ∈ [0, 1]d with

ai ≤ bi we have

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+···+idC(u1i1 , . . . , udid) ≥ 0,

where uj1 = aj and uj2 = bj for all j ∈
{1, . . . , d}.
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The following theorem of [21] states that copulas are
dependence structures of multivariate joint distributions.

Theorem 1:Let F be a joint distribution function with
marginal distributionsF1, . . . , Fd. Then there exists a copula
C : [0, 1]d → [0, 1] such that, for allx1, . . . , xd ∈ R,

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (1)

If the marginal distributions are continuous, thenC is unique.
Conversely, ifC is a copula andF1, . . . , Fd are univari-
ate distribution functions, then the functionF defined in
Equation (1) is a joint distribution function with marginal
distributionsF1, . . . , Fd.
Sklar’s theorem shows that every joint distribution function
can be decomposed into its marginal functions and its copula.
We are able to construct various joint distribution functions
using copulas with different structures, even though the
marginal distributions are the same.

One of the features of a copula is the coefficient of tail
dependence. It measures the dependence strength in the tails
of a bivariate distribution. Assuming thatX1, X2 are random
variables with distribution functionsF1, F2, the coefficient of
the upper tail dependence ofX1 andX2 is given by

λu = lim
q→1−0

P (X2 > F←2 (q)|X1 > F←1 (q)),

whereF←i , i = 1, 2, are generalized inverse functions given
by F←i (y) = inf{x ∈ R|Fi(x) ≥ y}, provided that a limit
λu ∈ [0, 1] exists. Ifλu = 0, thenX1 andX2 are said to be
asymptotically independent in the upper tail. Ifλu ∈ (0, 1],
X1 and X2 show upper tail dependence in the upper tail.
The coefficient of upper tail dependence can be interpreted
as the probability that one variable becomes large when the
other becomes large. Analogously, the coefficient of lower
tail dependence is

λd = lim
q→0+

P (X2 ≤ F←2 (q)|X1 ≤ F←1 (q)),

provided that a limitλd ∈ [0, 1] exists. The coefficient of
lower tail dependence can be interpreted as the probability
that one variable becomes small when the other becomes
small.

B. Skewt copula

We now focus on flexible multivariate copulas, which
will be used to describe the dependence structure in an
asymmetric regime. Such copulas should hold the following
two properties. First, the strength of the dependence of each
pair is described separately. Second, the tail dependence can
be asymmetric, which means that the coefficients of the upper
and lower tails may be different.

It is a challenge to construct copulas with these two fea-
tures, because basic multivariate copulas cannot handle them
both. For instance, famous multivariate elliptical copulas
such as the Gaussian ort copula can express different depen-
dences for each pair using correlation coefficient matrices,
but their tail dependencies are symmetric. Another example
is a copula belonging to the multivariate Archimedean copula
family such as the Clayton or Gumbel copula. Its tail
dependence is asymmetric, but the dependence structure is
dominated by only one parameter.

A skew t copula has the above properties. It was first
introduced by [13], who used the skewt distribution in

the expression of a special case of a generalized hyperbolic
distribution. Because the skewt distribution can be described
in many ways (see [22], for example), [14] suggested the
skew t copula derived from a simple form of the skewt
distribution in [18]. In the following, we use the expression
given in [14].

First, we explain a skew normal distribution. LetY =
(Y1, . . . , Yd)

T denote ad-dimensional random vector. It has
mean vectorµ, and covariance matrixΣ with components
σij , i, j = 1, . . . , d. If Y follows the skew normal distribu-
tion, its density function is given by

gd(y;µ,Σ, α) = 2ϕ(y − µ; Σ)Φ(αTW−1(y − µ)), (2)

where ϕ(y − µ; Σ) is the density function of the normal
distribution Nd(µ,Σ), Φ(·) is the distribution function of
N(0, 1), α = (α1, . . . , αd)

T is a d-dimensional vector
called the shape parameter vector, andW = (δij

√
σij),

i, j = 1, . . . , d (δij is the Kronecker delta). The notation
Y ∼ SNd(µ,Σ, α) is used forY with the density equation
(2).

Next, we describe the skewt distribution. Ad-dimensional
random vectorX = (X1, . . . , Xd)

T that follows the skew
t distribution with parametersµ, Σ, α, and the number of
degrees of freedom,ν, can be represented as

X = µ+ V −1/2Y,

whereY ∼ SNd(0,Σ, α) andµV ∼ χ2
ν independent ofY.

The joint density of the skewt distribution with parameters
µ, Σ, α, andν is given by

fd,ν(x;µ,Σ, α) =

2 · td,ν(x;µ,Σ)T1,ν+d

{
αTW−1(x− µ)

( ν + d

Q+ ν

)1/2}
,

whereQ = (x − µ)TW−1(x − µ), td,ν(·;µ,Σ) is the joint
density function of thed-dimensionalt distribution with
parametersΣ andν, andT1,ν+d(.) is the distribution function
of the univariatet-distribution with parametersν + d.

The skewt copula can be constructed from the skewt
distribution. Supposeu = (u1, . . . , ud)

T, whereui ∈ [0, 1]
for i = 1, . . . , d. For the implicit copula of an absolutely
continuous joint distribution functionF with strictly increas-
ing, continuous marginal distribution functionsF1, . . . , Fd,
we may differentiateC(u) = F (F←1 (u1), . . . , F

←
d (ud)) to

see that the copula density,c, is given by

c(u) =
f(F−11 (u1), . . . , F

−1
d (ud))

f1(F
−1
1 (u1)) . . . fd(F

−1
d (ud))

,

wheref is the joint density ofF , f1, . . . , fd are the marginal
densities, andF−11 , . . . , F−1d are the inverses of the marginal
distribution functions. The density of the skewt copula,cST,
is

cST(u;R,α, ν) =

fd,ν(F
−1
1,ν (u1; 0, ρ11, α1), . . . , F

−1
1,ν (ud; 0, ρdd, αd);0, R, α)

f1,ν(F
−1
1,ν (u1; 0, 1, α1); 0, 1, α1) . . . f1,ν(F

−1
1,ν (ud; 0, 1, αd); 0, 1, αd)

,

whereR is a correlation matrix with coefficientsρij , i, j =
1, . . . , d, andF−11,ν (·;µ, σ, α) is the inverse of the univariate
distribution function of the skewt distribution. In the same
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way, the density of the skew normal copula,cSN, is

cSN(u;R,α, ν) =

gd(G
−1
1 (u1; 0, ρ11, α1), . . . , G

−1
1 (ud; 0, ρdd, αd);0, R, α)

g1(G
−1
1 (u1; 0, 1, α1); 0, 1, α1) . . . g1(G

−1
1 (ud; 0, 1, αd); 0, 1, αd)

,

whereG−11 (·;µ, σ, α) is the inverse of the univariate distri-
bution function of the skew normal distribution.

