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Abstract—In this paper, we investigate the construction of
unconditionally stable numerical methods for a class of space
fractional differential equations with the order of the spatial
fractional derivative belongs to (2,3), where the fractional
derivative is defined in the sense of the Riemann-Liouville
derivative. A Crank-Nicolson finite difference scheme is devel-
oped by use of the order reduction method and the weighted
shifted Grünwald-Letnikov derivative approximation formula.
Theoretical analysis of unique solvability, stability and conver-
gence for the Crank-Nicolson difference scheme are fulfilled. In
order to test the validity of the present algorithm, numerical
experiments are carried out.
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I. INTRODUCTION

Fractional calculus has attracted much interest in recent
years, and fractional differential equations (FDEs) are widely
used as models to describe complex nonlinear phenomena
in physics, biology, economics, engineering and other areas
of science. Many real-world systems are translated into
mathematical models via FDEs [1-8]. In [9], EDEKI etc
researched one time-fractional order Black-Scholes model,
which can be used for option pricing and assessment, and
obtained analytical solutions of the fractional equation for
European call option via a proposed relatively new semi-
analytic technique hereby referred to as Projected Differ-
ential Transform Method. In [10], Zhong etc considered a
time fractional convection diffusion equation with time-space
variable coefficients, and proposed an effective numerical
method for solving this equation. Many aspects of the subject
of fractional differential equations have been studied so
far, such as the existence and qualitative behaviors of their
solutions. For example, we refer the readers to [11-14], and
the references therein.

In order to better explain and understand the physical
phenomena modeled by FDEs, it is necessary to obtain the
solutions of FDEs. However, unlike differential equations of
integer order, it is difficult to obtain exact solutions for most
FDEs. Thus, obtaining numerical solutions have attracted
much attention of many authors, and great efforts have been
made to develop valid semi-analytical methods or numerical
methods for solving FDEs. So far many valid semi-analytical
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methods have been developed, such as the reproducing kernel
space method [15], the Adams-Bashforth-Moulton method
[16], homotopy perturbation method [17], Adomian decom-
position method [18,19], the variational iterative method
[20,21], homotopy analysis method [22], and generalized dif-
ferential transform method [23]. Also some valid numerical
methods have been applied, such as the meshless method
[24], the finite element method [25,26], the coupled fractional
reduced differential transform method [27], the Bernstein
polynomials method [28], the residual power series method
[29], the Jacobi elliptic function method [30], the finite
difference method and so on. For most of the semi-analytical
methods, the common approach is to approximate the exact
solutions in series forms, and usually it is difficult to obtain
the closed forms of the approximating solutions. So it is not
so easy to fulfil the convergence analysis of the series as
well as the error estimate in the case that the closed forms
of the approximating solutions can not be obtained. Among
the numerical methods mentioned above, the finite difference
method is the most widely used method to solve FDEs so far.
Based on the finite difference method, many kinds of FDEs
including the fractional subdiffusion equation, the fractional
diffusion-wave diffusion equation, the fractional advection-
diffusion equation, the fractional Schrödinger equation and
the fractional Bloch-Torrey equaion etc. are numerically
solved by the finite difference method (see [31-38] and the
references therein for example).

We notice that most of the FDEs solved by the finite
difference method involve fractional derivatives with the
orders no more than two, and little attention has been paid
so far on developing finite difference schemes for FDEs
with the orders of fractional derivatives more than two.
Motivated by the current research, in this paper, we consider
the following space fractional differential equation involving
nonhomogeneous source term:

ut(x, t) = a(x)(0D
α
xu(x, t)−x Dα

Lu(x, t)) + f(x, t),

2 < α < 3, x ∈ [0, L], t ∈ [0, T ], (1)

with the following initial boundary value condition{
u(x, 0) = φ(x), x ∈ [0, L],
u(0, t) = u(L, t) = 0, t ∈ [0, T ],

(2)

where a(x) ̸= 0, 0D
α
xu(x, t)) and xD

α
Lu(x, t)) denote

the left-side Riemann-Liouville fractional derivative and
the right-side Riemann-Liouville fractional derivative
respectively.

The aim of this paper is to develop one unconditionally
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stable Crank-Nicolson finite difference scheme for the prob-
lems (1)-(2) by use of a combination of the order reduction
method and the weighted shifted Grünwald-Letnikov deriva-
tive approximation method applied to the spatial fractional
derivative.

