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Abstract

A r-hued k-coloring of G is a proper coloring with k
colors such that for every vertex v with degree d(v) in
G, the color number of the neighbor of v is at least
min{d(v), r}. The smallest integer k such that G has
a r-hued k-coloring is called the r-hued chromatic num-
ber and denoted by χr(G). In this paper, we study the
r-hued coloring of Cartesian products of square of cycles
with paths.
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1 Introduction

In this paper, all graphs that we considered are con-
nected, �nite, undirected and simple (i. e., loopless and
no multiple edges). For any integers a and b, we use
the symbol [a, b] to denote the set {a, a+ 1, · · · , b} when
a ≤ b, and [k] to denote [1, k] simply. Let i(mod k) de-
note the remainder of i module k and all of them are in
[k] unless speci�ed. For a real number x, let dxe and bxc
denote the smallest integer no less than x and the largest
integer no more than x, respectively.

In recent years, many parameters and classes of graphs
are studied. For example, in [18], the restricted connec-
tivity of Cartesian product graphs is obtained, and in
[19, 20], some results on 3-equitable labeling and the n-
dimensional cube-connected complete graph are gained.
In [21], some results about resistance distance and Kirch-
ho� index are obtained.

A vertex k-coloring ofG is proper if any two adjacent ver-
tices receive di�erent colors. The smallest integer k such
that G has a proper k-coloring is called the chromatic
number and denoted by χ(G). For every v ∈ V (G), N(v)
is denoted the neighborhood of v in G. A r-hued coloring
c of G is a vertex proper coloring that for every v ∈ V (G)
with d(v) ≥ 2 such that |c(N(v))| ≥ min{d(v), r}. The
minimum integer k such that G has a r-hued k-coloring
is called the r-hued chromatic number of G and denoted
by χr(G). The 1-hued chromatic number of G is the
chromatic number. The 2-hued chromatic number of G
is the dynamic chromatic number. It is obvious that
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χ(G) ≤ χ2(G).

A coloring of a graph in which a typical vertex is adjacent
to more than one color class represents a situation in
which the typical individual has a greater variety in the
type of relations. Thus, the overall interactions would
not be so limited but more hued. Recently, the r-hued
coloring of graphs has been studied by many researchers,
see references [1-10,12-15]. It is shown in [1] that for
n ≥ 3, χ2(Cn) = 3 if n ≡ 0(mod 3), χ2(Cn) = 5 if
n = 5, and χ2(Cn) = 4 otherwise. In [3], it is proved
that for every G with maximum degree ∆, if ∆ ≤ 3,
then χ2(G) ≤ 4 unless χ2(G) = 5 for G = C5, and if
∆ ≥ 4, then χ2(G) ≤ ∆ + 1.

For given two graphs G and H, the Cartesian product of
G and H, denoted by G2H, with the vertex set V (G)×
V (H), and (u, v) and (u′, v′) are adjacent if and only if
u = u′ and vv′ ∈ E(H), or v = v′ and uu′ ∈ E(G).
Clearly, ∆(G2H) = ∆(G) + ∆(H). In 2010, Akbari et
al. in [2] obtained an upper bound for χ2(G2H) with
minimum degree δ(G) ≥ 2. In [8], an upper bound is
given for χr(G2H) with δ(G) ≥ r. In [9], it is proved
that m by n grid has no 3-hued 4-coloring when mn ≡
2(mod 4). In [10], the author studied the r-hued coloring
on grids and toroidal grids.

The square of a graph G, denoted by G2, is a graph
with the same vertex set of G such that two vertices are
adjacent if and only if their distance is at most 2 in G.

Lemma 1.1. [1] Let G be a nontrivial graph. Then

χ2(K2) = 2 and χd(G) ≥ 3 otherwise.

Lemma 1.2. [2] Let G and H be two graphs. If δ(G) ≥
2, then χ2(G2H) ≤ max{χ2(G), χ(H)}.

Lemma 1.3. [8] Let G1, G2 be graphs. If δ(G1) ≥ r,
then χr(G12G2) ≤ max{χr(G1), χ(G2)}.