The skew t copula represents the dependence structure
of each pair using its correlation matrix. Furthermore, the
strength of the upper and lower tail dependencies can be
made different by introducing the shape parameterα. Fig. 1
illustrates 2,000 simulated points from the four-dimensional
skew t copula. Its parameters are:

R =


1.0 0.3 0.5 0.7
0.3 1.0 0.4 0.6
0.5 0.4 1.0 0.9
0.7 0.6 0.9 1.0

 ,

α = [−0.5,−0.8, 0.2, 0.3]T,

ν = 5.

The two properties stated above are confirmed in Fig. 1.

Fig. 1. Simulated points from the four-dimensional skewt copula

C. Vine copula

Another copula that has the desired properties of flexible
copulas is a vine (or pair) copula. [15] proposed vine copulas
for statistics. [16] introduced vine copulas into finance, and
is their expressions that we use here. The vine copula is
constructed from marginal densities, bivariate copulas, and
their combinations. This construction is based on the idea
that a joint density function ofd variablesx1, . . . , xd can be
decomposed to

f(x1, . . . , fd) = (3)

f(x1) · f(x2|x1) · f(x3|x1, x2) . . . f(xd|x1, . . . , xd−1).

Each factor in Equation (3) can be expressed using bivariate
conditional copulas. The first conditional density can be
decomposed into

f(x2|x1) = c12(F1(x1), F2(x2)),

wherec12 is the copula density, andFi(·) is the distribution
function of xi. The second conditional density in Equation
(3) can be rewritten in the same way. One possible decom-
position is

f(x3|x1, x2) = c23|1(F2|1(x2|x1), F3|1(x3|x1))f(x3|x1),

where c23|1 is the conditional copula density ofx2 and
x3, conditioning tox1, andFi|j is the conditional marginal
distribution of xi, conditioning toxj . This can be further
decomposed into

f(x3|x1, x2) =

c23|1(F2|1(x2|x1), F3|1(x3|x1))c13(F1(x1), F3(x3))f3(x3).

Combining the decomposed expressions, the joint density of
the first three variables in Equation (3) can be written

f(x1, x2, x3) =

c23|1(F2|1(x2|x1), F3|1(x3|x1))c12(F1(x1), F2(x2))

×c13(F1(x1), F3(x3))f1(x1)f2(x2)f3(x3).

The copula density is given by

c(x1, x2, x3) =

c23|1(F2|1(x2|x1), F3|1(x3|x1))c13(F1(x1), F3(x3)).

According to [23], conditional distribution functions are
calculated using

F (x|v) =
∂Cx,vj |v−j

(F (x|v−j), F (vj |v−j))
∂F (vj |v−j)

,

wherev−j denotes the vectorv excluding thej-th compo-
nent.

There are a few possible expressions for decomposing and
ordering the data from high dimensional distributions. [15]
introduced a graphical model, called the regular vine. In this
paper, two special vines are introduced: a canonical vine
(a C-vine, for short) and a D-vine. The vines represent the
specific way the density is decomposed. Fig. 2 illustrates the
structure of a four-dimensional C-vine copula. It consists of
three trees,Tj , j = 1, . . . , 3. In the first treeT1, the depen-
dence is modeled using the bivariate copulas ofx1 with all
other variables. In the second treeT2, all the bivariate copulas
conditioned onx1 represent the dependencies betweenx2

and the other variables. Iterating leads to thed-dimensional
C-vine copula given by

c(x1, . . . , xd) =
d−1∏
j=1

n−j∏
i=1

cj,j+i|1,...,j−1

×(F (xj |x1, . . . , xj−1), F (xj |xj+i, . . . , xj−1)).

A D-vine provides us with a different copula from that of
a C-vine. Fig. 3 shows the structure of a four-dimensional D-
vine copula. In the D-vine, no node in any tree is connected
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Fig. 2. Dependence structure of a four-dimensional C-vine

to more than two edges. Thed-dimensional D-vine copula
is

c(x1, . . . , xd) =
d−1∏
j=1

n−j∏
i=1

cj,i+j|i+1,...,i+j−1

×(F (xi|xi+1, . . . , xi+j−1), F (xi+j |xi+1, . . . , xi+j−1)).

Fig. 3. Dependence structure of a four-dimensional D-vine

Note that the bivariate copulas can be constructed from
different types of copulas. Following [16] and [12], we
examine five copulas as building blocks for the vine copula:
the Gaussian, thet, the Clayton, the Gumbel, and the rotated
Gumbel. For an overview of other bivariate copulas, see
[24]. The first two are elliptical copulas, which represent
the dependence structure of some elliptical distributions (the
normal andt distributions). The Gaussian copula has no tail
dependence, while thet copula has both upper and lower tail
dependence. The rest are called Archimedean copulas, and
their distribution functions are explicitly given. The Gumbel
copula has the upper tail dependence, while the Clayton
and rotated Gumbel have lower tail dependencies. The vine
copula can express tail dependencies by combining these
copulas.

Fig. 4 shows 2,000 simulated points from the four-
dimensional C-vine copula. The building blocks in the first
tree are all rotated Gumbel copulas with parameters1.5, 2.0,
and 1.8, and the rest are bivariate Gaussian copulas with
parameters0.3, −0.2, and 0.3. The marginal distributions
are assumed to be uniform on[0, 1], which leads toui = xi,

for i ∈ [1, 4]. From Fig. 4 it can be seen that the lower tail
dependence exists, and the strength of the dependence for
each pair differs.

Fig. 4. Simulated points from the four-dimensional C-vine copula

III. M ODEL

This section explains the model that describes the asym-
metric dependence structure in equity and bond markets. We
first introduce an RS copula model, then discuss a skewt
GARCH model of [19] that we use as a marginal model. We
also describe the estimation method.

A. Regime-switching copula model

An RS copula can be used to model the dependencies
in international market correlations. We follow [12] and [4]
whose models have two regimes: symmetric and asymmetric.
It is assumed that thed-variate process,Xt, depends on a
latent binary variable, which indicates the economy’s current
regime. In this model, the regime only affects the dependence
structure. The density ofXt, conditional on being in regime
j, is

f(Xt|Xt−1, st = j) =

c(j)
(
F1(x1,t), . . . , Fd(xd,t); θ

(j)
c

) d∏
i=1

fi(xi,t; θm,i),

whereXt = (x1,t, . . . , xd,t), st is the latent variable for the
regime,c(j)(·) is the copula density in regimej (with pa-
rameterθ(j)c ), fi(·) is the density of the marginal distribution
of xi (with parameterθm,i), and Fi is the corresponding
distribution function. It is assumed that the unobserved
latent state variable follows a Markov chain with transition
probability

P =

(
p11 1− p11

1− p22 p22

)
,

wherepij represents the probability of moving from statei
at time t to statej at time t+ 1.
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B. Marginal model

The marginal distributions of each of the returns are
modeled using the univariate skewt GARCH (1,1) model
of [19] to consider the dynamics of the volatility. The skew
t distribution introduced here is different from [18]. This
system is expressed as

xi,t = σi,t · ϵi,t, for i = 1, . . . , d, (4)

σ2
i,t = ωi + αix

2
i,t−1 + βiσ

2
i,t−1, (5)

ϵi,t ∼ skew t(νi, λi), λi ∈ (−1, 1), (6)

where ν is the number of degrees of freedom,λ is the
skewness parameter, and the skewt density is given by

h1,ν(z;λ) =

 bc
(
1 + 1

ν−2
(
bz+a
1−λ

)2)−(ν+1)/2

, z < −a/b,

bc
(
1 + 1

ν−2
(
bz+a
1+λ

)2)−(ν+1)/2

, z ≤ −a/b.

