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An Empirical Analysis of the Dependence
Structure of International Equity and Bond
Markets Using Regime-switching Copula Model

Yuko Otani and Junichi Imai

Abstract—In this paper, we perform an empirical analysis distribution of returns, but its shortcoming is that it cannot
of the dependence structure of international equity and bond determine if the return process from a given model has an
markets using the regime-switching copula model. In equity 55y mmetric exceedance correlation. [2] developed a method
markets, it is obserygd that negative returns are more strongly to test tri |ati 3 lied 2 G . L
dependent than positive returns. This phenomenon is known as 0 test asymmetric correlation. [3] applie 'a baussian regime
asymmetric dependence. The regime-switching copula model, SWitching (RS) model and found two regimes: a bear regime
which includes symmetric and asymmetric regimes, is suitable with negative returns, high volatilities, and high dependence,
for describing asymmetry. We apply two kinds of flexible and a bull regime with positive returns, low volatilities, and
multivariate copulas, a skewt copula and a vine copula, 10 oy dependence. However, [4] analytically showed that mul-
the asymmetric regime to deal with dependencies between two tivariate GARCH or RS models with Gaussian innovations
asset classes. In this paper, we analyze three country pairs: the .
United Kingdom and United States (UK-US), Japan-US, and cannot reproduce extreme asymmetric dependence. Thus, to
Italy-US. We find three implications of our empirical analysis. correctly investigate asymmetry, we need models that use
First, highly dependent regimes are different according to the more complex innovations than the Gaussian.
assett pairs. Second, tI;ethsttrenfgttirw] OS the ajémmgtr_y of el"z‘Ch More flexible models have been proposed by combining
goh?rg,r¥hgaéz<g$r;eibp?3|a isaa boette(re ﬁtatp(;atrllqe da?;lrbllft \ilge:of copulas with time series models. Copula!s are fun_cti(_)ns_that
flexible enough to Capture extreme dependencieS, while the vine represent dependence structures Of mu|t|Var|ate d|Str|bUt|OnS.
copula fits well in spite of having fewer parameters, but cannot [5] presented that a nested Archimedean copulas can success-
express the different extreme dependencies of each asset pair. fully explained the dependence structures between default

Index Terms—International market correlation, Asymmetry, ~ Probabilities and recovery rates. The advantages of copulas
Copulas, Regime-switching model. are that they separate dependence structures from marginal
models, and that they can express variable dependence
structures such as asymmetry. [6] analyzed international
correlation in equity markets with a copula-GARCH model.
R ESE_ARCH on the dependence structure_of internatior[qzl] proposed a copula model with time-varying parameters,

equity markets has shown that negative retumns a@d investigated asymmetry in foreign exchange markets. [8]
more dependent than positive returns. This phenomenonei&mined systemic risk in the U.S. equity market and showed
called “asymmetric dependence”. It has important implicane validity of vine Copula-based ARMA-GARCH model.
tions for the risk of international portfolios. If investorsoiher than financial applications, [9] used copula functions in
neglect increasing dependence in times of crisis, they migRkir empirical study to examine monthly precipitation. [10]
overestimate the effects of diversification and lose be”ef'b?oposed a reliability assessment model with copula function.
To evaluate the full risk of asset allocation, both equity 19 gescribe asymmetry more properly, researchers such
and bond markets must be considered together, becag§e[11] and [12] proposed an RS copula model. It allows
a typical diversification method is to invest both equitie§s to switch copulas depending on two regimes: symmetric
and bonds at domestic and international levels. Howevehqg asymmetric. [11] used bivariate copulas to evaluate the
most previous research has only focused on dependencedfmmetry of equity pairs. [12] investigated asymmetric de-
equity markets because of the difficulty of describing thgendences in equity markets with a multivariate vine copula.
dependence structures of different asset classes. They used the flexible multivariate model, which is more

Many researchers have investigated asymmetric dep@@mplicated than a bivariate copula model. However, they
dence using the exceedance correlation concept, whichgify examined the dependence structure of equities, which
defined as the correlation calculated from returns above igfot enough to consider the risk of portfolios composed of
below a certain threshold. [1] used extreme value theo@qmties and bonds.
to capture the asymptotic dependence of returns in equityro analyze international market correlation among dif-
markets, and evaluated the asymmetry using exceedafg@nt asset classes, we must use a flexible multivariate
correlation. The advantage of extreme value theory is th@épu|a for dependencies in an asymmetric regime. This
the asymptotic property is maintained regardless of the pecause different asset classes exhibit various behavior
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Tail dependence refers to the dependence between extrengtbtes (UK-US), Japan-US, and ltaly-US. The data are from
large or small pairs. The well-known multivariate copula003 to 2013, which covers the credit crunch period and
only satisfy one of these features. For example, multivariattee Greek sovereign crisis. By analyzing the correlation
elliptical copulas such as the Gaussian @opulas are able coefficients, we find that the three country pairs have dif-
to express different dependencies for each pair, but their thatent levels of correlation. The UK and US are strongly
dependencies are symmetric. Other examples belong to tleerelated, but there is only a small correlation between
multivariate Archimedean copula family such as the Claytailapan and the US. In addition, the data for Italy and the US
or Gumbel copulas. Their tail dependences are asymmettiave a particular behavior caused by the Greek sovereign
but their dependence structures are dominated by only amésis. Our empirical analysis finds that highly dependent
parameter. Thus, constructing flexible multivariate copulasrisgimes are different according to the asset pairs. This is
challenging. implicitly indicated by [4], but in this paper we explicitly

To overcome this problem we need to introduce mom@mpare all asset pairs. Our findings imply that we should
complex copulas. When considering copulas that satigfpnsider the dependence of each pair when constructing
these two features, a trade-off exists between the powerimternational diversified portfolios, to properly estimate the
expression and parsimony. The skewcopula (suggested benefits of diversification. If we incorporate asset pairs that
by [13] and [14]) and vine copula (introduced by [15fre less dependent in asymmetric regimes into a portfolio,
and [16]) focus more on the ability to express variouge may avoid the risk that all assets in the portfolio have
dependence structures. The hierarchical Archimedean copekéreme negative returns in the asymmetric regime. Our
(proposed by [17]) and mixture copula (used in [4]) pagmpirical findings clearly indicate that we should evaluate
more attention to retaining the number of parameters. [#je dependence structure and asymmetry among all asset and
incorporated the mixture copula into the RS copula modapuntry pairs to correctly capture the benefits of international
and analyzed the dependence structure of international equityersification.
and bond markets. This is one of few studies that focusedThe paper is organized as follows. We introduce the
on dependences among different asset classes. Howegencept of copulas in Section 2, reviewing their definition
they neglected the correlation of some pairs to simplifgnd features, and the sketvand vine copulas. Section
the model, which makes it less flexible. Moreover, as [13 explains the RS copula model. It includes a definition
indicated, their model cannot be applied to pairs with strorf the model and the marginal models, and introduces the
dependencies. Thus, the model of [4] is not flexible enougdstimation method. Section 4 presents the empirical analysis.
to evaluate diversification risks. In this paper, we focus on tlkérst, we explain the data and descriptive statistics. Next, we
former copulas because they are flexible enough to descrif®w the results of the marginal models, and then we present
the complicated dependence structures among different aghetresults of the dependence structure of each country pair.
classes, even though the number of parameters becormeSection 5, we discuss more implications of the dependence
large. To the best of our knowledge, our research is the firstdtsuctures using the exceedance correlation, Value at Risk,
analyze dependence structures among different asset classssexpected shortfall for each model. Section 6 concludes
with a multivariate flexible model. the paper.

In this paper, we perform an empirical analysis of the de-
pendence structure of international equity and bond markets Il. COPULAS
using the RS copula model. We use the Gaussian copula in

symmetric regime, while applying the skever vine copula n the following section, we introduce the concept of

copulas. First, we define them and describe their features.

in an asymmetric regime. The m | itself is th m ) e o
) ' asy gime € od_e tse s t. € same Ef‘%en, we discuss some specific multivariate copulas: the
in existing research, but it uses flexible multivariate copula?( .

skewt and vine copulas.

to enable us to properly investigate complicated dependernce

structures among different asset classes. We use the skew

t copula of [14], which is constructed using the skew A. Definition and features of copulas

distribution expressed in the simple form of [18]. We use the sypposed is a natural number. A copula is a multivari-
skew? GARCH model of [19] as a marginal distribution thalyte joint distribution function,C’, with uniform marginal
considers skewness. We assume that the marginal distriistributions on[0, 1]. HenceC is a mapping of the form
tions are not dependent on regimes. Although this assumption (o, 1]¢ — [0, 1]. A copulaC has the following properties,

might be less flexible, our empirical study demonstrates thatd conversely a function with the following properties is a
it is reasonable and practical from a parsimonious viewpoiRigpyla.

