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Hued Colorings of Cartesian Products of Square of
Cycles with Paths*
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Abstract

A r-hued k-coloring of G is a proper coloring with &
colors such that for every vertex v with degree d(v) in
G, the color number of the neighbor of v is at least
min{d(v),r}. The smallest integer k such that G has
a r-hued k-coloring is called the r-hued chromatic num-
ber and denoted by x.,.(G). In this paper, we study the
r-hued coloring of Cartesian products of square of cycles
with paths.
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1 Introduction

In this paper, all graphs that we considered are con-
nected, finite, undirected and simple (i. e., loopless and
no multiple edges). For any integers a and b, we use
the symbol [a, b] to denote the set {a,a+1,--- ,b} when
a < b, and [k] to denote [1, k] simply. Let i(mod k) de-
note the remainder of ¢ module k£ and all of them are in
[k] unless specified. For a real number z, let [z] and |z]
denote the smallest integer no less than = and the largest
integer no more than x, respectively.

In recent years, many parameters and classes of graphs
are studied. For example, in [18], the restricted connec-
tivity of Cartesian product graphs is obtained, and in
[19, 20], some results on 3-equitable labeling and the n-
dimensional cube-connected complete graph are gained.
In [21], some results about resistance distance and Kirch-
hoff index are obtained.

A vertex k-coloring of G is proper if any two adjacent ver-
tices receive different colors. The smallest integer k£ such
that G has a proper k-coloring is called the chromatic
number and denoted by x(G). For every v € V(G), N(v)
is denoted the neighborhood of v in G. A r-hued coloring
¢ of G is a vertex proper coloring that for every v € V(G)
with d(v) > 2 such that |¢(N(v))| > min{d(v),r}. The
minimum integer k such that G has a r-hued k-coloring
is called the r-hued chromatic number of G and denoted
by xr(G). The 1-hued chromatic number of G is the
chromatic number. The 2-hued chromatic number of G
is the dynamic chromatic number. It is obvious that
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X(G) < x2(G).

A coloring of a graph in which a typical vertex is adjacent
to more than one color class represents a situation in
which the typical individual has a greater variety in the
type of relations. Thus, the overall interactions would
not be so limited but more hued. Recently, the r-hued
coloring of graphs has been studied by many researchers,
see references [1-10,12-15]. It is shown in [1] that for
n > 3, x2(C,) = 3 if n = 0(mod 3), x2(Cyp) = 5 if
n = 5, and x2(Cy) = 4 otherwise. In [3], it is proved
that for every G with maximum degree A, if A < 3,
then x2(G) < 4 unless x2(G) = 5 for G = C5, and if
A >4, then x2(G) < A+ 1.

For given two graphs G and H, the Cartesian product of
G and H, denoted by GOH, with the vertex set V(G) x
V(H), and (u,v) and (v',v’) are adjacent if and only if
u = and v’ € E(H), or v = v and uu’ € E(Q).
Clearly, A(GOH) = A(G) + A(H). In 2010, Akbari et
al. in [2] obtained an upper bound for x2(GOH) with
minimum degree §(G) > 2. In [8], an upper bound is
given for x,.(GOH) with §(G) > r. In [9], it is proved
that m by n grid has no 3-hued 4-coloring when mn =
2(mod 4). In [10], the author studied the r-hued coloring
on grids and toroidal grids.

The square of a graph G, denoted by G2, is a graph
with the same vertex set of G such that two vertices are
adjacent if and only if their distance is at most 2 in G.

Lemma 1.1. [1] Let G be a nontrivial graph. Then

x2(K2) =2 and xq(G) > 3 otherwise.

Lemma 1.2. [2] Let G and H be two graphs. If §(G) >
2, then x2(GOH) < max{x2(G), x(H)}.

Lemma 1.3. [8] Let Gy, G2 be graphs. If 6(G1) > r,
then xr(G10G2) < maz{x,(G1), x(G2)}.

Lemma 1.4. [16] Let m > 3 be an integer. Then
m =3,

m e {5,6,7,11}

3,
X3 (07271) = 53
4, otherwise.

Lemma 1.5. [17] Let n,m > 3 be integers. Then

6, ne{3,5},
x3(P20P,) = {4, otherwise,
5 n=71,

7, ne€lb,7 orn=4and mis odd,

P20OP,,) =
Xy ) {6, otherwise,
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and
6, n=3,

+(P?0P,,) =
Xr(Fy ) {7, otherwise

forr >5.

Observation 1.1 x,(G) > min{A(G),r} + 1. Equality
holds for trees.

Observation 1.2 If r > A(G), then x,.(G) = xae)(G).

Observation 1.3 x,11(G) > x.(G).

