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Abstract—This paper deals with a second order functional
differential equation with periodic coefficients and impulses of
the following form x′′(t) + a(t)x′(t) + b(t)x(t) = f(t, xt), t ̸= tj ,

∆x|t=tj = Ij(x(tj)),
−∆x′|t=tj = Jj(x(tj)), t = tj , j ∈ Z+.

By using the fixed point theorem of cone expansion and cone
compression of norm type, sufficient conditions for the existence
of at least two periodic solutions of the equation are obtained.
The results in the present paper generalize and improve many
known conclusions.

Index Terms—Periodic solutions; Functional differential e-
quations; Impulses.

I. INTRODUCTION

IT is well known that the theory of impulsive differential
equations has become an important aspect of differential

equations. Differential equations with impulses provide an
adequate mathematical model of many evolutionary process-
es that suddenly change their states at certain moments.

Recently, impulsive differential equations have been stud-
ied both in theory and applications; see, for example, [1-6]. In
[6], Tian et al. considered the following impulsive differential
equations −x′′ +Mx = f(t, x), t ̸= tj ,

∆x|t=tj = Ij(x(tj)),
−∆x′|t=tj = Jj(x(tj)), t = tj , j ∈ Z+.

By using the theory of fixed point index in cones, sufficient
conditions are presented for the existence of one or two peri-
odic solutions to the impulsive differential equations. In [8],
Wang et al. considered the following second order nonlinear
delay differential equation with periodic coefficients

x′′(t) + p(t)x′(t) + q(t)x(t)

= r(t)x′(t− τ(t)) + f(t, x(t), x(t− τ(t))).

By using Krasnoselskii’s fixed point theorem and the con-
traction mapping principle, established some criteria for the
existence and uniqueness of periodic solution to the delay
differential equation.

Motivated by the above statements, in this paper, by using
a fixed point theorem on a cone to study a second order
impulsive functional differential equations with periodic co-
efficients of the following form x′′(t) + a(t)x′(t) + b(t)x(t) = f(t, xt), t ̸= tj ,

∆x|t=tj = Ij(x(tj)),
−∆x′|t=tj = Jj(x(tj)), t = tj , j ∈ Z+,

(1)
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where Ij ∈ (R+, R), Jj ∈ (R+, R+),∆x|t=tj = x(t+j ) −
x(t−j ),∆x

′|t=tj = x′(t+j ) − x′(t−j ), where xi(t+j ) (respec-
tively xi(t−j )) denote the right limit (respectively left limit)
of xi(t) at t = tj , i = 0, 1. There exist a positive
constant k such that tj+k = tj + T, Ij+k(x(tj+k)) =
Ij(x(tj)), Jj+k(x(tj+k)) = Jj(x(tj)), j ∈ Z+. Without
loss of generality, we assume that [0, T ] ∩ {tj , j ∈ Z+} =
{t1, t2, · · · , tk}.
f(t, xt) is a nonnegative function defined on R × BC,

where BC denotes the Banach space of bounded continuous
functions ϕ : R→ R+ with the norm ∥ϕ∥ = supθ∈R |ϕ(θ)|.
If x ∈ BC, then xt ∈ BC for any t ∈ R is defined by
xt(θ) = x(t + θ) for θ ∈ R. f(t, xt) is continuous in t,
T -periodic whenever x is T -periodic.

In this paper, we shall use the following assumptions:
(A1) a, b : R → R+ are all continuous T-periodic functions,∫ T

0
a(s)ds > 0,

∫ T

0
b(s)ds > 0.

(A2) f(t, ξ) ≥ 0 for all (t, ξ) ∈ R×BC(R,R+).
(A3) For any L > 0 and ε > 0, there exists δ > 0, such that

[ϕ, ψ ∈ BC, ∥ϕ∥ ≤ L, ∥ψ∥ ≤ L, ∥ϕ− ψ∥ < δ]

imply
|f(s, ϕs))− f(s, ψt)|0 < ε.

For convenience, we first introduce the related definition
and the fixed point theorem applied in the paper.

Definition 1. Let X be a Banach space and K be a closed
nonempty sunset of X , K is a cone if
(1) αu+ βv ∈ K for all u, v ∈ K and all α, β ≥ 0 ;
(2) u,−u ∈ K imply u = 0.