The contentsa, b, andc are defined as

a = 4λc
(ν − 2

ν − 1

)
, b2 = 1 + 3λ2 − a2, c =

Γ( ν+1
2 )√

π(ν − 2)Γ(ν2 )
.

θm,i = (ωi, αi, βi, νi, λi)
T denote all the parameters of a

given country.

C. Estimation

The estimation method can be separated into two parts
because of the assumption that the marginal models are
independent from regimes. Denote the sample of observed
data byX = (XT

1 , . . . , X
T
T )

T. The log likelihood function
is given by

L(X; θm, θc) =
T∑

t=1

log f(Xt|Xt−1; θm, θc),

whereXt−1 = (X1, . . . , Xt−1) denotes the history of the
full process,θm denotes the parameters of the marginal, and
θc denotes the parameters of the RS copula. This likelihood
can be decomposed intoLm, which contains the marginal
densities, andLc, which contains the dependence structure:

L(X; θm, θc) = Lm(X; θm) + Lc(X; θm, θc), (7)

Lm(X; θm) =
T∑

t=1

d∑
i=1

log fi(xi,t|xt−1
i ; θm,i), (8)

Lc(X; θm, θc) = (9)
T∑

t=1

log c
(
F1(xi,t|xt−1

1 ; θm,1), . . . , Fd(xd,t|xt−1
d ; θm,d); θc

)
,

where xt−1
i = (xi,1, . . . , xi,t−1) denotes the history of

the variablei. The proof can be found in, for example,
[4]. The log likelihood of the marginal modelsLm is a
function of the parameter vectorθm = (θm,1, . . . , θm,d),
which contains the parameters of each marginal densityfi.
The copula log likelihood depends directly on the vector
θc = (θ

(1)
c , θ

(2)
c , p11, p22,p0). This vector contains the copula

parameters over both regimes, the parameters of the Markov
transition probability matrix, and the two-dimensional vector
of its initial probabilities,p0. The functionc denotes the
density of the RS copula.

The decomposition of the log likelihood function in Equa-
tion (7) allows us to use a two-step estimation procedure. The
RS copula model contains a large number of parameters, but
this method simplifies the estimation. In the first step, we
assume that the different series are uncorrelated conditioned
on the history. The parameters of the marginal densities are
estimated by maximizing Equation (8). This is straightfor-
ward, and we estimate each GARCH model separately. In
the second step, we calibrate the dependence structure and
Markov chain parameters, given the results of the first step.
We calculate the parameters by maximizing Equation (9),
conditioning onθm.

In the second step, we use the EM algorithm of [20].
This is a useful estimation method for an unobservable state
variable in the Markov chain. Let

ηt =

(
c(1)(F1(x1,t|xt−1

1 ), . . . , Fn(xn,t|xt−1
n ); θ

(1)
c )

c(2)(F1(x1,t|xt−1
1 ), . . . , Fn(xn,t|xt−1

n ); θ
(2)
c )

)
,

be the two-dimensional vector that contains the copula den-
sities at timet, conditioned on the state variablest and the
history up to timet. Moreover, let

ξ̂t|τ =

(
Pr(st = 1|Xτ ; θm, θc)
Pr(st = 0|Xτ ; θm, θc)

)
,

be the two-dimensional vector containing the conditional
probabilities of being in each regime at timet, conditional
on observations up to timeτ . The log likelihood function
can be expressed as

Lc(X; θm, θc) =
T∑

t=1

log(1T(ξ̂t|t−1 ⊙ ηt)),

where⊙ denotes the Hadamard product (element-by-element
multiplication). To evaluate the log likelihood function, we
need ξ̂t|t−1 for t = 1, . . . , T − 1. We are able to calculate
these using

ξ̂t|t =
ξ̂t|t−1 ⊙ ηt

1T(ξ̂t|t−1 ⊙ ηt)
, (10)

ξ̂t+1|t = PT · ξ̂t|t, (11)

where1 is a two-dimensional vector of 1s. We can evaluate
the log likelihood by iterating over Equations (10) and (11),
from a starting valuêξ1|0, θc, and the transition probabilities
of the Markov chain.

IV. EMPIRICAL ANALYSIS

In this section, we present the results of our empirical
analysis. First, we discuss the data and their descriptive statis-
tics. Next, we show the estimation results of the marginal
distributions. Finally, we explain the dependence structures
of three country pairs.

A. Data

In this analysis, we focus on three country pairs: UK-US,
Japan-US, and Italy-US. We apply the RS copula model to
the weekly returns from investing equities and bonds. The
equity returns are calculated from the stock index of each
country: the S&P 500 in US, the FTSE 100 in UK, the Nikkei
225 in Japan, and the FTSE MIB in Italy. All indices are
expressed in Japanese Yen. The bond returns are computed
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from the yields of 10-year government bonds. All data are
downloaded from Bloomberg for the period from the8th of
January 2003, to the10th July 2013, which corresponds to
548 observations.

Table I shows the descriptive statistics. In Table I “eq”
refers to an equity and “bn” refers to a bond. “JP” and “IT”
are abbreviations for Japan and Italy. All series show clear
evidence of non-normality with a kurtosis above 3. The non-
zero skewness gives us further signs of non-normality. The
skewness of all equity return series are negative, while the
bond return series have a positive skewness.

The unconditional correlations are presented in Table II.
We make the following five observations. The table indicates
that correlations in equity markets are larger than that in bond
markets. The dependencies among equity and bond markets
are relatively low, even within a country. All the correlations
are positive, except in the Italian market. The UK-US pair
is strongly correlated, while the correlation between Japan
and US is relatively low. The correlation of the equity in the
Italy-US pair is high, while that of the bond is low.

TABLE I
SUMMARY STATISTICS

Mean Std Skewness Kurtosis Max Min
eqUS 0.14 2.36 -0.76 8.85 10.12 -15.17
eqUK 0.12 2.43 -0.35 7.34 14.55 -11.95
eqJP 0.15 3.16 -0.43 7.02 15.94 -19.04
eqIT -0.03 3.24 -0.18 5.59 12.37 -13.70
bnUS 0.01 4.34 0.18 5.37 17.14 -19.62
bnUK -0.05 3.43 0.19 5.29 15.24 -15.12
bnJP 0.15 5.76 3.26 27.17 54.09 -13.14
bnIT 0.06 3.46 0.10 7.46 18.46 -17.61

Descriptive statistics of the weekly equity index and bond returns for all four
countries. All the returns are expressed in Japanese Yen. The data period is
from the8th January 2013 to the10th of July 2013, which corresponds to
548 observations.