2 The Main results

Theorem 2.1. Let n,m > 3 be integers. Then we have

6, n=3,
X3(C1?LDPm) = 5) n= 5)
4, otherwise,
6, n=23,
8, n=4
C2DPm _ 9 9
X4( n ) 57 5‘77,,
6, otherwise,
8, ne€{4,8,15,22 23 29}
6, n=3, or6|n,
7, T7|n, orn>30,
x5(C20P,,) = or n € {13,19, 20,25, 26,27},
9 n € {9,11,17},
or n =10 and m is odd,
10, n =25, or n =10 and m is even,
and
6, n =3,
7, 7|n,
8 8| n, or n> 36,
x~(C20P,,) = or n € {4,15,22,23,29, 30,31},
9, n € {17,18,25,26,27,33,34}
10, n € {5,10,13,19,20}
<11, ne{l11,12},
Proof. Let G = C20P,,, and {uj,ug, -+ ,u,} and
{v1,v2, -+ ,vn} be the vertex sets of C2 and P, re-
spectively.
Case 1. n =3.

In this case, C2 and P2 both induce a K3, so we have
x-(C20P,,) = x,(P?0P,,). Hence we have x3(G) =
x4(G) = x5(G) = x(G) = 6 by Lemma, 1.5.

Case 2. n = 4. Then A(G) = 5, so x3(G) > 4, and
X5(G) = x(G) > 6 by Observations 1.1-1.2.

For r = 3, since §(C%) = 3, we have x3(G) <
maz{xs(C%),x(Pn)} by Lemma 1.3, and x3(C%) = 4 by
Lemma 1.4, thus we obtain that y3(G) < 4. Therefore,
X3(G) = 4 in this case.

For r = 4, we need at least four colors for the first col-
umn, WLOG, assume that c(u;,v1) = i(mod 4). By
the definition of r-hued coloring, we have c(uy,vs) = 5,
c(uz,v2) = 6, c(ug,vz) = 7 and c(ug,v2) = 8. Hence

x4(G) > 8. We consider a 8-coloring ¢ of G with
c(ui,vy) = (2(¢ — 1) + j)(mod 8) as following:

1 2 3 4 5 6

3 45 6 7 8

5 6 7 8 1 2

7 8 1 2 3 4

It is obvious that the coloring satisfies |c(N(u;,v;))| =
min{4, d(u;,v;)}, so it is a 4-hued 8-coloring of G, thus
we have x4(G) < 8. Hence x4(G) = 8.

For r > 5, by Observations 1.2-1.3, we have x,(G) =
x5(G) > x4(G) = 8. Clearly, the coloring ¢ with
c(ui,v;) = (20 + j)(mod 8) is a 5-hued 8-coloring of G,
so we obtain that x5(G) < 8, hence we have x,.(G) =
x5(G) = 8.

Case 3. n > 5. Clearly, A(G) = 6, so we have y3(G) >
4, xa(G) =2 5, x5(G) = 6 and xr(G) = x6(G) = 7 by
Observations 1.1-1.2.

Subcase 3.1 r = 3. Since n > 5, §(C2) = 4, so we
have x3(G) > 4 by Observation 1.1. But x3(G) <
maz{xs(C?),x(Py)} by Lemma 1.3, thus we can ob-
tain that x3(G) < 5 for n € {5,6,7,11} and x3(G) = 4
otherwise by Lemma 1.4.

(1) For n = 5, if we use three colors to color the first
column, WLOG, assume that c(u1,v1) =1, c(ug,v1) = 2
and c(us,v1) = 3, then c(ug,v1) = 2 and c(us,v1) = 3
because any adjacent vertices can not receive the same
colors, so we have ¢(uy,v2) = 4 and ¢(usz,v2) = 5 by the
definition of r-hued coloring, hence we need at least five
colors in this coloring.

If we use four colors to color the first column, WLOG,
assume that c(u;, v1) = i(mod 4) for 1 <4 < 4. Then we
have ¢(us,v1) = 5 because any adjacent vertices can not
receive the same colors, so we need at least five colors in
this coloring. Hence x3(G) = 5.

(2) For n = 6, we define a coloring ¢ of G as following:

W N R W N
O W~ D WA
W N W N
DO O — DD W

Clearly, ¢ is a 3-hued 4-coloring, so we have x3(G) < 4,
hence x3(G) = 4.

(Advance online publication: 28 August 2018)



TAENG International Journal of Applied Mathematics, 48:3, [JAM 48 3 04

(3) For n =7, we define a coloring ¢ of G as following;:

1 4 1 4
2 3 2 3
3 2 3 2
A= 4 1 4 1
2 3 2 3
3 2 3 2
4 1 4 1

It is not difficult to verify that ¢ is a 3-hued 4-coloring,
so we have x3(G) < 4, hence we obtain that x3(G) = 4.

(4) n = 11, we define a coloring ¢ of G as following;:

b

Il
=W N R WN PR WD -
=N W N WER DN W
=N R WN =R WD =
=N W N WER DN W

It is obvious that ¢ is a 3-hued 4-coloring which implies
that x3(G) < 4, hence we have x3(G) = 4.

Subcase 3.2 r = 4. We have x4(G) > 5 by Observation
1.2, and x4(G) < maz{x4(C2), x(Pmn)} by Lemma 1.3.

When n = 0(mod 5), by Lemma 1.4, we have y4(C?) = 5,
so x4(G) < 5, hence we obtain that y4(G) = 5 in this
case.

Suppose that n > 5 and 5 1 n in the following.