Furthermore, from a technical viewpoint, it allows us to ) Clu ug) is increasing in each component
estimate parameters in a two-step procedure, which make%z) c(1 ’ i w1 ) = w for all g c
the gstimatipn procedure possible. In the propqsed method, {17.’. . ,c%},’u:e ’[b; 1] '

we first estimate the parameters of the marginal models, 3 o "2) (a1,...,aq), (b1,...,ba) € [0,1]% with
Next, we infer the parameters of the dependence structure a. < b, we have

and RS using the results from the first step. We apply e

the Hamilton filter proposed by [20]. To further investigate 2 2 , .
the asymmetry andp e\?aluate tﬁe[ m]odel fit, we calcula?e the Z Z(_l)“JrA“HdC(“lil’ s Udig) 2 0,
exceedance correlation, Value at Risk, and expected shortfall. =l da=l1

We choose three pairs of countries to examine empirical where uj; = a; and uj, = b; for all j €
evidence of asymmetry: the United Kingdom and United {1,...,d}.

(Advance online publication: 28 May 2018)
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The following theorem of [21] states that copulas aréhe expression of a special case of a generalized hyperbolic
dependence structures of multivariate joint distributions. distribution. Because the skewdistribution can be described
Theorem 1:Let F' be a joint distribution function with in many ways (see [22], for example), [14] suggested the

marginal distributiond™, ..., Fy. Then there exists a copulaskew ¢ copula derived from a simple form of the skew
C :[0,1]¢ — [0,1] such that, for alky,...,z4 € R, distribution in [18]. In the following, we use the expression
given in [14].
Bz, za) = C(Fi(@),..., Falza)- (1) First, we explain a skew normal distribution. Lat =
If the marginal distributions are continuous, th@ns unique. (Yi,...,Yy)T denote ad-dimensional random vector. It has
Conversely, ifC is a copula andFy,..., Fy are univari- mean vectoru, and covariance matri with components
ate distribution functions, then the functiafi defined in o;;, ¢,5 =1,...,d. If Y follows the skew normal distribu-

Equation (1) is a joint distribution function with marginaltion, its density function is given by
distributionsF1, . . ., Fy.
Sklar's theorem shows that every joint distribution function 9a(¥; 1t 3, ) = 20(y — p; £)@(a" Wl (y — ),  (2)
can be decomposed into its marginal functions and its copula. ) ) i
We are able to construct various joint distribution functiondNere ¢(y — ;%) is the density function of the normal
using copulas with different structures, even though tristribution Na(u, ), @() > the distribution function of
marginal distributions are the same. N(0,1), a = (a1,...,aq)" is a d-dimensional vector
One of the features of a copula is the coefficient of ta:ﬁa!led the shape p.arameter vector, W = (9 Uij)’,
dependence. It measures the dependence strength in the talls= 1+ -+ @ (9i; is the Kronecker delta). The notation
of a bivariate distribution. Assuming that,, X, are random Y ~ SNa(u, ¥, a) is used forY with the density equation
variables with distribution function®y, F5, the coefficient of

the upper tail dependence &f, and X is given by Next, we describe the sketdistribution. Ad-dimensional

random vectorX = (Xi,...,X4)" that follows the skew
Ay = lim P(Xs > Fy (q)| X1 > F{ (9)), ¢ distribution with parameterg, X, «, and the number of

] . ) . . degrees of freedomy, can be represented as
whereF;~, i = 1,2, are generalized inverse functions given

by Ff (y) = inf{z € R|F;(x) > y}, provided that a limit X =pu+V12y,

Ay € [0,1] exists. IfA, =0, thenX; and X, are said to be

asymptotically independent in the upper tail.Nf € (0,1], whereY ~ SN,4(0,%,a) anduV ~ x2 independent ofY.
X1 and X, show upper tail dependence in the upper taillhe joint density of the skew distribution with parameters
The coefficient of upper tail dependence can be interpreted>, «, andv is given by

as the probability that one variable becomes large when the

other becomes large. Analogously, the coefficient of lower fap(xsp, 2, a) =

| . o
tall dependence 1S 2+t 051, Trp oW e ) (52)
. 14
N= lim PG < B (@)X < B (),

. . . . WhereQ = (X - :L")Twil(x - M)v td,u(’;ﬂa E) is the jOint
provided that a limitA; € [0,1] exists. The coefficient of gensity function of thed-dimensionalt distribution with
lower tail dependence can be interpreted as the prObab”Bé{rameterE andv, andT} . 4(.) is the distribution function
that one variable becomes small when the other becomgshe univariate-distribution with parameters + d.

small. The skewt copula can be constructed from the skew
distribution. Suppose = (uy,...,uq)", whereu; € [0, 1]
B. Skewt copula for i = 1,...,d. For the implicit copula of an absolutely
We now focus on flexible multivariate copulas, whicteontinuous joint distribution functiof with strictly increas-
will be used to describe the dependence structure in #g, continuous marginal distribution functiods, ..., Fy,
asymmetric regime. Such copulas should hold the followinge may differentiateC'(u) = F(F\ (u1),..., F; (uq)) to
two properties. First, the strength of the dependence of eage that the copula density, is given by
pair is described separately. Second, the tail dependence can 1 1
be asymmetric, which means that the coefficients of the upper c(u) = f<FE (w),- .., Fy f“d))
and lower tails may be different. SL(FT N (u)) - fa(Fy  (ua))
It is a challenge _to con_stru_ct copulas with these two fef\%\fheref is the joint density off, f,,.... f, are the marginal
tures, because basic multivariate copulas cannot handle thggr]lsities and™-! =1 are the inverses of the marginal
both. For instance, famous multivariate elliptical COpU|a§istri ' Looorod
such as the Gaussian tcopula can express different depeni—
dences for each pair using correlation coefficient matrices,
but their tail dependencies are symmetric. Another example
is a copula belonging to the multivariate Archimedean copula
family such as the Clayton or Gumbel copula. Its tail
dependence is asymmetric, but the dependence structure is
dominated by only one parameter. where R is acorrelation matrix with coefficienty;;, 7,7 =
A skew t copula has the above properties. It was firdt, . .., d, ande,l}(-;u,a, «) is the inverse of the univariate
introduced by [13], who used the sketvdistribution in distribution function of the skew distribution. In the same

)

bution functions. The density of the skeéwopula,csT,

cst(w; Ry, v) =
S (FL b (130, p11,01), o, Fip (a3 0, paa, a); 0, R, )
S (Frh(u130,1,00);0,1,01) . fr(Fy ) (ua; 0,1, 04);0, 1, 0q)
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way, the density of the skew normal copulay, is Each factor in Equation (3) can be expressed using bivariate
conditional copulas. The first conditional density can be

esn(ws R, a,v) = decomposed into

9a(G7  (u1;0, p11, 1), . . ., G (a3 0, pad, @a); 0, R, @)
g1 (GT (u130,1,01);0,1, 1) ... g1 (GT (15 0,1, 4); 0,1, ) f(za|z1) = c1o(Fy(x1), Fa(z2)),

where Gy " (s 1,0, ) is the inverse of the univariate distri-\here.. , is the copula density, and(-) is the distribution

bution function of the skew normal distribution. function of ;. The second conditional density in Equation

The skewt copula represents the dependence SUWUCIY® o, he rewritten in the same way. One possible decom-
of each pair using its correlation matrix. Furthermore, t osition is
e

strength of the upper and lower tail dependencies can

made different by introducing the shape parameteFig. 1 f(x3|zy,z0) = Cost (Fop (w2|z1), Fyq (z3]21)) f(z3]21),

illustrates 2,000 simulated points from the four-dimensional

skewt copula. Its parameters are: where c,3); is the conditional copula density of, and
L0 03 05 07 x3, conditioning tox;, and F; is the conditional marginal
0'3 1'0 0'4 0.6 distribution of z;, conditioning tox;. This can be further

R = decomposed into
0.5 04 1.0 09}’
0.7 06 09 1.0 flaslay, o) =
= [7057 708,02,03]T, 023|1(F2|1(I2|1‘1),F3‘1(I3|I1))013(F1(171),Fg(ﬂjg))fg(ﬂ?g).
= 5.

Combining the decomposed expressions, the joint density of
The two properties stated above are confirmed in Fig. 1. the first three variables in Equation (3) can be written
f(w1,20,73) =
coz1 (Fop (w2(21), Fap(w3]71))crz(Fi(x1), Fa(2))
xci3(Fi (1), F3(23)) fi(21) fa(22) f3(23).