TABLE II
UNCONDITIONAL CORRELATION

eqUS eqUK eqJP eqIT bnUS bnUK bnJP bnIT
eqUS 1.00
eqUK 0.81 1.00
eqJP 0.58 0.61 1.00
eqIT 0.74 0.81 0.60 1.00
bnUS 0.34 0.37 0.32 0.42 1.00
bnUK 0.32 0.33 0.35 0.43 0.74 1.00
bnJP 0.17 0.19 0.39 0.21 0.34 0.39 1.00
bnIT 0.04 0.08 0.06 -0.12 0.23 0.21 0.16 1.00

The unconditionalcorrelations between the equities and bonds for the US,
the UK, Japan (JP), and Italy (IT).

B. Marginal distributions

The estimates of the parameters of the marginal distribu-
tions are shown in Table III. The parameters correspond to
those in Equations (4), (5), and (6). Table III implies the
following. The negative skewness parameterλ in the equity
returns, and the positiveλ in the bond returns are consistent
with the skewness in Table I. The equity markets are more
skewed than the bond markets (comparing the absolute values
of the skewness parameters), except in Japan. The degrees-
of-freedom are less than 10, except for the bond markets of
the US and UK. Therefore, it is reasonable to assume that
the distributions of the series that have more than 10 degrees

of freedom follow the Gaussian laws. The series of the bonds
for the US and UK have Gaussian-like distributions.

It is important to determine if the marginal models are well
specified, because misspecification in the marginal models
leads to biased copula parameter estimates. Therefore, we
have performed two kinds of tests. One is the goodness of
fit test for the probability integral transformation (PIT) of the
marginal models, and includes the Kolomogorov-Smirnov
(KS) and Anderson-Darling (AD) tests. If the marginal
models are well specified, the PIT samples must follow the
uniform distribution on[0, 1]. The KS test evaluates the null
hypothesis that the PIT samples of cumulative distribution
function is equal to the uniform distribution on[0, 1]. The
AD test is also used to test whether a PIT sample comes from
the uniform distribution on[0, 1]. The other test is the Ljung-
Box test for the residuals of the skewt GARCH models.
It evaluates the autocorrelation of the residuals for a fixed
number of lags. The residuals should have no autocorrelation
for any lags, because of the i.i.d. assumption of the residuals
of GARCH models.

Table IV summarizes these results. Panel A contains the
statistics andp-values of the uniformity tests for the PIT
samples. In both the KS and the AD test, the null hypotheses
of all the series cannot be rejected at the 5% level. Panel B
contains the statistics of the Ljung-Box test at lags 1, 2, 3,
4, 6, and 12. In all the series, except the bond series of Italy,
the null hypotheses of independence cannot be rejected at
the 5% level. In Italy’s bond series, independence cannot be
rejected at the 1% level. If we assume the GARCH model
with Gaussian ort innovations, not all of the series pass
the tests (see Appendix A). We conclude that each skew
t GARCH(1,1) model is specified better than the GARCH
model with Gaussian ort innovations.

TABLE III
ESTIMATES OF SKEWt GARCH(1,1)PARAMETERS

eqUS eqUK eqJP eqIT
ω 0.19 0.32 0.31 0.16

(0.09) (0.13) (0.19) (0.09)
α 0.15 0.22 0.08 0.14

(0.04) (0.06) (0.03) (0.04)
β 0.82 0.74 0.89 0.85

(0.05) (0.06) (0.04) (0.04)
ν 6.89 8.38 8.04 7.87

(1.93) (2.95) (2.35) (2.66)
λ -0.31 -0.34 -0.18 -0.25

(0.05) (0.06) (0.06) (0.06)
logL -1144.39 -1168.57 -1361.81 -1319.16

bnUS bnUK bnJP bnIT
ω 0.11 0.07 1.92 0.14

(0.09) (0.05) (0.91) (0.09)
α 0.10 0.09 0.07 0.07

(0.03) (0.02) (0.03) (0.03)
β 0.90 0.91 0.84 0.92

(0.02) (0.02) (0.06) (0.03)
ν 13.15 11.67 5.10 6.88

(6.45) (5.26) (1.04) (1.78)
λ 0.06 0.02 0.19 0.10

(0.06) (0.06) (0.06) (0.06)
logL -1496.34 -1350.36 -1598.15 -1380.71

Estimatesof the skewt GARCH(1,1) models of [19], for all the equity and
bond returns of four countries. The figures between parentheses represent the
standard deviations of the parameters. “logL” represents the log likelihood
function.

C. Dependence structures

In the following subsection, we show the estimation results
of the dependence structures of each country pair. We apply
four models that have a Gaussian copula and non-Gaussian
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TABLE IV
GOODNESS OF FIT ANDLJUNG-BOX STATISTICS

eqUS eqUK eqJP eqIT bnUS bnUK bnJP bnIT
PanelA: Uniformity test
KS
Stat 0.04 0.04 0.04 0.02 0.02 0.03 0.02 0.03
p 0.48 0.39 0.49 0.89 0.95 0.81 0.96 0.74
AD
Stat 1.00 0.76 0.83 0.20 0.26 0.35 0.23 0.42
p 0.36 0.51 0.46 0.99 0.97 0.89 0.98 0.83

PanelB: Test for serial independence
Ljung-Box
1 3.54∗∗ 1.87∗∗ 0.05∗∗ 0.64∗∗ 0.00∗∗ 0.80∗∗ 0.81∗∗ 6.48∗

2 4.38∗∗ 1.88∗∗ 0.06∗∗ 1.52∗∗ 1.06∗∗ 1.81∗∗ 0.84∗∗ 9.38∗∗

3 5.20∗∗ 1.91∗∗ 0.95∗∗ 4.18∗∗ 1.42∗∗ 2.29∗∗ 3.88∗∗ 9.38∗

4 5.40∗∗ 2.53∗∗ 1.29∗∗ 4.58∗∗ 1.66∗∗ 2.37∗∗ 4.47∗∗ 11.19∗

6 5.74∗∗ 2.76∗∗ 1.32∗∗ 5.49∗∗ 2.31∗∗ 2.79∗∗ 9.95∗∗ 14.04∗

12 10.96∗∗ 9.24∗∗ 3.08∗∗ 11.73∗∗ 5.62∗∗ 11.51∗∗ 19.59∗∗ 23.87∗

Panel A contains the KS and AD statistics estimates, with theirp-values.
“Stat” refers to the statistics, and “p” is the p-value. Panel B contains the
Ljung-Box statistics computed at lags 1, 2, 3, 4, 6, and 12. The symbols∗
and∗∗ denote that we cannot reject independence at the 1% and 5% levels,
respectively.

regime: the Gaussian, thet, the skewt, and the vine. We refer
to them, respectively, as M1, M2, M3, and M4. In addition,
we denote the Gaussian copula regime by R1, and the other
by R2. If the tail dependence of some pair is weak and thet,
or skewt copula, is not suitable, we eliminate thet copula
model and introduce the skew normal copula as M3’ instead
of M3.