(1) If we use three colors for the first column, then
we have |¢(N(u1,v1))| < 3, a contradiction. Hence we
need at least four colors to the first column, without
loss of generality, assume that c(u;,v1) = i(mod 4) for
<431 =1

(i) When n = 1(mod 4), i. e, n = 4k + 1 for some
k > 2, we obtain that c¢(u,,v1) = 5 because any adjacent
vertices can not receive the same colors. By the definition
of r-hued coloring, we have c(ug, v2) = 5, and c¢(ug, v2) =
6, so we obtain that x4(G) > 6 in this case.

(i) When n = 2(mod 4), i. e., n = 4k + 2 for some
k > 1, then we have ¢(up—1,v1) = 2 and c(up,v1) = 3
because any adjacent vertices can not receive the same
colors, but |e(N(ug,v1))|] < 3, a contradiction, so this
coloring is false. Hence we need at least five colors
in the first column. If £k = 1, then n = 6, so we

have c(us,v1) = 2, c(ug,v1) = 5, c(ui,v2) = 4, and
c(uz,v2) € {1,3,5} by the definition of r-hued color-
ing. When c(ug,v2) = 1, we have c(ug,v2) = 5 and

c(ug,v2) = 6. When c(ug,vs) € {3,5}, we obtain that
the coloring needs at least six colors similarly. If k& > 2,
then we have c(us,v2) = 5 and c(uq4,v2) = 6. Hence
a(G) = 6.

(#9i) For n = i(mod 4) with i € [3,4], it is not difficult
to show that x4(G) > 6 similarly.

(2) If we use five colors to first column, WLOG, assume
that c(u;,v1) = i(mod 5) for i <5([%] —1).

(i) when n = 1(mod 5), i. e., n = 5k+1 for some k > 1,
we have c(usgy1,v1) = 3 because any adjacent vertices
can not receive the same colors. By the definition of -
hued coloring, we obtain that c(u1,v2) = 4, ¢(ug,ve) =
5, c(usp—1,v2) = 1, and c(usk, v2) = 2, 80 c(usp+1,v2) ¢
[5], hence we have x4(G) > 6. We may consider a 6-
coloring ¢ of G as following:

N

Il
U W N~
N = O Ol
Tk W N =
N = O U

Sy
|
—
[=p}
w
(=]
w

),

and

SN

A
B

Clearly, ¢ is a 4-hued 6-coloring of G, then we have
X4(G) < 6, hence we obtain that y4(G) = 6.

(#4) When n = 2(mod 5), i. e, n = bk + 2 for k >
1, we obtain that c(uskye,v1) € [3,4] similarly. If
c(usk12,v1) = 3, then c¢(usk+1,v1) = 2 because any adja-
cent vertices can not receive the same colors, but we have
|e(N(ug,v1))] < 3, a contradiction. If c(usky2,v1) =
4, then c(uskt1,v1) € [2,3], 0 c(uskt2,v2) = 3 and
c(uskpt1,v2) € [5] if c(uspy1,v1) = 2, and c(ug,v2) =5
and c(ug,vs) ¢ [5] if c(usk41,v1) = 3, hence x4(G) > 6.
We define the coloring ¢ of G as following:

1 4 1 4
2 5 2 5
A=1]1 3 6 3 6 ,
4 1 4 1
5 2 5 2
6 3 6
B_(4 6 4 6 )’
and
A
A
c_ .
A
B

Clearly, ¢ is a 4-hued 6-coloring of G, then we have
x4(G) < 6. Hence x4(G) = 6.

(#i7) Suppose that n = 3(mod 5), i. e, n = bk +
3 for k > 1. Similar as (i7), we can obtain that
c(uskt3,v1) € [3,5]. When c(usri3,v1) = 3, we have
c(uskt2,v1) € {2,4} because any adjacent vertices can
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not receive the same colors. If c(usgyo2,v1) = 2, then
|e(N(ug,v1))] < 3, a contradiction. Hence we have
c(uskt2,v1) = 4, so c(uy,v2) = 5 and c(ug,v2) ¢ [5]
by the definition of r-hued coloring. Hence x4(G) > 6.

If c(uskts,vi) = 4, then c(usky2,v1) € [2,3], so
c(u1,v2) = 5 and c(ug, va) & [5] if c(usk42,v1) = 2, and
c(ur,ve) = 5 and c(ug,vs) ¢ [5] if c(usgi2,v1) = 3 by
the definition of r-hued coloring. If c(usks3,v1) = 5,
then c(usgio,v1) € [2,4], so we have c(uskr1,v1) €
{1,3} when c(usk42,v1) = 2. If c(usgt1,v1) = 1, then
|e(N (uskt2,v1))| < 3, a contradiction. If c(uspt1,v1) =
3, then we have c(usky1,v2) = 1 and c(usk, v2) € [5] by
the definition. Hence we need at least 6 colors in this
case.

If ¢(usgyo,v1) = 3, then we have c(uspt1,v1) € [1,2],
50 |e¢(N(usgt2,v1))| < 3 when c(usky1,v1) = 1, and
c(uskt1,v2) = 1 and e(usg, v2) € [5] when c(usp41,v1) =
2. If e(usgy2,v1) = 4, then |e(N(usk+1,v1))] < 3, a con-
tradiction. Hence we have x4(G) > 6.