The copula density is given by

c(xy,x9,x3) =
coan (Fo1(w2|1), Fy1(ws|z))cis(F1 (1), F3(w3)).

According to [23], conditional distribution functions are
calculated using

acm,v”v_j (F({E|V,j),F(’l}j|V7]’))
OF (vj|v—;) ’

F(z|v) =

wherev_; denotes the vectov excluding thej-th compo-
nent.

There are a few possible expressions for decomposing and
ordering the data from high dimensional distributions. [15]
introduced a graphical model, called the regular vine. In this
paper, two special vines are introduced: a canonical vine
(a C-vine, for short) and a D-vine. The vines represent the
specific way the density is decomposed. Fig. 2 illustrates the
structure of a four-dimensional C-vine copula. It consists of
three treesy}, j = 1,...,3. In the first treeT’, the depen-
dence is modeled using the bivariate copulag:pivith all
other variables. In the second trég all the bivariate copulas
conditioned onz; represent the dependencies betwegn

C. Vine copula ) _ ~and the other variables. Iterating leads to thdimensional
Another copula that has the desired properties of flexibie.;ine copula given by

copulas is a vine (or pair) copula. [15] proposed vine copulas

Fig. 1. Simulated points from the four-dimensional skewopula

for statistics. [16] introduced vine copulas into finance, and c(x1,...,xq) =

is their expressions that we use here. The vine copula is d—1n—j

constructed from marginal densities, bivariate copulas, and H H Cjjtill,ej—1

their combinations. This construction is based on the idea j=1i=1

that a joint density function of variableszy, ...,z can be X(F(xjlzy,....xj-1), F(xjlejpi, ... xi-1)).

decomposed to

A D-vine provides us with a different copula from that of

f(@1,..., fa) = (3) a C-vine. Fig. 3 shows the structure of a four-dimensional D-
f(z1) - f(z2|z1) - f(z3)|21,22) ... f(2al21,...,24-1). Vine copula. In the D-vine, no node in any tree is connected

(Advance online publication: 28 May 2018)
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for ¢ € [1,4]. From Fig. 4 it can be seen that the lower tail
dependence exists, and the strength of the dependence for
each pair differs.

=05
231
=05

Fig. 2. Dependence structure of a four-dimensional C-vine

=0

to more than two edges. Thedimensional D-vine copula
is

c(x1,...,xq) =

d—1n—j

H H Cjitglitl,... itj—1

j=1i=1

X(F(@ilzitts - Tivj—1) F(@ijlTits . oo 2igj-1))- 05 |

ud

Fig. 4. Simulated points from the four-dimensional C-vine copula

I1l. M ODEL
This section explains the model that describes the asym-
13]2 243 . : .
metric dependence structure in equity and bond markets. We

first introduce an RS copula model, then discuss a skew
GARCH model of [19] that we use as a marginal model. We

T, @ 14]23 @ also describe the estimation method.

A. Regime-switching copula model

Fig. 3. Dependence structure of a four-dimensional D-vine An RS copula can be used to model the dependencies
in international market correlations. We follow [12] and [4]
whose models have two regimes: symmetric and asymmetric.

Note that the bivariate copulas can be constructed frofis assumed that the-variate processX;, depends on a
different types of copulas. Following [16] and [12], Weatent binary variable, which indicates the economy’s current
examine five copulas as building blocks for the vine copulgegime. In this model, the regime only affects the dependence

the Gaussian, the the Clayton, the Gumbel, and the rotatedirycture. The density ok, conditional on being in regime
Gumbel. For an overview of other bivariate copulas, seg g

[24]. The first two are elliptical copulas, which represent
the dependence structure of some elliptical distributions (the
normal andt distributions). The Gaussian copula has no tail

J(Xe| Xeo1,8: =7) =

. . (4 ( )
dependence, while thecopula has both upper and lower tail N (Fi(w1s),- -, Faa); 07 H fil@ie; Om.q)
dependence. The rest are called Archimedean copulas, and
their distribution functions are explicitly given. The GumbeWhere X, = (z1,...,za.), s; is the Iatent variable for the

copula has the upper tail dependence, while the Clayt6#gime, C( )(') is the copula Qensity in regimje (VYith_ pa-
and rotated Gumbel have lower tail dependencies. The viimeted”)), f;(-) is the density of the marginal distribution

copula can express tail dependencies by combining théfez: (with parameterd,, ;), and F; is the corresponding
copulas. distribution function. It is assumed that the unobserved

Fig. 4 shows 2,000 simulated points from the foudatent state variable follows a Markov chain with transition
dimensional C-vine copula. The building blocks in the firgerobability
tree are all rotated Gumbel copulas with parametefs2.0, P = ( Pn 1= pll) ,
and 1.8, and the rest are bivariate Gaussian copulas with L=pa2  p2
parameters).3, —0.2, and 0.3. The marginal distributions wherep;; represents the probability of moving from state
are assumed to be uniform ¢m 1], which leads tou; = z;, at time¢ to statej at time¢ + 1.

(Advance online publication: 28 May 2018)
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B. Maminal model The decomposition of the log likelihood function in Equa-
The marginal distributions of each of the returns artion (7) allows us to use a two-step estimation procedure. The
modeled using the univariate skewWGARCH (1,1) model RS copula model contains a large number of parameters, but

of [19] to consider the dynamics of the volatility. The skeviliS method simplifies the estimation. In the first step, we
¢ distribution introduced here is different from [18]. Thi@ssume that the different series are uncorrelated conditioned

system is expressed as on 'the history. Th(=T p'alrameters Qf the margingl den;ities are
estimated by maximizing Equation (8). This is straightfor-
Tix = Oip-€y, TOri=1,....d, (4) ward, and we estimate each GARCH model separately. In
0—1'2,1‘, wi + Oéﬂ?,t_l + @.gzt_l’ (5) the second step, we calibrate the dependence structure and

Markov chain parameters, given the results of the first step.
We calculate the parameters by maximizing Equation (9),
where v is the number of degrees of freedom,is the conditioning ond,,.

€t SkeWt(l/i,Ai), )\i S (—1, 1), (6)

skewness parameter, and the skedensity is given by In the second step, we use the EM algorithm of [20].
o\ —(r1)/2 This is a useful estimation method for an unobservable state
bc(l + A5 () ) , z<—a/b, variable in the Markov chain. Let
hiv(z;A) = A —(41)/2 1 -1 t—1y. (1)
bc(l + L5 (bfj/{‘) ) , z< —afb. = (ci ;(Fl(l'l,tui 1)7 oy Fp (|l ), 9@))
2 — t—1\. ’
The contentsa, b, andc are defined as O F(@1al2t™), s Pl 0); 067)

be the two-dimensional vector that contains the copula den-

— T(etl e . . >
a= 4Ac<y—2), ¥=1+3)2-4d% c¢= (72)1/ sities at timet, conditioned on the state variabig and the
v—1 m(v=2)(3) history up to timet. Moreover, let
GT”VL' = (wy, i, Bi,vi, Ai)T denote all the parameters of a - (Pr(sy = 1/X7;0,,06.)
given country. Stlr Pr(s; = 0|X";0,,,6.) )

o be the two-dimensional vector containing the conditional
C. Estimation probabilities of being in each regime at tinneconditional
The estimation method can be separated into two paf@ observations up to time. The log likelihood function
because of the assumption that the marginal models &&n be expressed as
independent from regimes. Denote the sample of observed

T
data byX = (X[,..., XT)T. The log likelihood function Le(X;0m,00) = Y log(1" (§e—1 @),
is given by t=1
T where® denotes the Hadamard product (element-by-element
L(X;0,,,0.) = Zlog F(X X1 0,,,0.), multiplication). To evaluate the log likelihood function, we
t=1 need{,,_, fort =1,...,7 — 1. We are able to calculate
where X*~! = (X;,..., X, ;) denotes the history of thethese using

full process g, denotes the parameters of the marginal, and . ét\t—l O

6. denotes the parameters of the RS copula. This likelihood &je = ﬁv (10)
can be decomposed intb,,, which contains the marginal X 5{'“1 © e

densities, and.., which contains the dependence structure: Ceore = PTG, (11)

L(X;0pm,0.) = Lun (X 0m) + Lo(X; 0, 00), @ wherel _is tho—dimgnsiopal vector of 1§. We can evaluate
the log likelihood by iterating over Equations (10) and (11),

rd from a starting valuéuo, 6., and the transition probabilities
Ln(X;0m) =D Y log filwidle! i 0mi),  (®)  of the Markov chain.

t=1 i=1

IV. EMPIRICAL ANALYSIS

L(:(X; ema 90) = (9) . . ..