The analysis in Subsections IV-C1, IV-C2, and IV-C3 can
be summarized into the following three findings. First, highly
dependent regimes are different according to the asset pairs.
Second, the strength of the asymmetry of each country pair
varies, and that of the Japan-US pair is weak. Third, the
comparison of the skewt and the vine copulas showed that
the skewt copula is a better fit to the data, but it is not
flexible enough to capture extreme dependencies. The vine
copula fits well in spite of having fewer parameters, but
cannot express the extreme dependencies of each asset pair.

1) UK-US dependence structure:Table V shows the esti-
mated parameter values for each model of the UK-US pair.
The specification of the vine copula follows [16] and [12],
which we will explain below. First, the variables are sorted
in descending order according to their correlations. Strongly
correlated pairs are chosen as the components of the first
tree in the vine structure. Next, we select each pair copula
in the first tree that has the best AIC for the unconditional
estimation of each pair. The pair copulas in the second
and the third trees are set so that they maximize the log
likelihood. We choose the C-vine or D-vine structure that
results in the larger log likelihood. The building blocks are
the Gaussian, thet, the Clayton, the Gumbel, and the rotated
Gumbel (rGu), as discussed in Subsection II-C.

The results in Table III lead to the following conclusions.
First, the correlation coefficients are larger in R2, except
for the bond markets. This means that not all asset pairs
become more dependent in the asymmetric regime. Note
that our results include analyses of the dependence structures
between the UK equity and the US bond, and between the
UK bond and the US equity, which was neglected in [4].
An important implication of these findings is that we can
construct an equities and bonds portfolio for the UK and US
with a lower risk than that invested under the assumption
that all assets are more dependent in times of crisis. Second,
the shape parameters of M3 indicate that the equities have
negative skewness, while the bonds have positive. Third, the

building blocks for the first tree of the vine copula for M4
are rotated Gumbel copulas. This means that most asset pairs
have the lower tail dependence. Fourth, in terms of fit, M3
and M4 are superior to M1 and M2, with respect to the log
likelihood. M3 has the highest log likelihood, while M4 is
best in terms of AIC. Thus, it is difficult to state which of M3
and M4 is superior. Furthermore, the transition probabilities
show high persistence in both regimes for all models. This
is consistent with [12] and [4].

The smoothed probabilities of being in R2 are obtained as
a by-product of the estimation. They provide a probabilistic
assessment of being in R2 at timet, conditional on the
information available at the end of the period. The changes
of the probabilities of the hidden states are evident from the
smoothed probabilities. Fig. 5 shows the smoothed probabili-
ties of being in R2, calculated from each model. The shapes
of M1, M2, and M3 are similar. R2 is dominant from the
middle of 2006 to the middle of 2007, and from the middle
of 2009 to the middle of 2012. These periods correspond to
the credit crunch and the Greek sovereign crisis. Thus, R2
can be regarded as the crisis regime. M4 has a similar pattern
to the other models, but it has higher estimated probabilities
for R2 from the middle of 2012 to the middle of 2013. This
is a result of the lower correlations of R2 in M4 than the
correlations of R2 of the other models. From Table V the
correlation coefficients of R2 in M4 are smaller than those
of other models, except that of the bond markets. R2 in M4
corresponded to times of crisis, but the features of the crisis
are not emphasized. This can be interpreted as the trade-
off of vine copulas. They are so focused on describing the
tail dependence, that they cannot model the strength of the
dependence itself. Thus, the regime transitions become a little
ambiguous.

Fig. 5. Smoothed probabilities of R2 for the UK-US pair
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2) Japan-US dependence structure:Table VI shows the
estimation results for the Japan-US pair. Thet and the skew
t copulas are not suitable, because the degrees-of-freedom
parameters become too large. Thus, we eliminate M2 and
instead use M3’. The vine copula in M4 is chosen in the
same way as the UK-US pair. One pair copula in the first
tree is the rotated Gumbel, and the others are Gaussian. This
means that the tail dependence is weaker in the Japan-US
pair than in the UK-US pair, which supports the use of the
skew normal copulas.

The results in Table VI lead to three findings. First, for
M1 and M3’, all the correlation coefficients are higher for
R2 than R1. However, R1 has a stronger dependence for M4,
except for the correlation between the US equity and the
Japanese bond. These results are not consistent with each
other. This may be caused by the weak asymmetry in the
Japan-US pair. The absolute values of the shape parameters
are smaller than those in the UK-US pair. Moreover, the
building blocks in the vine copula represent the weak tail
dependence stated in the previous paragraph. The symmetry-
like dependence structure makes it difficult to detect an
asymmetric regime. Weak asymmetry is seldom reported
in existing research, but it is meaningful because we may
decrease the risk of portfolios if we incorporate assets from
countries with weak asymmetry. It is important to note that
the log likelihood of M3’ or M4 is still larger than that of
M1 (the symmetric model). Thus, we should use asymmetric
copula models, even when analyzing countries with weak
asymmetry. Second, M4 is superior to M3’ in terms of both
log likelihood and AIC. This is because M3’ totally neglects
asymmetry. Furthermore, the transition probabilities show
high persistence in both regimes for all models.

The transition probabilities of being in R2 are shown in
Fig. 6. The shapes of the figures of M1 and M3’ are similar
to each other, but the figure of M4 is almost upside down.
In M1 and M3’, R2 is dominant around 2008 and from the
middle of 2010 to the middle of 2013. In M4, R1 is dominant
in the same periods. Thus, the highly dependent regime can
be interpreted as the crisis regime. Comparing these results
to the UK-US pair, the period from the middle of 2009 to
the middle of 2010 is a low dependency regime. This means
that the credit crunch has a smaller effect on the Japan-US
pair.

3) Italy-US dependence structure:The estimation results
for the Italy-US pair are reported in Table VII. The vine
copula is specified in the same way as the UK-US pair.
The results in Table VII lead to five findings. First, all
the building blocks for the first tree are rotated Gumbel
copulas, which represents the strong lower tail dependence.
The degrees-of-freedom parameters for M2 and M3 are small
enough to express the tail dependence. These are evidence
of asymmetry in the Italy-US pair. Second, in all models the
correlation coefficients of the pairs related to the Italian bond
are higher for R1, while those for the rest of the pairs are
larger for R2. This indicates that not all asset pairs become
more dependent in R2. Our flexible model enables us to
analyze the dependencies between the US equity and Italian
bond, which was neglected in [4]. Third, some of the asset
pairs related to the Italian bond have a negative correlation
in R2, which is not the case in the UK-US or Japan-US
pair. This phenomenon can be interpreted as the effect of

the Greek sovereign crisis. Furthermore, considering the fit,
the log likelihoods of M3 and M4 are larger than those of
M1 and M2. M3 has the highest log likelihood, while M4
has the lowest AIC. This coincides with the results of the
UK-US pair. We again conclude that both M3 and M4 have
their merits and demerits. Finally, the transition probabilities
show high persistence in both regimes in all models.