We define the coloring ¢ of G as following:

1 5 15
2 6 2 6
A=| 3 4 3 4 7
4 3 4 3
5 2 5 2
6 1 6 1
B=| 4 3 4 3 ,
3 4 3 4
and
A
A
c= :
A
B

Clearly, cis a 4-hued 6-coloring of G, so we have x4(G) <
6, hence x4(G) = 6.

(vi) When n = 4(mod 5), i. e., n = bk +4 for k > 1,
we can obtain that y4(G) > 6 similarly. We consider the
coloring ¢ of G as following:

1 51 5
2 6 2 6
A= 31 3 4 ,
4 3 4 3
5 2 5 2 -
1 4 1 4
6 5 6 5
B= 3 2 3 2 ’
4 1 4 1
and
A
A
c=
A
B

It is not difficult to verify that ¢ is a 4-hued 6-coloring of
G, so we have x4(G) < 6. Hence x4(G) = 6 in this case.

Subcase 3.3 For r = 5, when n = 5, it is clear that
d(u;,v1) = 5, then |¢(N(u1,v;))] = 5 by the defini-
tion. Let c(ui,v1) = 1, c(ug,v1) = 2, c(ug,v1) = 3,
c(ug,v1) = 4 and ¢(us,v1) = 5. Then c(ur,v2) =
6, c(uz,v2) = 7, clus,va2) = 8, clug,v2) = 9, and
c(us,v2) = 10 by the definition of r-hued coloring, so
we obtain that x5(G) > 10.

In the upper coloring ¢, for j > 3, let c(u;, v;) = c(u;, v1)
when j is odd, and c(u;,v;) = c(u;,v2) when j is even.
It is not difficult to verify that ¢ is a 5-hued 10-coloring
of G. Hence x5(G) = 10.

Subcase 3.3.1 If 6|n, then the coloring ¢ of the first
column is unique, and y5(G) > 6 clearly. We can find
the coloring ¢ as following;:

— O Ok W N =
=W N = O U
= O U W N
B~ W N~ OOt

It is not difficult to verify that c is a 5-hued 6-coloring
of G, so we have x5(G) = 6.

Subcase 3.3.2 Suppose that 6 1 n.

(2) If 7|n, then it is not difficult to verify that x5(G) > 7.
We can find a 5-hued 7-coloring ¢ as following:

N O U R W N =
WK R~ O Ol
N O ULk W=
W N H O U

Thus we have x5(G) < 7, hence x5(G) = 7.

(i) For n = 13, if we use five colors to color the first col-
umn, WLOG, assume that c(u;,v1) = i(mod 5) for 1 <
1 <10, then c(u11,v1) = 6, c(uiz,v1) =7,c(urz,v1) =8
by the definition of r-hued coloring, so we need at least
eight colors.

If we use six colors to color the first column, WLOG,
assume that c(u;,v1) = i(mod 6) for 1 < i < 12, then we
have c¢(u13,v1) = 7 by the definition of r-hued coloring.

(Advance online publication: 28 August 2018)
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We consider the coloring ¢ of G as following:

NO Uk W N OO WD -
WNH O U WND - O Ot
N O ULk W N OO WD -
WK O TR WD~ Oy U

Clearly, it is a 5-hued 7-coloring of G, so we have x5(G) <
7. Hence x5(G) = 7.

(14) For m = 19, if we use five colors to color the
first column, then c(u;,v1) = i(mod 5) for 1 < i <
15, and c(ulﬁ,vl) = 6, C(U17,U1) =7 ,C(ulg,’Ul) =
8, c(uig,v1) = 9 by the definition of r-hued color-
ing. If we use six colors to color the first column, then
c(ug,v1) = i(mod 6) for 1 < ¢ < 18, and c(uyg,v1) = 7
by the definition of r-hued coloring. Hence x5(G) > 7.

We consider a 5-hued 7-coloring ¢ of G as following:

N O WN RO UUERE WN O U WN -
WK T TR WN O TR WND - O U
N O U WN KO U WN RO O R WN -
WK JO0 Ui WN O Utk WO U

Then we have x5(G) < 7, hence x5(G) = 7.

Similar as in (¢) and (i7), if n € {20, 25,26,27}, then we
can obtain that x5(G) = 7.

(#4t) Suppose that n > 30 but 6 { n. It is not difficult to
verify that there exist nonnegative integers = and y such
that n = 6z + 7y from [11].

Because d(u;,v1) = 5, we use at least five colors in the
first column. When n = 0(mod 5), i. e., n = 5k for
k > 6, WLOG, assume that the coloring ¢ of the first
column is c(u;,v1) = i(mod 5) for 1 < i < 5k, then
c(uy,v) =6, c(ug,v2) =7, c(uz,va) =8, c(uq,v2) =6,
and c(us,vy) = 7 by the definition of r-hued coloring,

but |¢(N(us,v2))| < 4, a contradiction. So we need at
least nine colors in this coloring.