Theorem 1 ([9]). (Fixed point theorem) Let K be a cone in
a Banach space E, and Ω1,Ω2 be two bounded open sets in
E such that 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let T : K∩(Ω2 Ω1) → K
be completely continuous operator. If
(1) There exists u0 ∈ K \ {0} such that u − Tu ̸= αu0,

u ∈ K ∩ ∂Ω2, α ≥ 0; Tu ̸= µu, u ∈ K ∩ ∂Ω1, µ ≥ 1,
or

(2) There exists u0 ∈ K \ {0} such that u − Tu ̸= αu0,
u ∈ K ∩ ∂Ω1, α ≥ 0; Tu ̸= µu, u ∈ K ∩ ∂Ω2, µ ≥ 1,

then T has at least one fixed point in K ∩ (Ω2 Ω1).

II. PRELIMINARIES

In order to use Theorem 1 to prove the existence of
periodic solutions of system (1), we shall consider the
following spaces:
Let J ′ = J \ {t1, t2, · · · , tk}, then

PC(J,R) = {x : J → R : x|(tj ,tj+1) ∈ C(tj , tj+1),

x(t−j ) = x(tj), ∃x(t+j ), j = 1, 2, · · · , k}
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is a Banach space with the norm ∥x∥PC = supt∈[0,T ]|x(t)|.
Let

PC1(J,R) = {x : J → R : x|(tj ,tj+1), x
′|(tj ,tj+1)

∈ C(tj , tj+1), x(t
−
j ) = x(tj), x

′(t−j ) = x′(tj),

∃x(t+j ), x′(t
+
j ), j = 1, 2, · · · , k}

with the norm ∥x∥PC1 = max{∥x∥PC , ∥x′∥PC}, then
PC1(J,R) is also a Banach space.

Lemma 1 ([7]). Suppose that (A1) hold and

R1[exp(
∫ T

0
a(u)du)− 1]

Q1T
≥ 1,

where

R1 = maxt∈[0,T ]

∣∣∣∫ t+T

t

exp(
∫ s
t
a(u)du)

exp(
∫ T
0

a(u)du)−1
b(s)ds

∣∣∣ ,
Q1 =

(
1 + exp(

∫ T

0
a(u)du)

)2
R2

1.

Then there exist continuous T -periodic functions p and q
such that q(t) > 0,

∫ T

0
p(u)du > 0, and

p(t) + q(t) = a(t), q′(t) + p(t)q(t) = b(t),

for all t ∈ R. Therefore

p(t) + q(t) = a(t), q′(t) + p(t)q(t) = b(t), t ∈ R.

Lemma 2. Suppose the conditions of Lemma 1 hold and
ϕ ∈ BC. Then the equation

x′′(t) + a(t)x′(t) + b(t)x(t) = ϕ(t), (2)

has a T -periodic solution. Moreover, the periodic solution
can be expressed by

x(t) =

∫ t+T

t

G(t, s)ϕ(s)ds, (3)

where

G(t, s) =

∫ s

t
exp[

∫ u

t
q(v)dv +

∫ s

u
p(v)dv]du

[exp(
∫ T

0
p(u)du)− 1][exp(

∫ T

0
q(u)du)− 1]

+

∫ t+T

s
exp[

∫ u

t
q(v)dv +

∫ s+T

u
p(v)dv]du

[exp(
∫ T

0
p(u)du)− 1][exp(

∫ T

0
q(u)du)− 1]

.

Proof: Define Ep = exp(
∫ T

0
p(u)du) − 1, Eq =

exp(
∫ T

0
q(u)du)− 1. By direct calculation, we can see that

(3) is a T -periodic solution of (2).
Suppose x(t) is a T-periodic solution of (2), from Lemma

1, we have

x′′(t)+p(t)x′(t)+q′(t)x(t)+q(t)x′(t)+p(t)q(t)x(t) = ϕ(t),

which is equivalent to

(x′(t)e
∫ t
0
p(u)du)′ + (q(t)x(t)e

∫ t
0
p(u)du)′ = ϕ(t)e

∫ t
0
p(u)du,

integrating it from t to t+ T , we obtain

x′(t) + q(t)x(t) =

∫ t+T

t

exp(
∫ s

t
p(u)du)

exp(
∫ T

0
p(u)du)− 1

ϕ(s)ds.