The rest of this paper is organized as follows. In Section 2,
we give some notations and preliminaries. Then in Section 3,
the Crank-Nicolson finite difference scheme for the problems
(1)-(2) is established. In Section 4, we fulfil analysis of
unique solvability, stability and convergence for the present
difference scheme. In Section 5, numerical example for
testifying the present difference scheme is given. Finally, in
Section 6, some conclusions are proposed.

II. NOTATIONS AND PRELIMINARIES
Let M, N be two positive integers, and h = L

M , τ = T
N

denote the spatial and temporal step size respectively. Define
xi = i ∗ h(0 ≤ i ≤ M), tn = nτ(0 ≤ n ≤ N), Ωh =
{xi|0 ≤ i ≤ M}, Ωτ = {tn|0 ≤ n ≤ N}, (i, n) = (xi, t

n),
and then the domain [0, L]×[0, T ] is covered by Ωh×Ωτ . Let
Vh = {un

i |0 ≤ i ≤ M, 0 ≤ n ≤ N} be the grid function on
the mesh Ωh ×Ωτ . Un

i = u(xi, t
n) and un

i denote the exact
solution and numerical solution at the point (i, n) respective-
ly. Un = (Un

1 , Un
2 , ..., Un

M )T , un = (un
1 , un

2 , ..., un
M )T .

For any mesh function un
i , we use the following notations:

δtu
n
i =

un
i − un−1

i

τ
, δx̂u

n
i =

un
i+1 − un

i−1

2h
, u

n− 1
2

i =
un
i + un−1

i

2
.

Definition 1. For n − 1 ≤ β < n, n ∈ N, the left-
side Riemann-Liouville fractional derivative and the right-
side Riemann-Liouville fractional derivative of order β for
the function u(x) are defined by

−∞Dβ
xu(x) =

dn

dxn (
1

Γ(n− β)

∫ x

−∞
(x− σ)n−1−βu(σ)dσ)

and

xD
β
∞u(x) = (−1)n

dn

dxn (
1

Γ(n− β)

∫ ∞

x

(σ−x)n−1−βu(σ)dσ)

respectively.
Similarly, we have

0D
β
xu(x) =

dn

dxn (
1

Γ(n− β)

∫ x

0

(x− σ)n−1−βu(σ)dσ)

and

xD
β
Lu(x) = (−1)n

dn

dxn (
1

Γ(n− β)

∫ L

x

(σ−x)n−1−βu(σ)dσ).

From the definition of the Riemann-Liouville derivatives
one can see that for some k ∈ N,

0D
β+k
x u(x) = dk

dxk (0D
β
xu(x)),

xD
β+k
L u(x) = (−1)k dk

dxk (xD
β
Lu(x)).

Definition 2. The left-side shifted Grünwald difference
operator is defined as follows [39]:

Aα
h,pu(x) =

1
hα

∞∑
k=0

g
(α)
k u(x− (k − p)h),

where p is an integer, and
g
(α)
0 = 1, g

(α)
k = (1− α+ 1

k
)g

(α)
k−1, k = 1, 2, ....

Property 1. The left-side Riemann-Liouville fractional
derivative can be approximated by the left-side shifted
Grünwald difference operator uniformly with first order
accuracy, that is,

Aα
h,pu(x) =−∞ Dα

xu(x) +O(h).

Similarly, the right-side shifted Grünwald difference
operator is defined by

Bα
h,pu(x) =

1
hα

∞∑
k=0

g
(α)
k u(x+ (k − p)h),

and right-side Riemann-Liouville fractional derivative
can be approximated by the right-side shifted Grünwald
difference operator uniformly with first order accuracy, that
is,

Bα
h,pu(x) =x Dα

∞u(x) +O(h).

Lemma 1 [40]. Let u ∈ L1(R), −∞Dα+2
x u(x),

xD
α+2
∞ u(x) and their Fourier transforms belong to

L1(R), and define the weighted and shifted Grünwald
difference operators by

LD
α
h,p,qu(x) =

α− 2q
2(p− q)

Aα
h,pu(x) +

2p− α
2(p− q)

Aα
h,qu(x),

and

RD
α
h,p,qu(x) =

α− 2q
2(p− q)

Bα
h,pu(x) +

2p− α
2(p− q)

Bα
h,qu(x).