Lemma 1.4. [16] Let m ≥ 3 be an integer. Then

χ3(C2
m) =


3, m = 3,

5, m ∈ {5, 6, 7, 11}
4, otherwise.

Lemma 1.5. [17] Let n,m ≥ 3 be integers. Then

χ3(P 2
n2Pm) =


6, n ∈ {3, 5},
4, otherwise,

5, n = 7,

χ4(P 2
n2Pm) =

{
7, n ∈ [5, 7] or n = 4 and m is odd,

6, otherwise,
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and

χr(P 2
n2Pm) =

{
6, n = 3,

7, otherwise

for r ≥ 5.

Observation 1.1 χr(G) ≥ min{∆(G), r}+ 1. Equality
holds for trees.

Observation 1.2 If r ≥ ∆(G), then χr(G) = χ∆(G)(G).

Observation 1.3 χr+1(G) ≥ χr(G).

2 The Main results

Theorem 2.1. Let n,m ≥ 3 be integers. Then we have

χ3(C2
n2Pm) =


6, n = 3,

5, n = 5,

4, otherwise,

χ4(C2
n2Pm) =


6, n = 3,

8, n = 4,

5, 5|n,
6, otherwise,

χ5(C2
n2Pm) =



8, n ∈ {4, 8, 15, 22, 23, 29}
6, n = 3, or 6 | n,
7, 7 | n, or n ≥ 30,

or n ∈ {13, 19, 20, 25, 26, 27},
9 n ∈ {9, 11, 17},

or n = 10 and m is odd,

10, n = 5, or n = 10 and m is even,

and

χr(C2
n2Pm) =



6, n = 3,

7, 7|n,
8 8 | n, or n ≥ 36,

or n ∈ {4, 15, 22, 23, 29, 30, 31},
9, n ∈ {17, 18, 25, 26, 27, 33, 34}
10, n ∈ {5, 10, 13, 19, 20}
≤ 11, n ∈ {11, 12},

Proof. Let G = C2
n2Pm, and {u1, u2, · · · , un} and

{v1, v2, · · · , vm} be the vertex sets of C2
n and Pm, re-

spectively.

Case 1. n = 3.

In this case, C2
n and P 2

n both induce a K3, so we have
χr(C2

n2Pm) = χr(P 2
n2Pm). Hence we have χ3(G) =

χ4(G) = χ5(G) = χr(G) = 6 by Lemma 1.5.

Case 2. n = 4. Then ∆(G) = 5, so χ3(G) ≥ 4, and
χ5(G) = χr(G) ≥ 6 by Observations 1.1-1.2.

For r = 3, since δ(C2
4 ) = 3, we have χ3(G) ≤

max{χ3(C2
4 ), χ(Pm)} by Lemma 1.3, and χ3(C2

4 ) = 4 by
Lemma 1.4, thus we obtain that χ3(G) ≤ 4. Therefore,
χ3(G) = 4 in this case.

For r = 4, we need at least four colors for the �rst col-
umn, WLOG, assume that c(ui, v1) = i(mod 4). By
the de�nition of r-hued coloring, we have c(u1, v2) = 5,
c(u2, v2) = 6, c(u3, v2) = 7 and c(u4, v2) = 8. Hence
χ4(G) ≥ 8. We consider a 8-coloring c of G with
c(ui, vj) ≡ (2(i− 1) + j)(mod 8) as following:


1 2 3 4 5 6 · · ·
3 4 5 6 7 8 · · ·
5 6 7 8 1 2 · · ·
7 8 1 2 3 4 · · ·

 .

It is obvious that the coloring satis�es |c(N(ui, vj))| =
min{4, d(ui, vj)}, so it is a 4-hued 8-coloring of G, thus
we have χ4(G) ≤ 8. Hence χ4(G) = 8.

For r ≥ 5, by Observations 1.2-1.3, we have χr(G) =
χ5(G) ≥ χ4(G) = 8. Clearly, the coloring c with
c(ui, vj) ≡ (2i + j)(mod 8) is a 5-hued 8-coloring of G,
so we obtain that χ5(G) ≤ 8, hence we have χr(G) =
χ5(G) = 8.