T In this section, we present the results of our empirical

Z 10g ¢(Fy (23,0 a ™Y 0m1), -+, Fa(@a |25 0m 0); 00, analysis. First, we discuss the data and their descriptive statis-

t=1 ' tics. Next, we show the estimation results of the marginal
where :cffl — (241,....,71,_1) denotes the history of distributions. Finally, we explain the dependence structures

the variablei. The proof can be found in, for example,Of three country pairs.

[4]. The log likelihood of the marginal model§,, is a

function of the parameter vectdh, = (01,...,0m.q), A Dat@

which contains the parameters of each marginal dernfity In this analysis, we focus on three country pairs: UK-US,
The cog)ula log likelihood depends directly on the vectarapan-US, and Italy-US. We apply the RS copula model to
0. = (961),9£2),p11,p22,p0). This vector contains the copulathe weekly returns from investing equities and bonds. The
parameters over both regimes, the parameters of the Marlemity returns are calculated from the stock index of each
transition probability matrix, and the two-dimensional vectazountry: the S&P 500 in US, the FTSE 100 in UK, the Nikkei

of its initial probabilities,py. The functionc denotes the 225 in Japan, and the FTSE MIB in ltaly. All indices are
density of the RS copula. expressed in Japanese Yen. The bond returns are computed

(Advance online publication: 28 May 2018)
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from theyields of 10-year government bonds. All data aref freedom follow the Gaussian laws. The series of the bonds
downloaded from Bloomberg for the period from ti& of for the US and UK have Gaussian-like distributions.
January 2003, to th@0'" July 2013, which corresponds to Itis important to determine if the marginal models are well
548 observations. specified, because misspecification in the marginal models
Table | shows the descriptive statistics. In Table | “eqleads to biased copula parameter estimates. Therefore, we
refers to an equity and “bn” refers to a bond. “JP” and “IThave performed two kinds of tests. One is the goodness of
are abbreviations for Japan and Italy. All series show clefirtest for the probability integral transformation (PIT) of the
evidence of non-normality with a kurtosis above 3. The nomarginal models, and includes the Kolomogorov-Smirnov
zero skewness gives us further signs of non-normality. TEKS) and Anderson-Darling (AD) tests. If the marginal
skewness of all equity return series are negative, while th@dels are well specified, the PIT samples must follow the
bond return series have a positive skewness. uniform distribution on[0, 1]. The KS test evaluates the null
The unconditional correlations are presented in Table hypothesis that the PIT samples of cumulative distribution
We make the following five observations. The table indicatdgnction is equal to the uniform distribution dg, 1]. The
that correlations in equity markets are larger than that in boAdD test is also used to test whether a PIT sample comes from
markets. The dependencies among equity and bond markbégsuniform distribution orj0, 1]. The other test is the Ljung-
are relatively low, even within a country. All the correlationgox test for the residuals of the skewGARCH models.
are positive, except in the Italian market. The UK-US pait evaluates the autocorrelation of the residuals for a fixed
is strongly correlated, while the correlation between Japammber of lags. The residuals should have no autocorrelation
and US is relatively low. The correlation of the equity in théor any lags, because of the i.i.d. assumption of the residuals

Italy-US pair is high, while that of the bond is low. of GARCH models.
Table IV summarizes these results. Panel A contains the
TABLE | statistics andp-values of the uniformity tests for the PIT

SUMMARY STATISTICS samples. In both the KS and the AD test, the null hypotheses

of all the series cannot be rejected at the 5% level. Panel B

Wiean St SkaTess Ririoss Wiax vin contains the statistics of the Ljung-Box test at lags 1, 2, 3,
equs ou 235 078 g8 foL2 ey 4, 6, and 12. In all the series, except the bond series of Italy,
el . . -0. . . -11. . .
e?pp 0.15 3.16 -0.43 7.02 15.94 1904 the null hypotheses of independence cannot be rejected at
eqlT -0.03 3.24 -0.18 5.59 12.37 -13.70 0, , : H
BnUS 0.01 454 018 37 1704 o2 thg 5% level. In Italy’s bond series, independence cannot be
gngg -00-0155 354736 g;g zgig :éigg igﬁ rejected at the 1% level. If we assume the GARCH model
n. . . . . . -1o. . . . . .
bnIT 0.06 3.46 0.10 7.6 18.46 1761 With Gaussian ort innovations, not all of the series pass

Descriptie statistics of the weekly equity index and bond returns for all fod1€ tests (see Appendix A). We conclude that each skew
countries. All the returns are expressed in Japanese Yen. The data periad GARCH(1,1) model is specified better than the GARCH
from the 8th January 2013 to th&0*® of July 2013, which corresponds to model with Gaussian ar innovations

548 observations. '

TABLE Il
ESTIMATES OF SKEwWt GARCH(1,1)PARAMETERS
TABLE Il
UNCONDITIONAL CORRELATION
equsS eqUK eqJP eqlT
w 0.19 0.32 0.31 0.16
eqUS _eqUK_eqlP__eqiT _bnUS _bnUK _ bndP__ bniT L ooy 01 G (009
equs 1.00 (0.04) (0.06) (0.03) (0.04)
eqUK 081  1.00 8 0.82 0.74 0.89 0.85
eqlP 058 0.61 1.00 (0.05) (0.06) (0.04) (0.04)
eqlT 074 081 0.0 1.00 v 6.89 8.38 8.04 7.87
bnUS 034 037 032 042 1.00 \ %-g?) (g-gi) ((2)?2) ((2)-6232)
bnUK 032 033 035 043 074 1.00 -0. -0. -0. -0.
bnJP 017 019 039 021 034 039 1.00 ool 08 GO, G O
bnIT 004 008 006 -012 023 021 016 1.00 9 : : : :
bnUS bnUK bndP bniT
The unconditionalcorrelations between the equities and bonds for the US, w ?(-)1019) (%-%;) (é-gf) (g-é;‘)
the UK, Japan (JP), and ltaly (IT). o 0.10 0.09 007 0.07
(0.03) (0.02) (0.03) (0.03)
B 0.90 0.91 0.84 0.92
(0.02) (0.02) (0.06) (0.03)
v 13.15 11.67 5.10 6.88
; setrib gt (6.45) (5.26) (1.04) (1.78)
B. Marginal distributions N Y o2 010 610
. . o (0.06) (0.06) (0.06) (0.06)
The estimates of the parameters of the marginal distribu- logl -1496.34 -1350.36 -1598.15 -1380.71

tions are showr_1 in Table Ill. The parameters C(_)rres_pOnOI EQtimatesof the skewt GARCH(L,1) models of [19], for all the equity and
those in Equations (4), (5), and (6). Table Il implies th@ond returns of four countries. The figures between parentheses represent the

following. The negative skewness parametein the equity standard deviations of the parameters. “logL” represents the log likelihood
returns, and the positivi in the bond returns are consistenfU"cton-

with the skewness in Table I. The equity markets are more

skewed than the bond markets (comparing the absolute values

of the skewness parameters), except in Japan. The degréesPependence structures

of-freedom are less than 10, except for the bond markets ofin the following subsection, we show the estimation results
the US and UK. Therefore, it is reasonable to assume thadtthe dependence structures of each country pair. We apply
the distributions of the series that have more than 10 degréesr models that have a Gaussian copula and non-Gaussian
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TABLE IV oo ) .
GOODNESS OF FIT ANDL JUNG-BOX STATISTICS building blocks for the first tree of the vine copula for M4

are rotated Gumbel copulas. This means that most asset pairs
eqUS eqUK eqdP  eqT bnUS  BAUK  BndP  bniT have the lower tail dependence. Fourth, in terms of fit, M3

anelA: Uniformity test and M4 are superior to M1 and M2, with respect to the log
S om om0 ous o ose  ost ose om likelihood. M3 has the highest log likelihood, while M4 is
A w0 o7 oss oz o2 o3 o2s  os Destintermsof AIC. Thus, itis difficult to state which of M3

P 036 051 046 089 o097 o089 0% 08 gnd M4 is superior. Furthermore, the transition probabilities
PanelB: Test for serial independence . . . . .
Ljung-Box show high persistence in both regimes for all models. This
1 3.54**  1.87**  0.05** 0.64**  0.00** 0.80** 0.81** 6.48* . . .

2 438" 188" 0.06™*  1.52** 106"  L8I**  0.84*  0.38% is consistent with [12] and [4].