Then we have

LD
α
h,p,qu(x) =−∞ Dα

xu(x) +O(h2)

and

RD
α
h,p,qu(x) =x Dα

∞u(x) +O(h2)

uniformly for x ∈ R, where p, q are integers and
p ̸= q.

Remark 1. From Lemma 1 one can see that various
approximations for the left-side and right-side Riemann-
Liouville fractional derivatives can be obtained by different
choices of p, q, and in some cases these approximations
can be used to establish unconditionally stable difference
schemes for time or space fractional differential equations
with the order of the spatial fractional derivative α belongs
to (0, 2). For example, when α ∈ (0, 1), (p, q) = (0,−1),
Lemma 1 was used to construct unconditionally stable
difference scheme for a class of time fractional differential
equations [41], while when α ∈ (1, 2), (p, q) = (1, 0),
Lemma 1 was used to construct unconditionally stable
difference scheme for one dimensional space fractional
diffusion equation [40]. In [40], the authors also proved that
when α ∈ (1, 2), (p, q) = (1,−1), unconditionally stable
difference scheme can also be obtained. However, for those
difference schemes constructed in other choices of p, q, and
even for α > 2, the stability analysis is difficult to fulfil.
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Lemma 2. Under the conditions of Lemma 1, if
α ∈ (1, 2), (p, q) = (1, 0), then we have

1
hα

∞∑
k=0

ω
(α)
k u(x− (k − 1)h) =−∞ Dα

xu(x) +O(h2),

1
hα

0∑
k=−∞

ω
(α)
k u(x+ (k − 1)h) =x Dα

∞u(x) +O(h2).

(3)

where{
ω
(α)
0 = α

2 g
(α)
0 = α

2 ,

ω
(α)
k = α

2 g
(α)
k + 2− α

2 g
(α)
k−1, k = 1, 2, ....

Similarly, for u ∈ C(R), and u(0) = u(L) = 0, we
have the following approximation formulas


1
hα

[x/h]+1∑
k=0

ω
(α)
k u(x− (k − 1)h) =0 Dα

xu(x) +O(h2),

1
hα

[(L−x)/h]+1∑
k=0

ω
(α)
k u(x+ (k − 1)h) =x Dα

Lu(x) +O(h2).

(4)

III. THE CRANK-NICOLSON FINITE DIFFERENCE SCHEME

In this section, we derive the Crank-Nicolson finite dif-
ference scheme for solving the problems (1)-(2) by use of a
combination of the order reduction method and the weighted
shifted Grünwald-Letnikov derivative approximation method.
To use the order reduction method, set β = α − 1. Then
β ∈ (1, 2) for α ∈ (2, 3).

Based on Lemma 2 one has the following approximation
at the grid point (i, n)

[0D
β
xu(x, t) +x Dβ

Lu(x, t)](i,n) =
1
hβ

i+1∑
k=0

ω
(β)
k Un

i−k+1

+ 1
hβ

M−i+1∑
k=0

ω
(β)
k Un

i+k−1 +O(h2)

= 1
hβ

i∑
k=−M+i

λ
(β)
k Un

i−k +O(h2), 1 ≤ i ≤ M − 1, (5)

where
λ
(β)
0 = 2ω

(β)
1 ,

λ
(β)
1 = ω

(β)
2 + ω

(β)
0 ,

λ
(β)
k = ω

(β)
k+1, k = 2, 3, ...,

λ
(β)
−k = λ

(β)
k , k = 1, 2, ....

If we set κ(x, t) =0 Dβ
xu(x, t) +x Dβ

Lu(x, t). Then the
following center difference formula holds provided that
κ(x, t) ∈ C(3,1)([0, L]× [0, T ]):

d
dx

κ(x, t) =
κ(x+ h, t)− κ(x− h, t)

2h
+O(h2). (6)

On the other hand, according to the property of the
Riemann-Liouville fractional derivative one can obtain that
d
dx

κ(x, t) =0 Dα
xu(x, t)−x Dα

Lu(x, t).