When n = 1(mod 5), i. e., n = 5k+1 for k > 6, if we use
six colors in the first column, WLOG, assume that the
coloring c¢ satisfies c(u;,v1) = i(mod 5) for 1 < ¢ < 5k,
then we have c(usgy1,v1) = 6, c(ur,v2) =4, c(ug,ve) =
5, c(ug,v2) =6, clug,v2) =7, clus,ve) =8, c(ug, v2) =
6, and c(ur,vy) = 9 by the definition of r-hued coloring,
so we need at least nine colors in this coloring.

Similarly, we obtain the same result in the case of using
six colors in the first column.

Moreover, we can define the coloring ¢ with seven col-
ors on the first column as c(u;,v1) = i(mod 6) for
1 <@ <6z, e(u,v1) =i(mod 7) for 6x+1 < i < 7y, and
then c(u;,v2) = (c(us,v1) + 3)(mod 6) for 1 < i < 6z,
c(ug,v2) = (c(ui,v1) + 3)(mod 7) for 6z +1 < i < Ty,
c(ui,vj) = c(us,vi) when j is odd, and c(u;,v;) =
¢(u;, v2) when j is even. Clearly, ¢ is a 5-hued 7-coloring
of G and optimal, so x5(G) = T.

Similarly, we can obtain the same result in the case of
n = i(mod 5) for i € [2,4].

Subcase 3.3.3 Suppose that n € {8,15,22,23,29}.

(i) For n = 8, it is not difficult to verify that the coloring
¢ on the first column as ¢(u;,v1) = i(mod 8) is optimal,
50 x5(G) > 8. We consider a 8-coloring of G as following;:

1 4 1 4
2 5 2 5
3 6 3 6
4 7 4 7
5 8 5 8
6 1 6 1
T2 7 2
8 3 8 3

Clearly, it is a 5-hued 8-coloring of G, so we have y5(G) <
8. Hence x5(G) = 8.

(#4) For m = 15, if we use five colors to color the first col-
umn, WLOG, assume that c(u;,v1) = i(mod 5) for 1 <
i < 15, then, by the definition of r-hued coloring, we have
c(uy,ve) = 6, c(ug,v2) =7, c(us,va) =8, c(uq,vs) =6,
and c(us,v2) = 9, so we need at least nine colors in this
coloring.

If we use six colors to color the first column, assume
that c(u;,v1) = i(mod 6) for 1 <4 < 12, then we have
c(uyz,v1) = 7, c(urg,v1) = 8, and c(uys,v1) = 9, so we
need at least nine colors in this coloring.

If we use seven colors to color the first column, as-
sume that c(u;,v1) = i(mod 7) for 1 < ¢ < 14, then
c(u1s,v1) = 8, so we need at least eight colors in this
coloring, too.
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We consider the coloring ¢ of G as following:

1 4 1 4
2 5 2 5
3 6 3 6
4 7 47
5 1 5 1
6 2 6 2
T3 7 3
1 4 1 4
2 5 2 5
3 6 3 6
4 7 4 7
5 8 5 8
6 1 6 1
T2 7 2
8 3 8 3

Clearly, it is a 5-hued 8-coloring of G, so we have x5(G) <
8. Hence x5(G) = 8.

Similar as () and (i4), we can obtain that x5(G) = 8 in
the case of n € {22,23,29}.

Subcase 3.3.4 n € {9,10,11,17}.

(7) For n =9, it is not difficult to verify that the color-
ing ¢ with c(u;,v1) = 1(mod 9) is optimal, so we have
X5(G) > 9. We consider a 9-coloring of G as following:

1 4 1 4
2 5 2 5
3 6 3 6
4 7 47
5 8 5 8
6 9 6 9
T 1 7 1
8§ 2 8 2
9 3 9 3

Clearly, it is a 5-hued 9-coloring of G, so we have x5(G) <
9. Hence x5(G) = 9.

(i1) For n = 17, if we use five colors to color the first
column, WLOG, assume that c(u;,v1) = i(mod 5) for
1 <4 < 15. Then, by the definition of r-hued coloring,
we have c(uzg,v1) = 6 and c(ui7,v1) = 7, so we have
c(ur,v2) = 4, c(ug,v2) =5, c(uz,v2) = 6, cug,v2) =
7, c(us,v2) = 8, c(ug,v2) = 6, and c(ur,v2) = 9, thus
we need at least nine colors in this coloring.

If we use six colors to color the first column, WLOG, as-
sume that c(u;,v1) = i(mod 6) for 1 < ¢ < 17. Then
c(uis,va) = 4, and thus c(u14,v2) = 5, c(us,v2) =
6, c(uig,v2) = 7, c(uir,va) = 8, c(u1,v2) = 6, and
c(uz,v2) = 9.

If we use seven colors to color the first column, WLOG,
assume that c(u;,v1) = i(mod 7) for 1 < i < 14.
Then c(u1s,v1) = 3, c(uig,v1) = 4, c(uir,v1) = 5 and
c(ui7,v2) = 6, so we have c(uig,v2) = 2, c(uis,ve) =
1, c(u14,v2) = 8, c(uiz,ve) = 2, and c(uja,v2) = 9.

If we use eight colors to color the first column, WLOG,
assume that c(u;, v1) = i(mod 8) for 1 < ¢ < 16, then we
have ¢(uy7,v1) = 9.