Fig. 7 shows the transition probabilities for R2. All models
have similar patterns. The probabilities of R2 are sometimes
larger from the beginning of 2007 to the middle of 2008,
and R2 is dominant after 2009. R2 can be considered as
the crisis regime, which corresponds to the UK-US pair. It
is notable that after the credit crunch the crisis regime is
always dominant when compared with the usual regime. This
is due to the Greek sovereign crisis. Although the Italian
governmental bond yields were not low from the middle
of 2008 to the middle of 2011, the RS model captures the
potential risk.

V. FURTHER INVESTIGATION FOR ASYMMETRY

We make two additional analyses to find more implications
of the international dependence structure. We calculate the
exceedance correlation to investigate asymmetry in view of
existing work. We also compute risk measures, VaR, and
expected shortfall (ES), to examine the risk of portfolios
investing in international equities and bonds.

A. Exceedance correlation

Exceedance correlation is defined as the correlation cal-
culated from returns above or below a certain threshold.
It has been used in existing work such as [1] to measure
the asymmetry of dependence structures. The exceedance
correlation of variablesX and Y at thresholdsθ1 and θ2
is defined by

Excorr(Y,X; θ1, θ2) =

{
corr(X,Y |X ≤ θ1, Y ≤ θ2), for θ1 ≤ 0 andθ2 ≤ 0,
corr(X,Y |X ≥ θ1, Y ≥ θ2), for θ1 ≥ 0 andθ2 ≥ 0.

We calculate the exceedance correlation using the method
of [1]. We use the 100,000 PIT samples generated from

Fig. 6. Smoothed probabilities of R2 for the Japan-US pair
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TABLE V
ESTIMATION RESULTS FOR THEUK-US PAIR

M1 M2 M3 M4
Ga Ga Ga t Ga skew t (ρ) Ga C-vine (ρ)

eqUK-eqUS 0.65 0.83 0.65 0.83 0.64 0.86 0.82 eqUK-bnUK 0.32 1.32 0.34 rGu
(0.009) (0.004) (0.010) (0.005) (0.010) (0.073) (0.018) (0.017)

eqUK-bnUK 0.34 0.40 0.33 0.41 0.34 0.21 0.39 eqUK-bnUS 0.23 1.41 0.35 rGu
(0.014) (0.014) (0.014) (0.015) (0.016) (0.066) (0.021) (0.020)

eqUK-bnUS 0.27 0.47 0.26 0.48 0.27 0.34 0.46 eqUK-eqUS 0.66 2.46 0.69 rGu
(0.020) (0.019) (0.021) (0.020) (0.023) (0.079) (0.006) (0.025)

eqUS-bnUK 0.28 0.42 0.28 0.43 0.29 0.25 0.41 bnUK-bnUS 0.77 0.65 0.71 Ga
(0.015) (0.012) (0.016) (0.013) (0.018) (0.066) (0.009) (0.009)

eqUS-bnUS 0.14 0.58 0.14 0.59 0.15 0.45 0.56 bnUK-eqUS 0.26 0.16 0.36 Ga
(0.018) (0.011) (0.019) (0.012) (0.019) (0.006) (0.022) (0.021)

bnUK-bnUS 0.80 0.69 0.79 0.70 0.80 0.72 0.69 bnUS-eqUS 0.10 1.24 0.38 rGu
(0.006) (0.010) (0.006) (0.012) (0.007) (0.045) (0.020) (0.021)

ν 27.35 (8.441) 25.95 (10.208)
α -0.65 (0.046)

-0.57 (0.041)
0.70 (0.035)
0.42 (0.016)

p11 0.97 (0.003) 0.97 (0.003) 0.97 (0.003) 0.98 (0.003)
p22 0.97 (0.003) 0.97 (0.003) 0.97 (0.003) 0.99 (0.002)

logL 524.93 526.02 532.15 528.96
AIC -1019.86 -1020.04 -1024.30 -1027.92

Dependencestructurebetween the UK and US equity and bond markets. Correlation coefficients are shown for the Gaussian, thet, and the skewt copulas.
The parameters of the Archimedean copulas their parameters are shown. “Ga” is the Gaussian copula.ν represents the degrees-of-freedom parameter of
the t and the skewt copula, andα is the shape parameter of the skewt copula.p11 andp22 are the transition probabilities of the Markov chain, and
denote the probability of staying in the same regime. “logL” refers to the log likelihood, and “AIC” is the Akaike information criteria. “(ρ)” represents
the unconditional correlation coefficients calculated from 100,000 samples generated from the skewt or vine copula in R2. Standard deviations of the
parameters are shown in parentheses.

Fig. 7. Smoothed probabilities of R2 for the Italy-US pair

each RS model with the estimated parameters to calculate
the exceedance correlation. The thresholds are specified in
terms of quantiles, from 10 to 90% in increments of 10%.
For thresholds less than the 50% quantile, the correlation is
calculated for the left tail, while the right tail is used for
thresholds greater than the 50% quantile.

Fig. 8 to 10 illustrate the exceedance correlation of the data

and each model in the UK-US, Japan-US, and Italy-US pairs.
Each figure shows the pairwise exceedance correlation for
thresholds from 10% to 90% in 10% increments. The vertical
axes represent the exceedance correlation, and the horizontal
axes represent the thresholds. From Fig. 8, 9, and 10, we
can see that only the equity markets have clear asymmetric
dependence. Other asset pairs do not express significant
asymmetry in terms of exceedance correlation. Moreover,
the exceedance correlation differs amongst country pairs.
For example, we compare three pairs (US equity to bonds
from the UK, Japan, and Italy). The shapes of the figures
are not similar, even though they are the same kind of asset
classes. This indicates the difficulty in expressing asymmetry
for different asset classes. Thus, we conclude that we cannot
generalize dependence structure features for international
asset pairs, except equity pairs, and that flexible models are
necessary if we wish to treat each pair differently.