So furthermore by a combination of (5) and (6) we
have

[0D
α
xu(x, t)−x Dα

Lu(x, t)](i,n)

= δx̂[
1
hβ

i∑
k=−M+i

λ
(β)
k Un

i−k] +O(h)

= 1
2h

[ 1
hβ

i+1∑
k=−M+i+1

λ
(β)
k Un

i+1−k

− 1
hβ

i−1∑
k=−M+i−1

λ
(β)
k Un

i−1−k] +O(h)

= 1
2hα

M∑
k=0

µ
(α)
i−kU

n
k +O(h), 1 ≤ i ≤ M − 1. (7)

where
µ
(α)
0 = λ

(β)
1 − λ

(β)
−1 = 0,

µ
(α)
k = λ

(β)
k+1 − λ

(β)
k−1, k = 1, 2, ...,

µ
(α)
−k = −µ

(α)
k , k = 1, 2, ....

For the approximation of Eq. (1), we have the following
observation at the point (i, n+ 1

2):

δtU
n
i = ai

2hα

M∑
k=0

µ
(α)
i−kU

n− 1
2

k + f
n− 1

2
i +O(τ2+h). (8)

So the Crank-Nicolson finite difference scheme
approximating the problems (1)-(2) can be denoted as
follows:

δtu
n
i = ai

2hα

M∑
k=0

µ
(α)
i−ku

n− 1
2

k + f
n− 1

2
i ,

1 ≤ n ≤ N, i = 1, 2, ...,M − 1,
u0
i = φ(xi), i = 1, 2, ...,M − 1.

(9)

IV. THEORETICAL ANALYSIS OF THE DIFFERENCE
SCHEME

In this section, we fulfil analysis of unique solvability,
stability and convergence for the Crank-Nicolson difference
scheme (9) presented above are fulfilled. To this end, the
definition of the function u(x, t) and φ(x) are extended as
following

v(x, t) =

{
u(x, t), x ∈ [0, L],
0, x ∈ (−∞, 0)

∪
(L,∞),

ϕ(x) =

{
φ(x), x ∈ [0, L],
0, x ∈ (−∞, 0)

∪
(L,∞),

So u(x, t) and φ(x) can be seen the restriction of
v(x, t) and ϕ(x) on [0, L] respectively, and v(x, t) is
continuous on R. Thus the numerical solution vni (i =
0,±1,±2, ..., 1 ≤ n ≤ N) and the exact solu-
tion V n

i = v(xi, t
n) can be similarly defined, and

V n = (..., V n
−2, V n

−1, V n
0 , V n

1 , V n
2 , ...)T , vn =

(..., vn−2, vn−1, vn0 , vn1 , v
n
2 , ...)

T .
Setting r = τai

2hα , and (9) can be rewritten as follows:
vni − vn−1

i = r
∞∑

k=−∞
µ
(α)
i−kv

n− 1
2

k + τf
n− 1

2
i ,

1 ≤ n ≤ N, i = 0,±1,±2, ...,
v0i = ϕ(xi), i = 0,±1,±2, ....

(10)

A. Unique solvability

Define the grid functions spaces Vh = {v|v =
(..., v−2, v−1, v0, v1, v2, ...)} and V 0

h = {v|v ∈
Vh, lim

|i|→∞
vi = 0}. For u, v ∈ V 0

h , the discrete inner product

is defined as (u, v) = h
∞∑

i=−∞
uivi, while the discrete L2

norm is defined by ∥v∥ =
√
(v, v) = (

∞∑
i=−∞

h|vi|2)
1
2 .
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Furthermore, define Wh = {u|u = (u0, u1, u2, ..., uM )}
and W 0

h = {u|u ∈ Wh, u0 = uM = 0}. For
u, v ∈ W 0

h , the discrete inner product is defined as

(u, v) = h
M−1∑
i=1

uivi, while the discrete L2 norm is defined

by ∥u∥W =
√
(u, u) = (

M−1∑
i=1

h|ui|2)
1
2 .

Lemma 3. If v ∈ V 0
h , then for any integer k, it

holds that

∞∑
i=−∞

vi−kvi =
∞∑

i=−∞
vi+kvi.

In fact, if we set j = i − k, then
∞∑

i=−∞
vi−kvi =

∞∑
j=−∞

vjvj+k =
∞∑

i=−∞
vi+kvi.

Remark 2. It can be seen from the difference schemes (9)
and (10) that ∥un∥W = ∥vn∥.