Therefore,

x(t) =

∫ t+T

t

exp(
∫ s

t
q(u)du)

exp(
∫ T

0
q(u)du)− 1

×

[∫ s+T

s

exp(
∫ v

s
p(u)du)

exp(
∫ T

0
p(u)du)− 1

ϕ(v)dv

]
ds

=
1

EpEq

∫ t+T

t

exp(

∫ s

t

q(u)du)

×

[∫ s+T

s

exp(

∫ v

s

p(u)du)ϕ(v)dv

]
ds

=
1

EpEq

∫ t+T

t

ϕ(s)ds

∫ s

t

exp(

∫ u

t

q(v)dv

+

∫ s

u

p(v)dv)du

+
1

EpEq

∫ t+T

t

ϕ(s)ds

∫ t+T

s

exp(

∫ u

t

q(v)dv

+

∫ s+T

u

p(v)dv)du

=

∫ t+T

t

G(t, s)ϕ(s)ds.

This completes the proof.
So the equation

x′′(t) + a(t)x′(t) + b(t)x(t) = f(t, xt),

has a T -periodic solution, it can be expressed by

x(t) =

∫ t+T

t

G(t, s)f(s, xt)ds.

By (A2), we have

G(t, s)f(s, xs) ≥ 0, (t, s) ∈ R2.

Corollary 1. Green function G(t, s) satisfies the following
properties:

G(t, t+ T ) = G(t, t), G(t+ T, s+ T ) = G(t, s),

∂

∂s
G(t, s) = p(s)G(t, s)−

exp
∫ s

t
q(v)dv

exp
∫ T

0
q(v)dv − 1

,

∂

∂t
Gt, s) = −q(s)G(t, s) +

exp
∫ s

t
p(v)dv

exp
∫ T

0
p(v)dv − 1

.

Lemma 3 ([8]). Let

A =

∫ T

0

a(u)du,B = T 2exp(
1

T

∫ T

0

lnb(u)du).

If
A2 ≥ 4B, (4)

then

min

{∫ T

0
p(u)du,

∫ T

0
q(u)du

}
≥ 1

2

(
A−

√
A2 − 4B

)
,

max

{∫ T

0
p(u)du,

∫ T

0
q(u)du

}
≤ 1

2

(
A+

√
A2 − 4B

)
.
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Let 1
2 (A −

√
A2 − 4B) := l, 12 (A +

√
A2 − 4B) := m,

from Lemma 3, the function G(t, s) satisfis

0 < N1 =:
T

(em − 1)2
≤ G(t, s) ≤

T exp(
∫ T

0
a(u)du)

(el − 1)2

:=M1, s ∈ [t, t+ T ],

∂

∂s
G(t, s)|s=tj = p(tj)G(t, tj)−

exp
∫ tj
t
q(v)dv

exp
∫ T

0
q(v)dv − 1

,

tj ∈ [t, t+ T ],

here we assume that
∂

∂s
G(t, s)|s=tj > 0, tj ∈ [t, t+ T ].

Define
N2 ≤ ∂

∂s
G(t, s)|s=tj ≤M2,

M = max{M1,M2}, N = min{N1, N2},

then
1 ≥ G(t, s)

M
≥ N

M
= σ.

The following lemma is fundamental to our discussion.
Since the method is similar to that in the literature [10], we
omit the proof.

Lemma 4. x ∈ PC1(J) ∩ C2(J ′) is a solution of problem
(1) if and only if x ∈ PC(J) is a solution of the equation

x(t) =

∫ t+T

t

G(t, s)f(s, xs)ds

+
∑

j:tj∈[t,t+T ]

G(t, tj)Jj(x(tj))

+
∑

j:tj∈[t,t+T ]

∂G(t, s)

∂s
|s=tjIj(x(tj)). (5)

Let K be a cone in PC(JR), which is defined as

K = {x ∈ PC(JR) : x(t) ≥ σ∥x∥PC , t ∈ J}.

Define an operator

(Tx)(t) =

∫ t+T

t

G(t, s)f(s, xs)ds

+
∑

j:tj∈[t,t+T ]

G(t, tj)Jj(x(tj))

+
∑

j:tj∈[t,t+T ]

∂G(t, s)

∂s
|s=tjIj(x(tj)),

that is

(Tx)(t) =

∫ t+T

t

G(t, s)f(s, xs)ds

+
∑

j:tj∈[t,t+T ]

G(t, tj)Jj(x(tj))

+
∑

j:tj∈[t,t+T ]

(
p(tj)G(t, tj)

−
exp

∫ tj
t
q(v)dv

exp
∫ T

0
q(v)dv − 1

)
Ij(x(tj)).

Then we have the following lemma.

Lemma 5. T : K → K is well defined.