3 5.20**  1.91**  0.95** 4.18%*  1.42** 2.29** 3.88** 9.38* - . . .

4 5407 2537 1297 4587 LEGT 23777 447 1L10” The smoothed probabilities of being in R2 are obtained as
6 5.74%*  2.76** 1.32%* 5.49%* 2.31%* 2.79** 9.95%* 14.04* . . . e
12 1096 924 308" 1173 562° 1151 1959  23.87° a by-product of the estimation. They provide a probabilistic

Panel A contains the KS and AD statistics estimates, with theiralues. assessment of being in R2 at tinte conditional on the
“Stat” refers to the StatiSIiCS.dan??I"‘ is Te ;-\éalzeépangllg C%?Tainsmg\ﬁ information available at the end of the period. The changes
;Jr:jdng*Zc:axnzizntitéﬁswceog%ﬁgt r;e;%zdépénden’ceyaat“:he 1% ar?dsg% Ig\fgg,the probablhtle:.s.(.)f the_hldden states are evident from the
respectively. smoothed probabilities. Fig. 5 shows the smoothed probabili-
ties of being in R2, calculated from each model. The shapes
of M1, M2, and M3 are similar. R2 is dominant from the
regime: the Gaussian, tiigthe skewt, and the vine. We refer middle of 2006 to the middle of 2007, and from the middle
to them, respectively, as M1, M2, M3, and M4. In additionef 2009 to the middle of 2012. These periods correspond to
we denote the Gaussian copula regime by R1, and the ott®# credit crunch and the Greek sovereign crisis. Thus, R2
by R2. If the tail dependence of some pair is weak and thecan be regarded as the crisis regime. M4 has a similar pattern
or skewt copula, is not suitable, we eliminate thecopula to the other models, but it has higher estimated probabilities
model and introduce the skew normal copula as M3’ insteégkr R2 from the middle of 2012 to the middle of 2013. This
of M3. is a result of the lower correlations of R2 in M4 than the
The analysis in Subsections IV-C1, IV-C2, and IV-C3 cagorrelations of R2 of the other models. From Table V the
be summarized into the following three findings. First, highlgorrelation coefficients of R2 in M4 are smaller than those
dependent regimes are different according to the asset padfsother models, except that of the bond markets. R2 in M4
Second, the strength of the asymmetry of each country pa#irresponded to times of crisis, but the features of the crisis
varies, and that of the Japan-US pair is weak. Third, thge not emphasized. This can be interpreted as the trade-
comparison of the skew and the vine copulas showed thabff of vine copulas. They are so focused on describing the
the skewt copula is a better fit to the data, but it is notail dependence, that they cannot model the strength of the
flexible enough to capture extreme dependencies. The vifependence itself. Thus, the regime transitions become a little
copula fits well in spite of having fewer parameters, butmbiguous.
cannot express the extreme dependencies of each asset pair.
1) UK-US dependence structurdable V shows the esti-
mated parameter values for each model of the UK-US pe
The specification of the vine copula follows [16] and [12] ' - w C/MWU - \j
1/03 12/0‘1/05 10/01/07 07/01/09 05/0‘1/11 02/0‘1/13

which we will explain below. First, the variables are sorte
in descending order according to their correlations. Stronc
correlated pairs are chosen as the components of the f o
tree in the vine structure. Next, we select each pair copt
in the first tree that has the best AIC for the unconditioni g ;
estimation of each pair. The pair copulas in the secol

and the third trees are set so that they maximize the |

likelihood. We choose the C-vine or D-vine structure the Iy

probabilities

M2

probabilities
o
o

probabilities

o
=]

probabilities

1/03 12/0‘1/05 10/01/07 07/01/08 05/0‘1/11 02/0‘1/13

results in the larger log likelihood. The building blocks ar: e
the Gaussian, thg the Clayton, the Gumbel, and the rotate: ! - WY '
Gumbel (rGu), as discussed in Subsection II-C. =

The results in Table 1l lead to the following conclusions M \/ \/\/L
FirStv the correlation coefficients are |arger in R2: exce 15401703 2701763 10/01/07 G701/09 /0111 @/
for the bond markets. This means that not all asset pa va
become more dependent in the asymmetric regime. N¢ ‘ \/ ‘
that our results include analyses of the dependence structt i
between the UK equity and the US bond, and between t U
UK bond and the US equity, which was neglected in [4 1507 2o oo o/t ot 27T/
An important implication of these findings is that we cal
construct an equities and bonds portfolio for the UK and U
with a lower risk than that invested under the assumption
that all assets are more dependent in times of crisis. Secofid,5. Smoothed probabilities of R2 for the UK-US pair
the shape parameters of M3 indicate that the equities have
negative skewness, while the bonds have positive. Third, the
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2) Japan-US dependence structur@able VI shows the the Greek sovereign crisis. Furthermore, considering the fit,
estimation results for the Japan-US pair. Trend the skew the log likelihoods of M3 and M4 are larger than those of
t copulas are not suitable, because the degrees-of-freeddh and M2. M3 has the highest log likelihood, while M4
parameters become too large. Thus, we eliminate M2 ahds the lowest AIC. This coincides with the results of the
instead use M3'. The vine copula in M4 is chosen in theK-US pair. We again conclude that both M3 and M4 have
same way as the UK-US pair. One pair copula in the firheir merits and demerits. Finally, the transition probabilities
tree is the rotated Gumbel, and the others are Gaussian. Ttisw high persistence in both regimes in all models.
means that the tail dependence is weaker in the Japan-U&ig. 7 shows the transition probabilities for R2. All models
pair than in the UK-US pair, which supports the use of theave similar patterns. The probabilities of R2 are sometimes
skew normal copulas. larger from the beginning of 2007 to the middle of 2008,

The results in Table VI lead to three findings. First, foand R2 is dominant after 2009. R2 can be considered as
M1 and M3, all the correlation coefficients are higher fothe crisis regime, which corresponds to the UK-US pair. It
R2 than R1. However, R1 has a stronger dependence for N&l notable that after the credit crunch the crisis regime is
except for the correlation between the US equity and tlaways dominant when compared with the usual regime. This
Japanese bond. These results are not consistent with eacue to the Greek sovereign crisis. Although the Italian
other. This may be caused by the weak asymmetry in tevernmental bond yields were not low from the middle
Japan-US pair. The absolute values of the shape parametér8008 to the middle of 2011, the RS model captures the
are smaller than those in the UK-US pair. Moreover, thgotential risk.
building blocks in the vine copula represent the weak tail
dependence stated in the previous paragraph. The symmetry- V. FURTHER INVESTIGATION FOR ASYMMETRY

like dependence structure makes it difficult to detect an\ye make two additional analyses to find more implications
asymmetric regime. Weak asymmetry is seldom reportgd ie international dependence structure. We calculate the
in existing research, but it is meaningful because we M@y eeqance correlation to investigate asymmetry in view of
decrease the risk of portfolios if we incorporate assets froé&isting work. We also compute risk measures, VaR, and

countrieg wi.th weak asymmetry..lt is_ important to note th%txpected shortfall (ES), to examine the risk of portfolios
the log likelihood of M3' or M4 is still larger than that of investing in international equities and bonds.

M1 (the symmetric model). Thus, we should use asymmetric
copula models, even when analyzing countries with weak ,
asymmetry. Second, M4 is superior to M3’ in terms of both- EXceedance correlation
log likelihood and AIC. This is because M3’ totally neglects Exceedance correlation is defined as the correlation cal-
asymmetry. Furthermore, the transition probabilities shoeulated from returns above or below a certain threshold.
high persistence in both regimes for all models. It has been used in existing work such as [1] to measure
The transition probabilities of being in R2 are shown ithe asymmetry of dependence structures. The exceedance
Fig. 6. The shapes of the figures of M1 and M3’ are simildorrelation of variablesY and Y at thresholdsf; and 6,
to each other, but the figure of M4 is almost upside dowit defined by
In M1 and M3’, R2 is dominant around 2008 and from the
middle of 2010 to the middle of 2013. In M4, R1 is dominantExcorr(Y X:60,05) = {
in the same periods. Thus, the highly dependent regime can T
be interpreted as the crisis regime. Comparing these resuife calculate the exceedance correlation using the method
to the UK-US pair, the period from the middle of 2009 t@f [1]. We use the 100,000 PIT samples generated from
the middle of 2010 is a low dependency regime. This means
that the credit crunch has a smaller effect on the Japan-US
pair.
3) ltaly-US dependence structur@he estimation results i : ; ‘ . \

corr(X,Y|X <6,,Y <#6,), for6; <0andb, <0,
corr(X,Y|X > 6,,Y > 65), for6; >0andf; > 0.

for the Italy-US pair are reported in Table VII. The vine
copula is specified in the same way as the UK-US pa
The results in Table VII lead to five findings. First, all b
the building blocks for the first tree are rotated Gumb
copulas, which represents the strong lower tail dependen
The degrees-of-freedom parameters for M2 and M3 are s
enough to express the tail dependence. These are evide
of asymmetry in the Italy-US pair. Second, in all models th s
correlation coefficients of the pairs related to the Italian bor
are higher for R1, while those for the rest of the pairs al ! T '
larger for R2. This indicates that not all asset pairs becor v
more dependent in R2. Our flexible model enables us
analyze the dependencies between the US equity and Ital o e ey e Lt —
bond, which was neglected in [4]. Third, some of the ass

pairs related to the Italian bond have a negative correlatic..