Theorem 1. The difference scheme denoted by (9)
is uniquely solvable.

proof . In order to analyze the unique solvability of
the difference scheme denoted by (9), it is adequate to
verify there is only zero solution for the corresponding
homogeneous difference equation of (10), that is,

vni = r
2

∞∑
k=−∞

µ
(α)
i−kv

n
k = r

2

∞∑
k=−∞

µ
(α)
k vni−k. (11)

Multiplying hvni on both sides of Eq. (11) and a summation
with respect to i from −∞ to ∞, together with Lemma 3
one can deduce that

∥vn∥2 = rh
2

∞∑
k=−∞

[
∞∑

i=−∞
µ
(α)
k vni−kv

n
i ]

= rh
2

−1∑
k=−∞

[
∞∑

i=−∞
µ
(α)
k vni−kv

n
i ]

+rh
2

∞∑
k=1

[
∞∑

i=−∞
µ
(α)
k vni−kv

n
i ] +

rh
2

∞∑
i=−∞

µ
(α)
0 vni v

n
i

= rh
2

−1∑
k=−∞

[
∞∑

i=−∞
µ
(α)
k vni+kv

n
i ]

+rh
2

∞∑
k=1

[
∞∑

i=−∞
µ
(α)
k vni−kv

n
i ] +

rh
2 µ

(α)
0 ∥vn∥2

= rh
2

∞∑
k=1

[
∞∑

i=−∞
µ
(α)
−kv

n
i−kv

n
i ] +

rh
2

∞∑
k=1

[
∞∑

i=−∞
µ
(α)
k vni−kv

n
i ]

= rh
2

∞∑
k=1

[
∞∑

i=−∞
(µ

(α)
−k + µ

(α)
k )vni−kv

n
i ]

= 0.

So ∥vn∥2 = 0, which implies that there is only zero
solution for the homogeneous difference equation (11). So
the difference scheme (9) is uniquely solvable. The proof is
complete.

B. Stability

For the sake of stability analysis, consider the following
problem

ṽni − ṽn−1
i = r

∞∑
k=−∞

µ
(α)
i−kṽ

n− 1
2

k + τ f̃
n− 1

2
i ,

1 ≤ n ≤ N, i = 0,±1,±2, ...,

ṽ0i = ϕ̃(xi), i = 0,±1,±2, ....

(12)

Set ϵni = vni − ṽni , y
n− 1

2
i = f

n− 1
2

i − f̃
n− 1

2
i . Then from (10)

and (12) one can obtain that


ϵni − ϵn−1

i = r
∞∑

k=−∞
µ
(α)
i−kϵ

n− 1
2

k + τy
n− 1

2
i ,

1 ≤ n ≤ N, i = 0,±1,±2, ...,

ϵ0i = ϕ(xi)− ϕ̃(xi), i = 0,±1,±2, ....

(13)

Multiplying hϵ
n− 1

2
i on both sides of the first equation of

(13) and a summation with respect to i from −∞ to ∞,
together with Lemma 3 we have

∥ϵn∥2 − ∥ϵn−1∥2
2

= rh
∞∑

k=−∞
[

∞∑
i=−∞

µ
(α)
k ϵ

n− 1
2

i−k ϵ
n− 1

2
i ] + τh

∞∑
i=−∞

y
n− 1

2
i ϵ

n− 1
2

i

= rh
2

−1∑
k=−∞

[
∞∑

i=−∞
µ
(α)
k ϵ

n− 1
2

i−k ϵ
n− 1

2
i ]

+rh
2

∞∑
k=1

[
∞∑

i=−∞
µ
(α)
k ϵ

n− 1
2

i−k ϵ
n− 1

2
i ]

+rh
2

∞∑
i=−∞

µ
(α)
0 un

i u
n
i + τ(yn−

1
2 , ϵn−

1
2 )

= rh
2

−1∑
k=−∞

[
∞∑

i=−∞
µ
(α)
k ϵ

n− 1
2

i+k ϵ
n− 1

2
i ]

+rh
2

∞∑
k=1

[
∞∑

i=−∞
µ
(α)
k ϵ

n− 1
2

i−k ϵ
n− 1

2
i ]

+rh
2 µ

(α)
0 ∥ϵn− 1

2 ∥2 + τ(yn−
1
2 , ϵn−

1
2 )

= rh
2

∞∑
k=1

[
∞∑

i=−∞
µ
(α)
−k ϵ

n− 1
2

i−k ϵ
n− 1

2
i ]

+rh
2

∞∑
k=1

[
∞∑

i=−∞
µ
(α)
k ϵ

n− 1
2

i−k ϵ
n− 1

2
i ] + τ(yn−

1
2 , ϵn−

1
2 )