Therefore, we need at least nine colors in every case.

We define the coloring ¢ of G as follows:

W
o

0O 1 OO UL WNH =IO O i WK
W N H © OO Uk WO Ot
O© 00 O UL WN O Uik W -
WK ©O00 O Uik WNHFH OO O

©

Clearly, cis a 5-hued 9-coloring of G, so we have x5(G) <
9. Hence x5(G) = 9.

(#9t) For n = 11, similar as (¢) and (4¢), it is not difficult
to show that x5(G) > 9. We consider the coloring ¢ of
G as following:

QU © 00 ~1 O UL W b —
WK O U W — © 00 -]

B O 00~ O U W N
WK O U W — © 00~

ot

Clearly, c is a 5-hued 9-coloring, so we have x5(G) <9,
hence x5(G) = 9.

(iv) For n = 10, it is not difficult to prove x5(G) > 9
similar as (7) and (i7).

We consider a 9-coloring of G as following:

16 2 7 1 6
2 73 8 27
3 8 4 9 3 8
4 6 5 7 4 6
5 9 1 6 5 9
1 72 8 1 7
2 6 3 7 26
3 8 4 9 3 8
4 7 5 8 4 7
5 9 1 6 5 9

Clearly, if m is odd, then it is a 5-hued 9-coloring, so we
have x5(G) <9, hence we obtain that x5(G) = 9 in this
case.

Suppose that m is even. If we use nine colors to color G,
then there is some vertex in any adjacent two columns
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whose color number of neighbors must be 4 no matter
what the coloring is. Therefore, the color number of
the neighbors of this vertex in the first column or the
last column is 4 which contradicts the 5-hued nature.
Hence x5(G) > 10. Consider a 10-coloring ¢ of G with
c(ui,vy) = (2(¢ — 1) + j)(mod 10) as following:

1 2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10 1
5 6 7 8 9 10 1 2 3
7T 8 9 101 2 3 4 5
9 10 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10 1
5 6 7 8 9 10 1 2 3
7T 8 9 101 2 3 4 5
9 10 1 2 3 4 5 6 7

Clearly, |c(N(u;,v,))| = min{5,d(u1,v;)}, so ¢ is a 5-
hued 10-coloring of G, hence we have x5(G) = 10 for
even m.

Subcase 3.4 Suppose that r > 6. If n = 0(mod7), then
X»(C2) > 7 by Observation 1.1. Define the coloring ¢ of
G as following:

1 473 6 2 5 147
2514736 2 51
36 25147 3 6 2
4 7 3 6 25 1 4 7 3
51 4 7 3 6 2 5 1 4
6 2 51 4 7 3 6 2 5
73 6 25 147 36
1 4 7 3 6 25 1 47

Clearly, c is a r-hued 7-coloring of G, so we have x,.(G) <
7. Hence x,(G) = 7. Suppose that n = i(mod7) for
i € [1,6] in the following.

Subcase 3.4.1 Suppose that n € {15,22, 23,29, 30, 31},
or 8 | n, or n > 36.

(7) If 8 | m, then the coloring ¢ of the first column is
c(u;,v1) = i(mod 8) which is a optimal coloring, so we
have x,(G) > 8. Define the coloring ¢ of G as following:

1 4 7 2 5 8 3 6 147
258 3 6 1 47 2 5 8
3 6 1 4 7 25 8 3 61
4 7 2 5 8 3 6 1 4 7 2
5 8 3 6 1 4 7 2 5 8 3
6 1 4 7 25 8 3 6 1 4
7T 25 8 3 61 47 25
8§ 36 1 4 7 2 5 8 3 6
1 4 7 2 5 8 3 6 1 47

Clearly, c is a 6-hued 8-coloring of G, so we have x,.(G) <
8. Hence x,(G) = 8.

(i) n = 15. If we use five colors to color the first column,
WLOG, assume that c(u;,v1) = i(mod 5) for 1 < i <

15. Then, by the definition of r-hued coloring, we have
c(uy,v2) = 6, c(uz,v2) =7, c(ug,vs) =8, c(ug,v2) =9,
and c(us,ve) = 10, so we need at least ten colors in this
coloring.

If we use six colors to color the first column, WLOG,
assume that c(u;,v1) = i(mod 6) for 1 < ¢ < 12. Then
c(uy,v13) = 7, c(u1,v14) = 8, and c(uy,v15) = 9, so we
need at least nine colors in this coloring.

If we use seven colors to color the first column, WLOG,
assume that c(u;,v1) = i(mod 7) for 1 < ¢ < 14. Then
c(ur,v15) = 8, so we need at least eight colors in this
coloring.

Therefore, we need at least eight colors in every case.

We can find a coloring ¢ of G as following:

EN|

T O UL W~ 00~ O U W N
WK = IO UL W — 00~ Ul
O U W — 1O UL W —

RO — ~1 O UL W H 00~ Utk W
G WD~ 1O UL W H 00~
T O U W N 00~ O Ul W N
WK — 1O UL W — 00~ Ut

Clearly, cis a 6-hued 8-coloring of G, so we have x,.(G) <
8. Hence x,(G) = 8.