In _R2’ V,VhICh is not the case 'n, the UK-US or Japan-U§| . 6. Smoothed probabilities of R2 for the Japan-US pair
pair. This phenomenon can be interpreted as the effect o%

probabilities

L L L
1/03 12/01/03 10/01/07 07/01/08 05/01/11 02/01/13

M3’

/A%

o
=]

probabilities

L L L
1/03 12/01/05 10/01/07 07/01/08 05/01/11 02/01/13

M4

05+

probabilities
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TABLE V
ESTIMATION RESULTS FOR THEUK-US PAIR

M1 M2 M3 M4
Ga Ga Ga t Ga skevt  (p) Ga C-vine  (p)
eqUK-eqUS  0.65 0.83 0.65 0.83 0.64 0.86 0.82 eqUK-bnUK  0.32 1.32 0.34 rGu
(0.009) (0.004) (0.010) (0.005) (0.010) (0.073) (0.018) (0.017)
eqUK-bnUK  0.34 0.40 0.33 0.41 0.34 0.21 0.39 eqUK-bnUS  0.23 141 0.35 rGu
(0.014) (0.014) (0.014) (0.015) (0.016) (0.066) (0.021) (0.020)
eqUK-bnus  0.27 0.47 0.26 0.48 0.27 0.34 0.46 eqUK-equUS  0.66 2.46 0.69 rGu
(0.020) (0.019) (0.021) (0.020) (0.023) (0.079) (0.006) (0.025)
equS-bnUK  0.28 0.42 0.28 0.43 0.29 0.25 0.41 bnUK-bnUS  0.77 0.65 0.71 Ga
(0.015) (0.012) (0.016) (0.013) (0.018) (0.066) (0.009) (0.009)
equS-bnUs  0.14 0.58 0.14 0.59 0.15 0.45 0.56 bnUK-eqUS  0.26 0.16 0.36 Ga
(0.018) (0.011) (0.019) (0.012) (0.019) (0.006) (0.022) (0.021)
bnUK-bnUS  0.80 0.69 0.79 0.70 0.80 0.72 0.69 bnUS-eqUS  0.10 1.24 0.38 rGu
(0.006) (0.010) (0.006) (0.012) (0.007) (0.045) (0.020) (0.021)
v 27.35 (8.441) 25.95 (10.208)
@ -0.65 (0.046)
-0.57 (0.041)
0.70 (0.035)
0.42 (0.016)
P11 0.97 (0.003) 0.97 (0.003) 0.97 (0.003) 0.98 (0.003)
D22 0.97 (0.003) 0.97 (0.003) 0.97 (0.003) 0.99 (0.002)
logL 524.93 526.02 532.15 528.96
AIC -1019.86 -1020.04 -1024.30 -1027.92

Dependencstructurebetween the UK and US equity and bond markets. Correlation coefficients are shown for the Gaussjamdliee skew copulas.
The parameters of the Archimedean copulas their parameters are shown. “Ga” is the Gaussian cepuésents the degrees-of-freedom parameter of
the t and the skew copula, andx is the shape parameter of the skewopula.pi1 andp2z are the transition probabilities of the Markov chain, and
denote the probability of staying in the same regime. “logL” refers to the log likelihood, and “AIC” is the Akaike information critgarépresents
the unconditional correlation coefficients calculated from 100,000 samples generated from the ®skeime copula in R2. Standard deviations of the
parameters are shown in parentheses.

M1
1 T T T v

and each model in the UK-US, Japan-US, and Italy-US pairs.
Each figure shows the pairwise exceedance correlation for
thresholds from 10% to 90% in 10% increments. The vertical
axes represent the exceedance correlation, and the horizontal
axes represent the thresholds. From Fig. 8, 9, and 10, we

probabilities

=

15}%}1/03 12/01/05 10/01/07 07/01/09 03/01/11 02/01/13 can See that 0n|y the equ|ty markets have clear asymmetnc
o ; ; L WY . dependence.. Other asset pairs do not express significant
= \f asymmetry in terms of exceedance correlation. Moreover,

3;“’ Jln W 1 the exceedance correlation differs amongst country pairs.

B 0 ‘ ‘ . s For example, we compare three pairs (US equity to bonds

15/01/03 12/01/03 10/01/07 07/01/08 03/01/11 02/01/13

from the UK, Japan, and Italy). The shapes of the figures
are not similar, even though they are the same kind of asset
classes. This indicates the difficulty in expressing asymmetry
for different asset classes. Thus, we conclude that we cannot
generalize dependence structure features for international

M3
1 T T T \aVs v. T
05 4

—

probabilities

15}%)1/03 12/01/05 10/0‘1/07 07/0‘1/09 05/0‘1/11 02/0‘1/13

e asset pairs, except equity pairs, and that flexible models are
L - " " W V4 r necessary if we wish to treat each pair differently.
:}g i 4/\;” | ' ' !
g When comparing the power of expression of the different
1501708 s T/ 07701/08 G YN models, Ml, MZ, and M3 (or M3’) have similar exceedance

correlations and fail to describe the asymmetry of the data
samples. M3 (or M3’) has slightly more similar patterns to
the data than M1 and M2, but not enough to reproduce the
asymmetry. M4 succeeds in expressing the asymmetry of the
equity markets. The correlation in the left tail tends to be
more similar to the data than other models, while the right
tail is not as similar. Furthermore, it is not flexible enough to
each RS model with the estimated parameters to calculagé@roduce the various types of asymmetry in each asset pair.
the exceedance correlation. The thresholds are specifiedrifbse results indicate that both the skeand vine copula
terms of quantiles, from 10 to 90% in increments of 10%,5ve advantages and shortcomings in terms of the power
For thresholds less than the 50% quantile, the correlationdﬁexpression. The skew copula is not flexible enough to
calculated for the left tail, while the right tail is used forcapture extreme asymmetric dependencies, while the vine
thresholds greater than the 50% quantile. copula cannot express the different extreme dependencies of
Fig. 8 to 10 illustrate the exceedance correlation of the dagach asset pair.

Fig. 7. Smoothed probabilities of R2 for the Italy-US pair

(Advance online publication: 28 May 2018)



TAENG International Journal of Applied Mathematics, 48:2, IJAM_48 2 12

TABLE VI

ESTIMATION RESULTS FOR THEJAPAN-US PAIR

M1 M3’ M4
Ga Ga Ga ske normal  ( Ga C-vine (p)
eqJP-eqUS  0.49 0.68 0.49 0.68 0.66 eqJP-eqUS 0.68 1.47 0.54 rGu
(0.013) (0.013) (0.015)  (0.060) (0.013)  (0.020)
eqJP-bnJP 0.44 0.45 0.44 0.44 0.45 eqJP-bnUS 0.54 0.21 0.45 Gau
(0.012) (0.013) (0.013) (0.074) (0.020) (0.021)
eqJP-bnus 0.22 0.54 0.20 0.56 0.56 eqJP-bnJP 0.44 0.45 0.34 Ga
(0.015) (0.015) (0.018)  (0.099) (0.018) (0.013)
equS-bnJP  0.19 0.31 0.17 0.31 0.33 equUS-bnUS  0.66 0.04 0.21
(0.022)  (0.020) (0.028)  (0.060) (0.013)  (0.015)
equS-bnUS  0.16 0.66 0.14 0.69 0.68 equS-bnJP  0.02 -0.04 0.34 Ga
(0.019) (0.020) (0.027)  (0.013) (0.015) (0.018)
bnJP-bnUS 0.42 0.51 0.41 0.51 0.50 bnUS-bnJP 0.51 0.37 044 Ga
(0.016) (0.015) (0.019) (0.021) (0.015) (0.018)
a -0.20 (0.027) v 15.89 (5.399)
-0.30 (0.025)
0.27 (0.021)
0.12 (0.019)
P11 0.99 (0.001) 0.98 (0.002) 0.98 (0.002)
D22 0.98 (0.002) 0.97 (0.003) 0.99 (0.002)
logL 277.19 280.88 282.51
AIC -524.38 -523.76 -533.02

Dependence structutgetween the Japanese and US equity and bond markets. Correlation coefficients are shown for the Gaussarg the skew
normal copula. The parameters of the Archimedean copulas are shown. “Ga” is the Gaussian.cogpilesents the degrees-of-freedom parameter of
the ¢t copula, anda is the shape parameter of the skew normal coppila. and p2o are the transition probabilities of the Markov chain, and denote
the probability of staying in the same regime. “logL” refers to log likelihood, and “AIC” is the Akaike information critgsjaare the unconditional
correlation coefficients calculated from 100,000 samples generated from the skexine copula in R2. Standard deviations of the parameters are shown

in parentheses.