= rh
2

∞∑
k=1

[
∞∑

i=−∞
(µ

(α)
−k + µ

(α)
k )ϵ

n− 1
2

i−k ϵ
n− 1

2
i ]

+τ(yn−
1
2 , ϵn−

1
2 )

= τ(yn−
1
2 , ϵn−

1
2 )

≤ τ [ 1
2 + τ ∥ϵ

n− 1
2 ∥2 + 2 + τ

4 ∥yn− 1
2 ∥2]

= τ [ 1
4(2 + τ)

(∥ϵn + ϵn−1∥2) + 2 + τ
4 ∥yn− 1

2 ∥2]

≤ τ [ 1
2(2 + τ)

(∥ϵn∥2 + ∥ϵn−1∥2) + 2 + τ
4 ∥yn− 1

2 ∥2],

that is,

2
2 + τ ∥ϵ

n∥2 ≤ 2 + 2τ
2 + τ ∥ϵn−1∥2 + τ(2 + τ)

2 ∥yn− 1
2 ∥2,

which is followed by
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∥ϵn∥2 ≤ (1 + τ)∥ϵn−1∥2 + τ(1 + τ
2 )

2∥yn− 1
2 ∥2.

Furthermore, we have

∥ϵn∥2 ≤ (1 + τ)n∥ϵ0∥2

+
n−1∑
m=0

(1 + τ)mτ(1 + τ
2 )

2∥yn−m− 1
2 ∥2

≤ (1+τ)n∥ϵ0∥2+[
n−1∑
m=0

(1+τ)m]τ(1+ τ
2 )

2 max
1≤k≤n

∥yk− 1
2 ∥2

≤ (1 + τ)n[∥ϵ0∥2 + (1 + τ
2 )

2 max
1≤k≤n

∥yk− 1
2 ∥2]

≤ expnτ ∥ϵ0∥2 + exp(n+1)τ max
1≤k≤n

∥yk− 1
2 ∥2

≤ expT ∥ϵ0∥2 + exp2T max
1≤k≤n

∥yk− 1
2 ∥2

≤ C(∥ϵ0∥2 + max
1≤k≤n

∥yk− 1
2 ∥2),

where C = exp2T is a constant. From the inequality
above one can see that small changes occurring on the
initial value and the right-side hand source term in the
difference scheme (10) also lead to small perturbation for
the solution, and furthermore it is the case for the difference
scheme (9). So we have the following theorem.

Theorem 2. The Crank-Nicolson difference scheme
denoted by (9) is unconditionally stable on the initial value
and the right source term.

C. Convergence

Let εni = V n
i −vni , i = 1, 2, ...,M, n = 0, 1, ..., N denote

the errors between the exact solutions and the numerical
solutions, and εn = (..., εn−2, εn−1, εn0 , εn1 , εn2 , ...)

T . Then
from (8)-(10) we have


εni − εn−1

i = r
∞∑

k=−∞
µ
(α)
i−kε

n− 1
2

k + τR(τ, h),

1 ≤ n ≤ N, i = 0,±1,±2, ...,
ε0i = 0, i = 0,±1,±2, ...,

(14)

where R(τ, h) = O(τ2 + h).

Following in a similar manner as in the analysis of
stability one can deduce that

∥εn∥2 ≤ expT ∥ε0∥2 + exp2T ∥R(τ, h)∥2

= exp2T ∥R(τ, h)∥2.

Furthermore, ∥εn∥ ≤ expT ∥R(τ, h)∥ ≤ C1τ
2 + C2h,

where C1, C2 are two positive constants. So we have the
following theorem.

Theorem 3. The Crank-Nicolson difference scheme
denoted by (9) is convergent.

V. NUMERICAL EXPERIMENTS

In this section, we present one numerical example for
the Crank-Nicolson difference scheme (9). Consider the
problems (1)-(2) with an exact analytical solution

u(x, t) =

{
(t6 + 1)x4(1− x)4, x ∈ (0, 1),
0, x ∈ (−∞, 0]

∪
[1,∞),

and satisfies



a(x) = − 1

2 cos(
1

2
απ)

x4(1− x)4,

f(x, t) = 6t5x4(1− x)4 + 1

2 cos(
1

2
απ)

8∑
m=4

[ cmm!x−α+m

Γ(1− α+m)
− cmm!(1− x)−α+m

Γ(1− α+m)
]

(t6 + 1)x4(1− x)4,
u(x, 0) = φ(x) = x4(1− x)4,

where x2(1− x)2 =
4∑

m=2
cmxm.