When comparing the power of expression of the different
models, M1, M2, and M3 (or M3’) have similar exceedance
correlations and fail to describe the asymmetry of the data
samples. M3 (or M3’) has slightly more similar patterns to
the data than M1 and M2, but not enough to reproduce the
asymmetry. M4 succeeds in expressing the asymmetry of the
equity markets. The correlation in the left tail tends to be
more similar to the data than other models, while the right
tail is not as similar. Furthermore, it is not flexible enough to
reproduce the various types of asymmetry in each asset pair.
These results indicate that both the skewt and vine copula
have advantages and shortcomings in terms of the power
of expression. The skewt copula is not flexible enough to
capture extreme asymmetric dependencies, while the vine
copula cannot express the different extreme dependencies of
each asset pair.
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TABLE VI
ESTIMATION RESULTS FOR THEJAPAN-US PAIR

M1 M3’ M4
Ga Ga Ga skew normal (ρ) Ga C-vine (ρ)

eqJP-eqUS 0.49 0.68 0.49 0.68 0.66 eqJP-eqUS 0.68 1.47 0.54 rGu
(0.013) (0.013) (0.015) (0.060) (0.013) (0.020)

eqJP-bnJP 0.44 0.45 0.44 0.44 0.45 eqJP-bnUS 0.54 0.21 0.45 Gau
(0.012) (0.013) (0.013) (0.074) (0.020) (0.021)

eqJP-bnUS 0.22 0.54 0.20 0.56 0.56 eqJP-bnJP 0.44 0.45 0.34 Ga
(0.015) (0.015) (0.018) (0.099) (0.018) (0.013)

eqUS-bnJP 0.19 0.31 0.17 0.31 0.33 eqUS-bnUS 0.66 0.04 0.21t
(0.022) (0.020) (0.028) (0.060) (0.013) (0.015)

eqUS-bnUS 0.16 0.66 0.14 0.69 0.68 eqUS-bnJP 0.02 -0.04 0.34 Ga
(0.019) (0.020) (0.027) (0.013) (0.015) (0.018)

bnJP-bnUS 0.42 0.51 0.41 0.51 0.50 bnUS-bnJP 0.51 0.37 0.44 Ga
(0.016) (0.015) (0.019) (0.021) (0.015) (0.018)

α -0.20 (0.027) ν 15.89 (5.399)
-0.30 (0.025)
0.27 (0.021)
0.12 (0.019)

p11 0.99 (0.001) 0.98 (0.002) 0.98 (0.002)
p22 0.98 (0.002) 0.97 (0.003) 0.99 (0.002)

logL 277.19 280.88 282.51
AIC -524.38 -523.76 -533.02

Dependence structurebetween the Japanese and US equity and bond markets. Correlation coefficients are shown for the Gaussian, thet, and the skew
normal copula. The parameters of the Archimedean copulas are shown. “Ga” is the Gaussian copula.ν represents the degrees-of-freedom parameter of
the t copula, andα is the shape parameter of the skew normal copula.p11 and p22 are the transition probabilities of the Markov chain, and denote
the probability of staying in the same regime. “logL” refers to log likelihood, and “AIC” is the Akaike information criteria.(ρ) are the unconditional
correlation coefficients calculated from 100,000 samples generated from the skewt or vine copula in R2. Standard deviations of the parameters are shown
in parentheses.

TABLE VII
ESTIMATION RESULTS FOR THEITALY-US PAIR

M1 M2 M3 M4
Ga Ga Ga t Ga skew t (ρ) Ga D-vine (ρ)

eqIT-eqUS 0.66 0.72 0.63 0.73 0.63 0.74 0.72 eqUS-eqIT 0.64 2.05 0.66 rGu
(0.006) (0.009) (0.009) (0.007) (0.009) (0.049) (0.009) (0.026)

eqIT-bnIT 0.26 -0.41 0.25 -0.29 0.25 -0.28 -0.26 eqIT-bnUS 0.19 1.51 0.34 rGu
(0.018) (0.012) (0.019) (0.014) (0.020) (0.039) (0.019) (0.024)

eqIT-bnUS 0.25 0.51 0.21 0.48 0.20 0.48 0.46 bnUS-bnIT 0.75 1.07 0.39 rGu
(0.020) (0.018) (0.024) (0.013) (0.026) (0.221) (0.019) (0.011)

eqUS-bnIT 0.29 -0.21 0.27 -0.11 0.27 -0.11 -0.10 eqUS-bnUS 0.15 0.36 0.37 Ga
(0.017) (0.015) (0.019) (0.014) (0.020) (0.120) (0.024) (0.020)

eqUS-bnUS 0.22 0.60 0.17 0.56 0.16 0.56 0.54 eqIT-bnIT 0.10 -0.39 -0.05 Ga
(0.015) (0.017) (0.019) (0.013) (0.020) (0.007) (0.019) (0.013)

bnIT-bnUS 0.74 -0.03 0.76 0.09 0.76 0.11 0.10 eqUS-bnIT 0.27 0.06 0.07 Ga
(0.005) (0.017) (0.006) (0.016) (0.006) (0.019) (0.006) (0.012)

ν 9.85 (0.893) 10.12 (0.974)
α 0.00 (0.024)

-0.13 (0.022)
0.15 (0.015)
0.16 (0.021)

p11 0.96 (0.003) 0.97 (0.003) 0.97 (0.003) 0.97 (0.003)
p22 0.94 (0.004) 0.98 (0.002) 0.98 (0.002) 0.97 (0.003)

logL 352.94 359.02 362.96 361.97
AIC -675.88 -686.04 -685.92 -693.94

Dependence structurebetween Italy and US equity and bond markets. Correlation coefficients are shown for the Gaussian, thet, and the skewt copulas.
The parameters of the Archimedean copulas are shown. “Ga” is the Gaussian copula.ν represents the degrees-of-freedom of thet and skewt copula, and
α is the shape parameter of the skewt copula.p11 andp22 are the transition probabilities of the Markov chain, denoting the probability of staying in
the same regime. “logL” refers the log likelihood, and “AIC” is the Akaike information criteria. “(ρ)” represents the unconditional correlation coefficients
calculated from 100,000 samples generated from the skewt or vine copula in R2. Standard deviations of the parameters are shown in parentheses.
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Fig. 8. Exceedance correlation for the UK-US pair

Fig. 9. Exceedance correlation for the Japan-US pair

Fig. 10. Exceedance correlation for the Italy-US pair

B. Value at Risk and expected shortfall

VaR and ES are commonly used risk measures for risk
management. Letα denote a confidence level, then the VaR
at α is defined by

VaR(α) = inf{l; Pr(L > l) ≤ 1− α},

and the ES atα is given by

ES(α) = E[L|L ≥ VaR(α)],

whereL is the loss of the portfolio. We can use these mea-
sures to evaluate the risk of portfolios, computed from each
model. In our analysis, the VaR and the ES are calculated
using the Monte Carlo method with 100,000 iterations. We
assume an equally weighted portfolio. The confidence levels
are set between 90% and 99%, in 1% increments.

Fig. 11 to 13 illustrate the VaR and ES ratios (ratios of the
values from each model compared with M1) for the UK-US,
Japan-US, and Italy-US pairs. Fig. 11 shows that for the UK-
US pair, the risk measures calculated from M2 are similar
to those from M1. M3 and M4 have higher values of ES
compared with M1 and M2. This coincides with the intuitive
understanding that asymmetric models have larger risks than
symmetric models. M3 has higher values regardless of the
thresholds. M4 has larger values as the threshold become
larger. This demonstrates each copula’s abilities to express
the tails. The skewt copula estimates the heavy right tail
in the loss distribution, while the vine copula stresses the
extreme values in the right tail.