(iii) Tf n € {22,23,29,30,31}, or n > 36, then we obtain
Xr(G) > 8 as (i) similarly. It is not difficult to verify that
there exist nonnegative integers x and y such that n =
7z + 8y from [11]. We consider the coloring ¢ of G with
c(ug,v1) = i(mod 7), c(u;, vj) = (c(us,vj—1) + 3)(mod 7)
for 7 > 2 and 1 < i < 7x as following;:

EN =N, BSOSO R
WM =~ O Ol
O G W N — =]
O — ~1 O U W
U WD~ - O
IS = NS, BTN JOR O
WK — ~1 O U

c(uj,v1) = i(mod 8), and c(u;,v;) = (c(ui,vj—1) +
3)(mod 8) for j > 2 and 7z + 1 <4 < n as following:

1 47 3 6 1 4
2 5 8 4 7 25
361 5 8 3 6
4 7 2 6 1 47
5 8 3 7 2 5 8
6 1 4 8 3 6 1
T 25 1 4 7 2
8§ 3 6 2 5 8 3
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Clearly, ¢ is a r-hued 8-coloring of G, so we have x,.(G) <
8. Hence x,(G) = 8.

Subcase 3.4.2 Suppose that n € {9,17,18,25,26,
97,33, 34).

(7) For n =9, it is not difficult to verify that the coloring
¢ of the first column with c¢(u;,v1) = i(mod 9) is an
optimal coloring, so we have x,.(G) > 9. Define the
coloring ¢ of G as following:

1 4 7 1 4
2 5 8 25
3 6 9 3 6
4 71 47
5 8 2 5 8
6 9 3 6 9
7T 1 4 7 1
8 2 5 8 2
9 3 6 9 3

Clearly, it is a r-hued 9-coloring of G, so we have x,.(G) <
9. Hence we obtain that x,(G) = 9.

(#4) For n = 17, if we use five colors to color the first
column, WLOG, assume that c(u;,v1) = i(mod 5) for
1 < i < 15. Then, by the definition of r-hued coloring,
we have c(us,v2) = 6, and c(uq,v2) = 7, c(us,v2) =
8, c(ug,v2) =9 and c(ur,vz) = 10.

If we use six colors to color the first column, WLOG, as-
sume that c(u;,v1) = i(mod 6) for 1 < ¢ < 17. Then
we have c(ui,v2) = 6,c(ug,v2) = 7, c(ug,va) = 8,
c(urz,v2) =9, and c(ugq, v2) = 10.

If we use seven colors to color the first column, WLOG,
assume that c(u;,v1) = i(mod 7) for 1 < i < 14.
Then, by the definition of r-hued coloring, we obtain
that C(U15,’U1) = 3, c(ulg,m) = 4, C(u17,’l}1) = 5,
c(uy,vg) = 6, c(ug,vy) =7, c(us,ve) =8, c(ur7,v2) =9,
and c(u16,v2) = 10.

If we use eight colors to color the first column, WLOG,
assume that c(u;,v1) = i(mod 8) for 1 < ¢ < 16. Then
we have c(uy7,v1) = 9, so we need at least nine colors in
this case.

We can find a coloring ¢ of G as following:

B
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= W N HFH OO0 Utk W KFH I
N O Uk W N © 00O Utk W+~
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© 00 IO ULk WK - 00O Ut ik W N
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Clearly, cis a r-hued 9-coloring of G, so we have x,.(G) <
9. Hence x,(G) = 9.

(732) If n € {18,25,26,27,33,34}, then there exist non-
negative integers x and y such that n = 8z + 9y. Sim-
ilar as (¢) and (i3), we have x,.(G) > 9. We con-
sider the coloring ¢ of G with c(u;,v1) = i(mod 8)
and c(u;,vj) = (c(ui,vj—1) + 3)(mod 8) for j > 2 and
1 <4 < 8z as following:

1 4 7 2 5 8 3 6 147
2583 6 1 47 2 5 8
36 1 47 2 5 8 3 61
4 7 2 5 8 3 6 1 4 7 2
5 8 3 6 1 4 7 2 5 8 3 ’
6 1 4 7 2 5 8 3 6 1 4
7T 25 8 3 6 147 25
8§ 3 6 1 4 7 2 5 8 3 6

and c(u;,v1) = i(mod 9) and c(u;,v;) = (c(ui,vj—1) +
3)(mod 9) for j > 2 and 8z + 1 < i < n as following:

1 4 7 2 5 8 3 6 1 47
2 58 3 6 9 4 7 2 5 8
36 9 4715 8 3 6 9
4 71 5 8 26 9 471
5 8 26 9 3 715 8 2
6 9 3 71 48 2 6 9 3
71 48 25 9 3 71 4
8 25 9 3 6 1 4 8 2 5
9 3 6 1 47 2 5 9 3 6

Clearly, cis a r-hued 9-coloring of G, so we have x,.(G) <
9. Hence x,(G) = 9.

Subcase 3.4.3 Suppose that n € {5,10,11,12,13,
19,20}

(i) For n = 5, with the same reason in Subcase 3.3, we
obtain that x,(G) > 10. Let ¢ be the coloring with
c(ui,v5) = (20 + j)(mod 10). Then it is not difficult to
verify that ¢ is a r-hued 10-coloring of G, so we have
xr(G) < 10. Hence x,(G) = 10.