For further use, let ∥e1∥∞ = max
i

|Un
i − un

i | and

∥e2∥∞ = max
i

|(U
n
i − un

i
Un
i

| × 100) denote the maximum
absolute error and the maximum relative error respectively.

In Fig. 1, the maximum absolute errors are shown un-
der some selected parameters, while in Fig. 2, comparison
between the exact solutions and the numerical solutions is
demonstrated.

In Tables 1-2, the maximum relative errors are listed under
some certain conditions.

Table 1: The maximum relative errors at
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τ = 10−3 after 50 time steps

α = 2.3 α = 2.4 α = 2.5
h ∥e2∥∞ ∥e2∥∞ ∥e2∥∞
1
10 0.0237543 0.0176157 0.0089474
1
15 0.0233580 0.0159321 0.0056928
1
20 0.0224223 0.0147233 0.0034654
1
25 0.0225080 0.0145044 0.0023444
1
30 0.0224372 0.0142964 0.0018136

Table 2: The maximum relative errors at
τ = 10−2 after 50 time steps

α = 2.3 α = 2.4 α = 2.5
h ∥e2∥∞ ∥e2∥∞ ∥e2∥∞
1
10 1.76682 1.70644 1.62076
1
15 1.76295 1.68989 1.58874
1
20 1.75372 1.67796 1.56682
1
25 1.75467 1.67593 1.55578
1
30 1.75395 1.67385 1.55056

From Fig. 1 one can see that the maximum absolute errors
can be bounded to a low level, and the increase of the the
time steps do not lead to sharp change of the the maximum
absolute errors, which coincides with the previous stability
analysis, while Fig 2. shows that the numerical solutions
can approximate the exact solutions satisfactory. From the
results of Tables 1-2 one can see that the relative errors are
small with small time step size, and will increase with the
increment of the time step size. Yet the relative errors are
still acceptable.

VI. CONCLUSIONS

In this paper, by use of the order reduction method
and the weighted shifted Grünwald-Letnikov derivative
approximation formula, we have constructed a Crank-
Nicolson finite difference scheme for a class of space
fractional differential equations, where the order of the
fractional derivative belongs to (2, 3). This scheme is proved
to be unconditionally stable, convergent, and with the local
truncating error O(τ2 + h). Numerical experiments are

carried out to verify the theoretical analysis. It is worth to
notice that the accuracy of the present difference scheme in
this paper can be further improved by use of the compact
method. Besides, we note that this handling process in
this paper can be applied to construct unconditionally
stable difference schemes for other types of space, time or
space-time fractional differential equations. For example,
one can further consider two types of fractional differential
equations. One is the two-dimensional extension of Eq. (1),
which is denoted as follows

ut(x, y, t) = k1(0D
α
xu(x, y, t)−x Dα

L1
u(x, y, t))

+k2(0D
α
y u(x, y, t)−y D

α
L2
u(x, y, t))

+f(x, y, t), 1 < α, β < 2,
(x, y) ∈ Ω, t ∈ [0, T ],

u(x, y, 0) = φ(x, y), (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y) ∈ ∂Ω,

(15)

where Ω = [0, L1] × [0, L2], k1, k2 > 0, the function u is
smooth enough, and the fractional derivatives are defined in
the sense of the Riemann-Liouville derivatives. The other is
the following initial boundary value problem for space-time
fractional differential equation:

C
0 D

γ
t u(x, t) = a(x)(aD

α
xu(x, t)−x Dα

b u(x, t))
+f(x, t), 0 < γ < 1,

u(x, 0) = h(x), x ∈ [a, b],
u(a, t) = u(b, t) = 0, t ∈ [0, T ],

(16)

where a(x) > 0, C
0 D

γ
t u(x, t), aD

α
xu(x, t) and xD

α
b u(x, t)

denote the Caputo fractional derivative, the left-side
Riemann-Liouville fractional derivative and the right-side
Riemann-Liouville fractional derivative respectively.

By the known L1 formula, one can approximate the time
fractional derivative. Then together with the process demon-
strated in Sections II and III, one can obtain corresponding
finite difference schemes with unconditional stability for the
problem above.
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