TABLE VI

ESTIMATION RESULTS FOR THEITALY-US PAIR

M1 M2 M3 M4
Ga Ga Ga t Ga skevt  (p) Ga D-vine  p)
eqlT-eqUS  0.66 0.72 0.63 0.73 0.63 0.74 0.72 eqUS-eqlT  0.64 2.05 0.66 rGu
(0.006)  (0.009) (0.009) (0.007) (0.009) (0.049) (0.009) (0.026)
eqIT-bnIT 0.26 -0.41 0.25 -0.29 0.25 -0.28 -0.26 eqIT-bnUus 0.19 151 0.34 rGu
(0.018) (0.012) (0.019) (0.014) (0.020)  (0.039) (0.019) (0.024)
eqIT-bnUS 0.25 0.51 0.21 0.48 0.20 0.48 0.46 bnUS-bnIT  0.75 1.07 0.39 rGu
(0.020) (0.018) (0.024) (0.013) (0.026) (0.221) (0.019) (0.011)
equS-bniT  0.29 -0.21 0.27 -0.11 0.27 -0.11 -0.10 equUS-bnUs  0.15 0.36 037 Ga
(0.017) (0.015) (0.019) (0.014) (0.020) (0.120) (0.024)  (0.020)
equUS-bnUs  0.22 0.60 0.17 0.56 0.16 0.56 0.54 eqIT-bnIT 0.10 -0.39 -0.05 Ga
(0.015)  (0.017) (0.019) (0.013) (0.020)  (0.007) (0.019) (0.013)
bnIT-bnUS  0.74 -0.03 0.76 0.09 0.76 0.11 0.10 equs-bniT  0.27 0.06 0.07 Ga
(0.005) (0.017) (0.006) (0.016) (0.006) (0.019) (0.006) (0.012)
v 9.85 (0.893) 10.12 (0.974)
«a 0.00 (0.024)
-0.13 (0.022)
0.15 (0.015)
0.16 (0.021)
P11 0.96 (0.003) 0.97 (0.003) 0.97 (0.003) 0.97 (0.003)
P22 0.94 (0.004) 0.98 (0.002) 0.98 (0.002) 0.97 (0.003)
logL 352.94 359.02 362.96 361.97
AIC -675.88 -686.04 -685.92 -693.94

Dependence structuteetween Italy and US equity and bond markets. Correlation coefficients are shown for the Gausgiaandhthe skew copulas.
The parameters of the Archimedean copulas are shown. “Ga” is the Gaussian compeesents the degrees-of-freedom oftleed skewt copula, and

« is the shape parameter of the skewopula.p11 andp22 are the transition probabilities of the Markov chain, denoting the probability of staying in
the same regime. “logL” refers the log likelihood, and “AIC” is the Akaike information criteria)™fepresents the unconditional correlation coefficients
calculated from 100,000 samples generated from the skeswine copula in R2. Standard deviations of the parameters are shown in parentheses.
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Fig. 10. Exceedance correlation for the Italy-US pair

Fig. 8. Exceedance correlation for the UK-US pair .
9 P B. Value at Risk and expected shortfall

VaR and ES are commonly used risk measures for risk
management. Let denote a confidence level, then the VaR
at « is defined by

VaR(a) = inf{l;Pr(L > 1) <1 - a},
and the ES at is given by
1 ES(«) = E[L|L > VaR(«a)],

. where L is the loss of the portfolio. We can use these mea-
5305 ,/’/’—L : sures to evaluate the risk of portfolios, computed from each
e model. In our analysis, the VaR and the ES are calculated

J == 1 using the Monte Carlo method with 100,000 iterations. We
eaP assume an equally weighted portfolio. The confidence levels

are set between 90% and 99%, in 1% increments.

Fig. 11 to 13 illustrate the VaR and ES ratios (ratios of the

0,05 N P values from each model compared with M1) for the UK-US,

5 &.,g,:i«}; 5 .o i Japan-US, and Italy-US pairs. Fig. 11 shows that for the UK-

0 B ol T — US pair, the risk measures calculated from M2 are similar

0 05 i 0 05 1 to those from M1. M3 and M4 have higher values of ES
ealdP edlS

compared with M1 and M2. This coincides with the intuitive
: . ! understanding that asymmetric models have larger risks than

o symmetric models. M3 has higher values regardless of the

505 g | | thresholds. M4 has larger values as the threshold become

5o 5 0" *7 7.1 larger. This demonstrates each copula’s abilities to express
o 05 the tails. The skew copula estimates the heavy right tail

0 E’jp f f 0 05 i in the loss distribution, while the vine copula stresses the

o extreme values in the right tail.

In Fig. 12 we can see that, for the Japan-US pair, M3’
and M4 have higher values than M1. This indicates that
it is better to use asymmetric models, even if a country
pair has a symmetry-like dependence structure. Otherwise,
we might underestimate the risk of portfolios. M3’ has a
higher VaR than M4 forx € [0.90, 0.95], and was as high as

Fig. 9. Exceedance correlation for the Japan-US pair

(Advance online publication: 28 May 2018)
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M4 otherwise With respect to the ES, M3’ has a higher E$

regardless of the confidence level. These results demonst e T
that the loss distribution of M3’ has a longer right tail, bu 108l o wa N W
the skewness is not large. On the other hand, M4 estima ° 108 °
the right-skewed loss distribution but its right tail is not a 3 0 5100 . © ‘
heavy as M3, because the asymmetric regime correspond €102 0o, °° @Broa 500 °
the usual (not crisis) regime. 4o ¢ 1.02

Fig. 13 shows that, for the Italy-US pair, M2 and M3 hawv N N st
similar values to M1, while M4 has higher values. As state 0sgl— e | osgl Tt *095 1
in Subsection IV-C3, it is notable that some asset pairs relal significant level significant level

to the Italian bond have negative correlation coefficients.

M3 evaluates a stronger negative correlation, which leagg. 13. vaRr and ES for the Italy-US pair

to portfolio diversification. M4 only focuses the right tail of

the loss distribution and has larger risk measure values. We

find that the skewt copula is more suitable for describing

negative dependence than the vine copula. in an asymmetric regime. The advantage of using the two
From these three figures, we can conclude that the vid8ymmetric copulas is that they can express various depen-

copula emphasizes the right tail of the loss distribution moftence structures. The choice of copula in the asymmetric

than the skewt copula. Moreover, we also find that thg'egime is significant, because they have desirable features

skew ¢ copula better described the dependence structdfé capturing dependencies among different asset classes. We

of each asset pair, including the negative correlation. THi§€ the skewt copula that is constructed from the skew

finding indicates that we should pay attention to the choidedistribution. We describe the marginal models using the

of copulas when calculating risk measures. If we neglect tikeéw ¢ GARCH models, and we assume that they were

features of the copulas, the computed risk measures mayit¢ependent from the regimes. This assumption allows us to
underestimated or overestimated. estimate parameters using a two-step procedure. In this two-

step estimation, the parameters of the marginal models and
those of the dependence structure are calculated separately.