(#4) For n = 10, if we use five colors to color the first
column, WLOG, assume that c(u;,v1) = i(mod 5) for
1 < i < 10. Then, by the definition of r-hued color-
ing, we have c(uj,ve) = 6, c(uz,v2) = 7, c(us,ve) =
8, c(ug,v2) =9, and c(us,v2) = 10, so we need at least
ten colors in this coloring.

If we use six colors to color the first column, WLOG,
assume that c(u;,v1) = i(mod 6) for 1 < ¢ < 6.
Then we have c(ur,v1) = 2,c(ug,v1) = 3, c(ug,v1) =
4, c(u1g,v1) = 5, c(ug,v2) =6, c(uz,v2) =7, c(us,vz) =
8, c(u1g,v2) =9, and c¢(ug, v2) = 10.

If we use seven colors to color the first column, WLOG,
assume that c(u;,v1) = i(mod 7) for 1 < ¢ < 7. Then
c(us,v1) = 3,c(ug,v1) = 4, c(urp,v1) = 5, c(ug,ve) =
6, c(ug,v2) =7, clus,va) =8, c(ug,v2) =1, c(us,v2) =
2, c(ug,v2) =9, and c(uz, v2) = 10.

If we use eight colors to color the first column, WLOG,
assume that c(u;,v1) = i(mod 8) for 1 < ¢ < 8. Then
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we have c(ug,v1) = 4 and c(uig,v1) = 5, and thus we
obtain that c(uj,ve) = 6, c(ug,v2) = 7, c(us,va) =
8, c(ug,v) =1, c(us,v2) =2, c(ug,v2) =3, c(uy,ve) =
9 and c(usg, v2) = 10.

If we use nine colors to color the first column, WLOG,
assume that c(u;,v1) = i(mod 9) for 1 <14 <9. Then we
have c(u19,v1) = 5 and ¢(uq,v2) € {4,6,7,8} by the defi-
nition of r-hued coloring. We can obtain that x.,.(G) > 10
as upper paragraph similarly.

We consider the coloring ¢ with c(u;,v;) = (2 +
7)(mod 10). It is not difficult to verify that ¢ is r-hued 10-
coloring of G, so we have x,(G) < 10. Hence x,(G) = 10.

(#31) For n € {11,12,13,19,20}, similar as (i) and (i),
we can obtain that x,.(G) > 10. If n = 11, then we
consider the coloring ¢ of G as following:

1 4 7 10 2 5 8
2 5 8 11 3 6 9
3 6 9 1 4 7 10
4 7 10 2 5 8 11
5 8 11 3 6 9 1
6 9 1 4 7 10 2
7T 10 2 5 8 11 3
§ 11 3 6 9 1 4
9 1 4 7 10 2 5
10 5 8 11 3 6
1 3 6 9 1 4 7

It is not difficult to verify that c¢ is a r-hued 11-coloring
of G, so we have x,(G) < 11.

If n = 12, then we consider the coloring ¢ of G as follow-
ing:

1 4 7 100 2 5 8
2 5 8 11 3 6 9
3 6 9 1 4 7 10
4 7 10 2 5 8 11
5 8 11 3 6 9 1
6 9 1 4 7 10 2
7T 10 2 5 8 11 3
8§ 11 3 6 9 1 4
9 1 4 7 10 2 5
10 2 5 8 11 3 6
1 3 6 9 1 4 7
6 9 1 4 7 10 2

Clearly, c is a r-hued 11-coloring of GG, so we obtain that
xr(G) < 11.

If n = 13, then we consider the coloring ¢ of G as follow-

ing:
1 2 3 4 1 2
3 4 5 6 3 4
5 6 7 8 5 6
7T 8 9 10 7 8
9 10 1 2 9 10
1 2 3 4 1 2
3 4 5 6 3 4
5 6 7 8 5 6
7T 8 9 10 7 8
9 10 1 2 9 10
4 3 6 5 4 3
6 5 8 7 6 5
§ 7 10 9 8 7

It is not difficult to verify that c is a r-hued 10-coloring
of G, so we have x,(G) < 10. Hence x,(G) = 10.

If n =19, then we consider the coloring ¢ of G as follow-
ing:

1 4 7 1 4
2 5 8 2 5
3 6 9 3 6
4 7 1 4 7
5 8 2 5 8
6 9 3 6 9
T 1 4 7 1
8§ 2 5 8 2
9 3 6 9 3
1 4 7 1 4
2 5 8 2 5
3 6 9 3 6
4 7 10 4 7
5 8 1 5 8
6 9 2 6 9
7 10 3 7 10
8 1 4 8 1
9 2 5 9 2
10 3 6 10 3

Clearly, it is a r-hued 10-coloring of G, so we have
Xxr(G) < 10. Hence x,(G) = 10.

If n = 20, then the coloring ¢ with c(u;,v;) = (2i +
J)(mod 10) is a r-hued 10-coloring of G, so we have
xr(G) < 10. Hence x,(G) = 10.

In a word, the proof of our result is completed. O
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