Case 3. n ≥ 5. Clearly, ∆(G) = 6, so we have χ3(G) ≥
4, χ4(G) ≥ 5, χ5(G) ≥ 6 and χr(G) = χ6(G) ≥ 7 by
Observations 1.1-1.2.

Subcase 3.1 r = 3. Since n ≥ 5, δ(C2
n) = 4, so we

have χ3(G) ≥ 4 by Observation 1.1. But χ3(G) ≤
max{χ3(C2

n), χ(Pm)} by Lemma 1.3, thus we can ob-
tain that χ3(G) ≤ 5 for n ∈ {5, 6, 7, 11} and χ3(G) = 4
otherwise by Lemma 1.4.

(1) For n = 5, if we use three colors to color the �rst
column, WLOG, assume that c(u1, v1) = 1, c(u2, v1) = 2
and c(u3, v1) = 3, then c(u4, v1) = 2 and c(u5, v1) = 3
because any adjacent vertices can not receive the same
colors, so we have c(u1, v2) = 4 and c(u2, v2) = 5 by the
de�nition of r-hued coloring, hence we need at least �ve
colors in this coloring.

If we use four colors to color the �rst column, WLOG,
assume that c(ui, v1) ≡ i(mod 4) for 1 ≤ i ≤ 4. Then we
have c(u5, v1) = 5 because any adjacent vertices can not
receive the same colors, so we need at least �ve colors in
this coloring. Hence χ3(G) = 5.

(2) For n = 6, we de�ne a coloring c of G as following:

A =


1 4 1 4 · · ·
2 3 2 3 · · ·
3 2 3 2 · · ·
4 1 4 1 · · ·
2 3 2 3 · · ·
3 2 3 2 · · ·

 .

Clearly, c is a 3-hued 4-coloring, so we have χ3(G) ≤ 4,
hence χ3(G) = 4.
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(3) For n = 7, we de�ne a coloring c of G as following:

A =



1 4 1 4 · · ·
2 3 2 3 · · ·
3 2 3 2 · · ·
4 1 4 1 · · ·
2 3 2 3 · · ·
3 2 3 2 · · ·
4 1 4 1 · · ·


.

It is not di�cult to verify that c is a 3-hued 4-coloring,
so we have χ3(G) ≤ 4, hence we obtain that χ3(G) = 4.

(4) n = 11, we de�ne a coloring c of G as following:

A =



1 4 1 4 · · ·
2 3 2 3 · · ·
3 2 3 2 · · ·
4 1 4 1 · · ·
1 4 1 4 · · ·
2 3 2 3 · · ·
3 2 3 2 · · ·
4 1 4 1 · · ·
2 3 2 3 · · ·
3 2 3 2 · · ·
4 1 4 1 · · ·


.

It is obvious that c is a 3-hued 4-coloring which implies
that χ3(G) ≤ 4, hence we have χ3(G) = 4.

Subcase 3.2 r = 4. We have χ4(G) ≥ 5 by Observation
1.2, and χ4(G) ≤ max{χ4(C2

n), χ(Pm)} by Lemma 1.3.

When n ≡ 0(mod 5), by Lemma 1.4, we have χ4(C2
n) = 5,

so χ4(G) ≤ 5, hence we obtain that χ4(G) = 5 in this
case.

Suppose that n > 5 and 5 - n in the following.

(1) If we use three colors for the �rst column, then
we have |c(N(u1, v1))| ≤ 3, a contradiction. Hence we
need at least four colors to the �rst column, without
loss of generality, assume that c(ui, v1) = i(mod 4) for
i ≤ 4(dn4 e − 1).

(i) When n ≡ 1(mod 4), i. e., n = 4k + 1 for some
k ≥ 2, we obtain that c(un, v1) = 5 because any adjacent
vertices can not receive the same colors. By the de�nition
of r-hued coloring, we have c(u3, v2) = 5, and c(u4, v2) =
6, so we obtain that χ4(G) ≥ 6 in this case.