107 = M= The Hamilton filter is used to estimate the parameters of
TOBI + ms 11f o+ M8 the dependence structure. To find further implications for
105t ’ B ° | the dependence structure, we also compute the exceedance
BT s ] 2 o correlation, Value at Risk, and expected shortfall.
S0 R i o We apply the RS model to three country pairs: UK-US,
01 o ° .2l L L., | Japan-US, and Italy-US. We analyze four models using dif-
1 - S 102 ) ferent copulas: the Gaussian, thehe skewt, and the vine.
099% o ’ 1 Pt e ’ 1 Qur em_pirical analysis Iead_s to the foI_Iowing conclus_ions.
significant level significant level First, highly dependent regimes are different according to
the asset pairs. We can determine this using our flexible
Fig. 11. VaR and ES for the UK-US pair multivariate model, which enables us to compare all the
asset pairs. This implies that we should pay attention to the
dependencies of each pair when constructing international
diversified portfolios, to properly evaluate diversification
1035 1045 benefits. Second, the strength of the asymmetry of each
Lt " | country pair varies, and that of the Japan-US pair is weak.
103 + 104 This indicates that we should also consider weak asymmetry
21025 s ° o | o108 * when calculating the risk of portfolios. Third, the skew
. . °oe E e copula fits better to the data, but is not flexible enough
> 10 ° W to capture extreme dependencies, while the vine copula fits
1015 . 1025 Loo o000 ° well in spite of haviqg fewer param(.—:‘t.ers, .but. canljot_express
° © M4 ° extreme dependencies. These empirical findings indicate that
"% 095 1 1% 095 i the dependence structure and asymmetry among all asset
significant level significant fevel pairs and country pairs should be evaluated to correctly
capture the benefits of international diversification.
Fig. 12. VaR and ES for the Japan-US pair In closing, we mention some future research topics. The

first is the efficient estimation of the sketvcopula model.
The estimation of the skewcopula is computationally more
intensive than that of the vine copula. Efficiency is crucial
when the RS model is applied to a high dimensional case.
In this paper, we perform an empirical analysis of the d&he second is a better construction of the vine copula. In this
pendence structures of international equity and bond markptger, we only consider two types of vines and five building
using the RS copula model. We use the Gaussian copblacks. If the range of the vine copulas is expanded, some of
in a symmetric regime, and the sketvor vine copula their disadvantages might be overcome. Solving these issues

VI. CONCLUSION

(Advance online publication: 28 May 2018)
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TABLE X

will make the RS model more sophisticated and tractable, Goopness oF FIT AND THEL JUNG-BOX STATISTICS FROM THE
NORMAL GARCH(1,1)MODEL

and will enable us to consider more than two countries.

APPENDIX
. . . eq_US ] eqUK eqJP eqlT bnUS bnUK bnJP bnIT
The estimation results of GARCH(1,1) models with Gaus-PanelA: Uniformity test
sian andt innovations are shown in Tables VIII and IX. st 009 008 006 006 003 0.03 0.07 0.04
Tables X and Xl represent the results of the KS, the ADZ; %% 00 007 005 0% 061 001 048
and the Ljung-Box tests. Stat 604 589 271 277 055 0.65 3.78 1.31
p 0.00 0.00 0.04 0.04 0.70 0.60 0.01 0.23
PanelB: Test for serial independence
TABLE VIII Ljung-Box
ESTIMATES OF NORMAL GARCH(1,1)PARAMETERS 1 344 1.82%*  0.03**  0.68** 0.00**  0.83**  044**  6.01*
2 4.24%%  1.84**  0.03**  1.56**  1.05**  1.88**  0.44** 87T
3 5.25%  1.86**  1.00**  4.19**  141**  2.35*  271**  877*
4 5.37*%  2.49%%  1.22%%  4.61**  1.64**  2.44**  3.74*  10.67*
equs eqUK eqJP eqiT 6 5.83%F  2.75%*  1.28**  551** 231%™  2.86** 800"  13.23"
w 0.28 0.30 0.33 0.14 12 10.66**  9.21**  3.18** 1L.70** 5.62** 11.53** 16.20**  23.00*
0.08 0.08 0.19 0.06
a 8.21 ) 8.23 ) (0_07) (0.14) PanelA shows the Kolomogorov-Smirnov (KS) and Anderson-Darling (AD)
(0.03) (0.03) (0.01) (0.02) statistics estimates with theirvalues. “Stat” represents the statistics, while
8 0.75 0.74 0.90 0.85 “p" is the p-value. Panel B represents the Ljung-Box statistics computed at
(0.04) (0.03) (0.03) (0.02) lags 1, 2, 3, 4, 6, and 12. The symbslimplies that independence at the
logL -1172.59 -1193.51 -1381.42 -1338.14 1% level cannot be rejected, ard refers to the 5% level.
bnUS bnUK bnJP bnIT
w01l 0.06 0.49 015 TABLE XI
(0.07) (0.04) (0.19) (0.08) GOODNESS OF FIT ANDLJUNG-BOX STATISTICS FROM THEt
a 011 0.09 0.12 0.08 GARCH(1,1)moDEL
(0.02) (0.02) (0.01) (0.01)
B8 0.89 0.91 0.88 0.91
(0.02) (0.02) (0.01) (0.02) eqUS  eqUK _ eqdP eqiT _ bnUS bnUK bnJP bniT
logL  -1499.33 -1354.00 -1642.99 -1397.06 PanelA: Uniformity test
KS
Estimates ofnormal GARCH(1,1) models for all equity and bond returns, Stat 0.09 0.08 0.06 0.06 0.04 0.04 0.07 0.05
for four countries. The figures between parentheses represent the standatd 0.00 0.00 0.06 0.02 0.45 0.39 0.01 0.08
devia_tions of the parameters. “logLl” is the value of the log likelihood g\gﬂ 743 691  3.97 4.48 114 1.45 742 3.60
function. P 0.00 0.00 0.01 0.01 0.29 0.19 0.00 0.01
PanelB: Test for serial independence
Ljung-Box
1 3.60**  1.96**  0.05**  0.79**  0.00**  0.80**  0.70**  6.58*
TABLE IX 2 4.41%%  1.97**  0.05**  1.67** 1.06**  1.81**  0.71** 951
ESTIMATES OFt GARCH(1,1)PARAMETERS 3 5.18%*  2.02**  (0.95** 4.2)9** 1.42)** 2.29%* 3.60** 9.51*
4 5.41%%  2.61**  1.26%*  4.72**  1.66**  2.37**  4.19*  11.29*
6 5.70%*  2.82%*  1.30**  5.65**  2.32**  2.80**  9.44**  14.20*
eqUS eqUK eqiP eqiT 12 11.20**  9.38**  3.11** 11.97** 5.62** 11.51** 18.95** 24.05*
w 0.17 0.29 0.35 0.15 PanelA shows the Kolomogorov-Smirnov (KS) and Anderson-Darling (AD)
(0.08) (0.12) (0.22) (0.09) statistics estimates with theirvalues. “Stat” represents the statistics, while
«a 0.12 0.19 0.08 0.13 “p" is the p-value. Panel B represents the Ljung-Box statistics computed at
(0.04) (0.05) (0.03) (0.03) lags 1, 2, 3, 4, 6, and 12. The symbslimplies that independence at the
B8 0.84 0.76 0.88 0.86 1% level cannot be rejected, and refers to the 5% level.
(0.04) (0.05) (0.04) (0.03)
v 7.19 8.29 8.35 7.04
(1.72) (2.66) (1.78) (2.21)
logL -1158.11 -1185.33 -1365.79 -1328.37 [2] A. Ang and J. Chen, “Asymmetric correlations of equity portfolios,”
bnuUS BnUK bnipP bnlT Journal of Financial Economicssol. 63, no. 3, pp. 443-494, 2002.
= 011 0.07 183 0.14 [3] A. Ang and G. Bekaert, “International asset allocation with regime
(d 09) ((') 06) (0-82) (0'11) shifts,” The Review of Financial Studiesol. 15, no. 4, pp. 1137-
a 010 0.09 0.08 0.07 1187, 2002. )
(0.03) (0.03) (0.03) (0.02) [4] R. Garcia and G. Tsafack, “Dependence structure and extreme co-
8 0.90 0.01 0.84 0.92 movements in international equity and bond markefimtirnal of
(d 02) (6 02) (d 05) (d 03) Banking & Finance, vol. 35, no. 8, pp. 1954-1970, 2011.
» 13.64 1157 4.95 6.72 [5] Y. Otani and J. Imai, “Pricing portfolio credit derivatives with stochas-
e 61) © '35) (0' 82) (1' 65) tic recovery and systematic factotAENG International Journal of
logL 1496.80 -135041 -1603.63  -1382.00 Applied Mathematics, vol. 43, no. 4, pp. 176-184, 2013.

[6]
Estimates ot GARCH(1,1)models for all equity and bond returns, for four

E. Jondeau and M. Rockinger, “The copula-GARCH model of con-
ditional dependencies: An international stock market application,”

countries. The figures between parentheses represent the standard deviationsJournal of International Money and Financeol. 25, no. 5, pp. 827—

of the parameters. “logL” is the value of the log likelihood function.

(7]
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