Proof: For each x ∈ K, by (A3), we have (Tx)(t) is
continuous in t and

(Tx)(t+ T )

=

∫ t+2T

t+T

G(t, s)f(s, xs)ds+
∑

j:tj∈[t,t+T ]

G(t, tj)Jj(x(tj))

+
∑

j:tj∈[t,t+T ]

(
p(tj)G(t, tj)−

exp
∫ tj
t
q(v)dv

exp
∫ T

0
q(v)dv − 1

)
×Ij(x(tj))

=

∫ t+T

t

G(t+ T, v + T )f(v + T, xv+T )dv

+
∑

j:tj∈[t,t+T ]

G(t, tj)Jj(x(tj))

+
∑

j:tj∈[t,t+T ]

(
p(tj)G(t, tj)−

exp
∫ tj
t
q(v)dv

exp
∫ T

0
q(v)dv − 1

)
×Ij(x(tj))

=

∫ t+T

t

G(t, v)f(v, xv)dv +
∑

j:tj∈[t,t+T ]

G(t, tj)Jj(x(tj))

+
∑

j:tj∈[t,t+T ]

(
p(tj)G(t, tj)−

exp
∫ tj
t
q(v)dv

exp
∫ T

0
q(v)dv − 1

)
×Ij(x(tj))

= (Tx)(t).

Hence, for x ∈ K, we have

∥(Tx)∥ ≤ M
( ∫ t+T

t

f(s, xs)ds+
∑

j:tj∈[t,t+T ]

Jj(x(tj))

+
∑

j:tj∈[t,t+T ]

Ij(x(tj))
)
,

and (6)

(Tx)(t) ≥ N
( ∫ t+T

t

f(s, xs)ds+
∑

j:tj∈[t,t+T ]

Jj(x(tj))

+
∑

j:tj∈[t,t+T ]

Ij(x(tj))
)

=
N

M
M
( ∫ t+T

t

f(s, xs)ds+
∑

j:tj∈[t,t+T ]

Jj(x(tj))

+
∑

j:tj∈[t,t+T ]

Ij(x(tj))
)

≥ σ∥Tx∥.

Therefore, Tx ∈ K, this complete the proof.

Lemma 6. T : K → K is completely continuous.

Proof: We first show that T is continuous. By (A3), for
any L > 0 and ε > 0, there exists a δ > 0 such that

{ϕ, ψ ∈ BC, ∥ϕ∥ ≤ L, ∥ψ∥ ≤ L, ∥ϕ− ψ∥ < δ} ,

imply

sup0≤s≤T |f(s, ϕs))− f(s, ψs)|0 <
ε

3MT
,
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and since Ij ∈ C(R+, R), Jj ∈ (R+, R+), we have

∥Ij(ϕ)− Ij(ψ)∥ <
ε

3Mk
, ∥Jj(ϕ)− Jj(ψ)∥ <

ε

3Mk
.

If x, y,∈ K with ∥x∥ ≤ L, ∥y∥ ≤ L, ∥x− y∥ ≤ δ, then

|(Tx)(t)− (Ty)(t)|0

≤
∫ t+T

t

|G(t, s)||f(s, xs)− f(s, ys)|0ds

+
∑

j:tj∈[t,t+T ]

G(t, tj)|Jj(x(tj))− Jj(y(tj))|

+
∑

j:tj∈[t,t+T ]

∂G(t, s)

∂s
|s=tj ||Ij(x(tj))− Ij(y(tj))

≤ M

∫ T

0

|f(s, xs)− f(s, ys)|0ds

+M
∑

j:tj∈[t,t+T ]

|Jj(x(tj))− Jj(y(tj))|

+M
∑

j:tj∈[t,t+T ]

|Ij(x(tj))− Ij(y(tj))|

< ε,

for all t ∈ [0, T ], this yields ∥Tx − Ty∥ < ε, thus T is
continuous.

Next we show that T maps any bounded sets in K into
relatively compact sets. Now we first prove that f maps
bounded sets into bounded sets.

Indeed, let ε = 1, by (H3), for any µ > 0 , there exists
δ > 0 such that {x, y ∈ BC, ∥x∥ ≤ µ, ∥y∥ ≤ µ, ∥x − y∥ ≤
δ, 0 ≤ s ≤ T} imply

|f(s, xs)− f(s, ys)|0 < 1.

Choose a positive integer N such that µ
N < δ. Let x ∈ BC

and define xk(t) = x(t)k
N , k = 0, 1, 2, · · · , N . If ∥x∥ < µ,

then

∥xk − xk−1∥ = supt∈R

∣∣∣∣x(t)kN
− x(t)(k − 1)

N

∣∣∣∣
≤ ∥x∥ 1

N
≤ µ

N
< δ.