In Fig. 12 we can see that, for the Japan-US pair, M3’
and M4 have higher values than M1. This indicates that
it is better to use asymmetric models, even if a country
pair has a symmetry-like dependence structure. Otherwise,
we might underestimate the risk of portfolios. M3’ has a
higher VaR than M4 forα ∈ [0.90, 0.95], and was as high as
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M4 otherwise.With respect to the ES, M3’ has a higher ES
regardless of the confidence level. These results demonstrate
that the loss distribution of M3’ has a longer right tail, but
the skewness is not large. On the other hand, M4 estimates
the right-skewed loss distribution but its right tail is not as
heavy as M3, because the asymmetric regime corresponds to
the usual (not crisis) regime.

Fig. 13 shows that, for the Italy-US pair, M2 and M3 have
similar values to M1, while M4 has higher values. As stated
in Subsection IV-C3, it is notable that some asset pairs related
to the Italian bond have negative correlation coefficients.
M3 evaluates a stronger negative correlation, which leads
to portfolio diversification. M4 only focuses the right tail of
the loss distribution and has larger risk measure values. We
find that the skewt copula is more suitable for describing
negative dependence than the vine copula.

From these three figures, we can conclude that the vine
copula emphasizes the right tail of the loss distribution more
than the skewt copula. Moreover, we also find that the
skew t copula better described the dependence structure
of each asset pair, including the negative correlation. This
finding indicates that we should pay attention to the choice
of copulas when calculating risk measures. If we neglect the
features of the copulas, the computed risk measures may be
underestimated or overestimated.

Fig. 11. VaR and ES for the UK-US pair

Fig. 12. VaR and ES for the Japan-US pair

VI. CONCLUSION

In this paper, we perform an empirical analysis of the de-
pendence structures of international equity and bond markets
using the RS copula model. We use the Gaussian copula
in a symmetric regime, and the skewt or vine copula

Fig. 13. VaR and ES for the Italy-US pair

in an asymmetric regime. The advantage of using the two
asymmetric copulas is that they can express various depen-
dence structures. The choice of copula in the asymmetric
regime is significant, because they have desirable features
for capturing dependencies among different asset classes. We
use the skewt copula that is constructed from the skew
t distribution. We describe the marginal models using the
skew t GARCH models, and we assume that they were
independent from the regimes. This assumption allows us to
estimate parameters using a two-step procedure. In this two-
step estimation, the parameters of the marginal models and
those of the dependence structure are calculated separately.
The Hamilton filter is used to estimate the parameters of
the dependence structure. To find further implications for
the dependence structure, we also compute the exceedance
correlation, Value at Risk, and expected shortfall.

We apply the RS model to three country pairs: UK-US,
Japan-US, and Italy-US. We analyze four models using dif-
ferent copulas: the Gaussian, thet, the skewt, and the vine.
Our empirical analysis leads to the following conclusions.
First, highly dependent regimes are different according to
the asset pairs. We can determine this using our flexible
multivariate model, which enables us to compare all the
asset pairs. This implies that we should pay attention to the
dependencies of each pair when constructing international
diversified portfolios, to properly evaluate diversification
benefits. Second, the strength of the asymmetry of each
country pair varies, and that of the Japan-US pair is weak.
This indicates that we should also consider weak asymmetry
when calculating the risk of portfolios. Third, the skewt
copula fits better to the data, but is not flexible enough
to capture extreme dependencies, while the vine copula fits
well in spite of having fewer parameters, but cannot express
extreme dependencies. These empirical findings indicate that
the dependence structure and asymmetry among all asset
pairs and country pairs should be evaluated to correctly
capture the benefits of international diversification.

In closing, we mention some future research topics. The
first is the efficient estimation of the skewt copula model.
The estimation of the skewt copula is computationally more
intensive than that of the vine copula. Efficiency is crucial
when the RS model is applied to a high dimensional case.
The second is a better construction of the vine copula. In this
paper, we only consider two types of vines and five building
blocks. If the range of the vine copulas is expanded, some of
their disadvantages might be overcome. Solving these issues
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will make the RS model more sophisticated and tractable,
and will enable us to consider more than two countries.

APPENDIX

The estimation results of GARCH(1,1) models with Gaus-
sian andt innovations are shown in Tables VIII and IX.
Tables X and XI represent the results of the KS, the AD,
and the Ljung-Box tests.

TABLE VIII
ESTIMATES OF NORMAL GARCH(1,1)PARAMETERS

eqUS eqUK eqJP eqIT
ω 0.28 0.30 0.33 0.14

(0.08) (0.08) (0.19) (0.06)
α 0.21 0.23 0.07 0.14

(0.03) (0.03) (0.01) (0.02)
β 0.75 0.74 0.90 0.85

(0.04) (0.03) (0.03) (0.02)
logL -1172.59 -1193.51 -1381.42 -1338.14

bnUS bnUK bnJP bnIT
ω 0.11 0.06 0.49 0.15

(0.07) (0.04) (0.19) (0.08)
α 0.11 0.09 0.12 0.08

(0.02) (0.02) (0.01) (0.01)
β 0.89 0.91 0.88 0.91

(0.02) (0.02) (0.01) (0.02)
logL -1499.33 -1354.00 -1642.99 -1397.06

Estimates ofnormal GARCH(1,1) models for all equity and bond returns,
for four countries. The figures between parentheses represent the standard
deviations of the parameters. “logL” is the value of the log likelihood
function.

TABLE IX
ESTIMATES OFt GARCH(1,1)PARAMETERS

eqUS eqUK eqJP eqIT
ω 0.17 0.29 0.35 0.15

(0.08) (0.12) (0.22) (0.09)
α 0.12 0.19 0.08 0.13

(0.04) (0.05) (0.03) (0.03)
β 0.84 0.76 0.88 0.86

(0.04) (0.05) (0.04) (0.03)
ν 7.19 8.29 8.35 7.04

(1.72) (2.66) (1.78) (2.21)
logL -1158.11 -1185.33 -1365.79 -1328.37

bnUS bnUK bnJP bnIT
ω 0.11 0.07 1.83 0.14

(0.09) (0.06) (0.82) (0.11)
α 0.10 0.09 0.08 0.07

(0.03) (0.03) (0.03) (0.02)
β 0.90 0.91 0.84 0.92

(0.02) (0.02) (0.05) (0.03)
ν 13.64 11.57 4.95 6.72

(7.61) (5.35) (0.82) (1.65)
logL -1496.80 -1350.41 -1603.63 -1382.00

Estimates oft GARCH(1,1)models for all equity and bond returns, for four
countries. The figures between parentheses represent the standard deviations
of the parameters. “logL” is the value of the log likelihood function.
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