Thus
|f(s, xks)− f(s, xk−1

s )|0 < 1

for all s ∈ [0, T ], this yields

|f(s, xs)|0 = |f(s, xNs )|

≤
N∑

k=1

|f(s, xks)− f(s, xk−1
s )|0 + |f(s, 0)|0

< N + |f(s, 0)|0 =:W, (7)

and

|Ij(x(tj))|0 = |Ij(xN (tj))|

≤
N∑

k=1

|Ij(xN (tj))− Ij(x
N−1(tj))|0

+|Ij(0)|0 < N + |Ij(0)|0 =: U, (8)
|Jj(x(tj))|0 = |Jj(xN (tj))|

≤
N∑

k=1

|Jj(xN (tj))− Jj(x
N−1(tj))|0

+|Jj(0)|0 < N + |Jj(0)|0 =: V. (9)

It follows from (6) that for t ∈ [0, R]

∥Tx∥ = supt∈R|(Tx)(t)|

≤ M

∫ T

0

|f(s, xs)|ds+M
∑

j:tj∈[t,t+T ]

Jj(x(tj))

+M
∑

j:tj∈[t,t+T ]

Ij(x(tj))

≤ MTW +Mk(U + V ).

Finally, for t ∈ R, we have

(Tx)′(T )

=

∫ t+T

t

[
− q(s)G(t, s) +

exp
∫ s

t
p(v)dv

exp
∫ T

0
p(v)dv − 1

]
f(s, xs)ds

+
∑

j:tj∈[t,t+T ]

[
− q(s)G(t, s)

+
exp

∫ s

t
p(v)dv

exp
∫ T

0
p(v)dv − 1

]
Jj(x(tj))

+
∑

j:tj∈[t,t+T ]

[
p(tj)

[
− q(tj)G(t, tj)

+
exp

∫ s

t
p(v)dv

exp
∫ T

0
p(v)dv − 1

]
−

exp
∫ s

t
q(v)dv

exp
∫ T

0
q(v)dv − 1

]
Ij(x(tj)), (10)

combine (7)-(10) and Corollary 2.1, we obtain∥∥∥∥ ddt (Tx)(t)
∥∥∥∥ = supt∈R|(Tx)′(t)|

≤ (TW + kV + kPU)(M∥Q∥

+
em

el − 1
) +

em

el − 1
k∥Q∥U,

where ∥Q∥ = max0≤t≤T |q(t)|, ∥P∥ = max0≤t≤T |p(t)|.
Hence {Tx : x ∈ K, ∥x∥ ≤ µ} is a family of uniform-

ly bounded and equicontinuous functions on [0, T ]. By a
theorem of Arzela-Ascoli, we know that the function T is
completely continuous.

For convenience in the following discussion, we introduce
the following notations:

I0 = max0≤u≤T

∑
j:tj∈[t,t+T ]

Ij(u),

J0 = max0≤u≤T

∑
j:tj∈[t,t+T ]

Jj(u),

I0 = min0≤u≤T

∑
j:tj∈[t,t+T ]

Ij(u),

J0 = min0≤u≤T

∑
j:tj∈[t,t+T ]

Jj(u).

III. MAIN RESULTS

Theorem 2. Suppose that (A1)− (A3) hold, and there are
positive constants r1, r2 and r3 with r1 < r3 < r2 such that

(A4) I0 + J0 <
r1
2N

; I0 + J0 >
r3
2M

;

(A5) inf∥ϕ∥=r1,ϕ∈K

∫ T

0

|f(s, ϕs)|0 ds >
r1
2N

,

inf∥ϕ∥=r2,ϕ∈K

∫ T

0

|f(s, ϕs)|0 ds >
r2
2N

;
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(A6) sup∥ϕ∥=r3,ϕ∈K

∫ T

0

|f(s, ϕs)|0 ds <
r3
2M

.

Then system (1) has at least two positive T -periodic solu-
tions.

Proof: Let Ω1 = {u ∈ X : ∥u∥ < r1}. Then for any u ∈
K∩ ∂Ω1, we have u−Tu ̸= αu0, u0 ∈ K \{0}, α ≥ 0. For
the sake of contradiction, we choose u0 = (1, 1, · · · , 1)T ∈
Rn. Suppose that there exists ū ∈ K ∩ ∂Ω1 such that ū −
Tū = α0u0 for some α0 > 0. Then, we have

ū(t) = (Tū)(t) + α0.

From this, the definition of T, it follows that

|ūx| =
∫ t+T

t

G(t, s)f(s, xs)ds

+
∑

j:tj∈[t,t+T ]

G(t, tj)Jj(x(tj))

+
∑

j:tj∈[t,t+T ]

(
p(tj)G(t, tj)−

exp
∫ tj
t
q(v)dv

exp
∫ T

0
q(v)dv − 1

)
×Ij(x(tj)) + α0

> N
( ∫ t+T

t

f(s, xs)ds+
∑

j:tj∈[t,t+T ]

Jj(x(tj))

+
∑

j:tj∈[t,t+T ]

Ij(x(tj))
)
+ α0

> N
( ∫ t+T

t

f(s, xs)ds
)
+ I0 + J0.

Hence, we have

r1 = ∥ū∥ > N
( ∫ t+T

t

|f(s, xs)ds|0
)
+ I0 + J0 > r1,

which is a contradiction. Therefore, we derive that

u− Tu ̸= αu0, ∀u0 ∈ K \ {0}, α ≥ 0. (11)

Let Ω2 = {u ∈ X : ∥u∥ < r2}. Then for any u ∈ K ∩ ∂Ω2,
applying the second inequality in (A5), similarly to the proof
of (11), we have u− Tu ̸= αu0, u0 ∈ K \ {0}, α ≥ 0.

On the other hand, Let Ω3 = {u ∈ X : ∥u∥ < r3}. Then
for any u ∈ K ∩ ∂Ω3, from the definition of T, we have

|Tu| ≤M
( ∫ t+T

t

f(s, xs)ds
)
+ I0 + J0.

Hence, in view of (A5), one has

∥Tu∥ ≤M
( ∫ t+T

t

|f(s, xs)ds|0
)
+ I0 + J0 < r3,

that is ,
∥Tu∥ < ∥u∥ ∀u ∈ K ∩ ∂Ω3.

Therefore,

Tu ̸= µu, ∀u ∈ K ∩ ∂Ω3, µ ≥ 1.

It is clear that Ω1 ⊂ Ω3 ⊂ Ω2, by Theorem 1, we can
conclude that T has two fixed points u1 ∈ K∩(Ω3 \Ω1) and
u2 ∈ K ∩ (Ω2 \ Ω3) with r1 < ∥u1∥ < r3, r3 < ∥u2∥ < r2.
Therefore, u1(t) and u2(t) are positive solutions of system
(1). This complete the proof.

Theorem 3. Suppose that (A1)− (A3) hold, and that there
are positive constants R1, R2 and R3 with R1 < R3 < R2

such that

(A6) I0 + J0 <
R1

2M
; I0 + J0 >

R3

2N
;

(A7) sup∥ϕ∥=R1,ϕ∈K

∫ T

0

|f(s, ϕs)|0 ds <
R1

M
,

sup∥ϕ∥=R2,ϕ∈K

∫ T

0

|f(s, ϕs)|0 ds <
R2

M
;

(A8) inf∥ϕ∥=R3,ϕ∈K

∫ T

0

|f(s, ϕs)|0 ds >
R3

N
,

Then the system (1) has at least two positive T -periodic
solutions.

Proof: By condition (A7), from the proof of Theorem
2, we know that

Tu ̸= µu, ∀u ∈ ∂Ω4, µ ≥ 1,

Tu ̸= µu, ∀u ∈ ∂Ω5, µ ≥ 1,

where Ω4 = {T ∈ X : ∥T∥ < R1},Ω5 = {T ∈ X : ∥T∥ <
R2}.

From condition (A8), Let Ω6 = {T ∈ X : ∥T∥ < R3},
for any u ∈ K ∩ Ω6, it is similar to the proof of (11), we
have

u− Tu ̸= αu0, u0 ∈ K \ {0}, α ≥ 0.

It is clear that Ω4 ⊂ Ω6 ⊂ Ω5, by Theorem 1, we can
conclude that T has two fixed points u3 ∈ K∩(Ω6 \Ω4) and
u4 ∈ K∩(Ω5\Ω6) with R1 < ∥u3∥ < R3, R3 < ∥u4∥ < R2.
Therefore, u3(t) and u4(t) are positive solutions of system
(1). This complete the proof.

IV. CONCLUSION

This paper studied the existence problem for a second
order impulsive functional differential equations. Some ex-
istence results of multiplicity positive periodic solutions are
obtained. The proof techniques used in this paper are new and
can be used to many other functional differential equations,
for example [11-16].
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