(ii) When n ≡ 2(mod 4), i. e., n = 4k + 2 for some
k ≥ 1, then we have c(un−1, v1) = 2 and c(un, v1) = 3
because any adjacent vertices can not receive the same
colors, but |c(N(u1, v1))| ≤ 3, a contradiction, so this
coloring is false. Hence we need at least �ve colors
in the �rst column. If k = 1, then n = 6, so we
have c(u5, v1) = 2, c(u6, v1) = 5, c(u1, v2) = 4, and
c(u2, v2) ∈ {1, 3, 5} by the de�nition of r-hued color-
ing. When c(u2, v2) = 1, we have c(u3, v2) = 5 and
c(u4, v2) = 6. When c(u2, v2) ∈ {3, 5}, we obtain that
the coloring needs at least six colors similarly. If k ≥ 2,
then we have c(u3, v2) = 5 and c(u4, v2) = 6. Hence
χ4(G) ≥ 6.

(iii) For n ≡ i(mod 4) with i ∈ [3, 4], it is not di�cult
to show that χ4(G) ≥ 6 similarly.

(2) If we use �ve colors to �rst column, WLOG, assume
that c(ui, v1) ≡ i(mod 5) for i ≤ 5(dn5 e − 1).

(i) when n ≡ 1(mod 5), i. e., n = 5k+1 for some k ≥ 1,
we have c(u5k+1, v1) = 3 because any adjacent vertices
can not receive the same colors. By the de�nition of r-
hued coloring, we obtain that c(u1, v2) = 4, c(u2, v2) =
5, c(u5k−1, v2) = 1, and c(u5k, v2) = 2, so c(u5k+1, v2) /∈
[5], hence we have χ4(G) ≥ 6. We may consider a 6-
coloring c of G as following:

A =


1 4 1 4 · · ·
2 5 2 5 · · ·
3 6 3 6 · · ·
4 1 4 1 · · ·
5 2 5 2 · · ·

 ,

B =
(

6 3 6 3 · · ·
)
,

and

c =


A
A
...
A
B

 .

Clearly, c is a 4-hued 6-coloring of G, then we have
χ4(G) ≤ 6, hence we obtain that χ4(G) = 6.

(ii) When n ≡ 2(mod 5), i. e., n = 5k + 2 for k ≥
1, we obtain that c(u5k+2, v1) ∈ [3, 4] similarly. If
c(u5k+2, v1) = 3, then c(u5k+1, v1) = 2 because any adja-
cent vertices can not receive the same colors, but we have
|c(N(u1, v1))| ≤ 3, a contradiction. If c(u5k+2, v1) =
4, then c(u5k+1, v1) ∈ [2, 3], so c(u5k+2, v2) = 3 and
c(u5k+1, v2) /∈ [5] if c(u5k+1, v1) = 2, and c(u1, v2) = 5
and c(u2, v2) /∈ [5] if c(u5k+1, v1) = 3, hence χ4(G) ≥ 6.
We de�ne the coloring c of G as following:

A =


1 4 1 4 · · ·
2 5 2 5 · · ·
3 6 3 6 · · ·
4 1 4 1 · · ·
5 2 5 2 · · ·

 ,

B =

(
6 3 6 3 · · ·
4 6 4 6 · · ·

)
,

and

c =


A
A
...
A
B

 .

Clearly, c is a 4-hued 6-coloring of G, then we have
χ4(G) ≤ 6. Hence χ4(G) = 6.

(iii) Suppose that n ≡ 3(mod 5), i. e., n = 5k +
3 for k ≥ 1. Similar as (ii), we can obtain that
c(u5k+3, v1) ∈ [3, 5]. When c(u5k+3, v1) = 3, we have
c(u5k+2, v1) ∈ {2, 4} because any adjacent vertices can
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not receive the same colors. If c(u5k+2, v1) = 2, then
|c(N(u1, v1))| ≤ 3, a contradiction. Hence we have
c(u5k+2, v1) = 4, so c(u1, v2) = 5 and c(u2, v2) /∈ [5]
by the de�nition of r-hued coloring. Hence χ4(G) ≥ 6.

If c(u5k+3, v1) = 4, then c(u5k+2, v1) ∈ [2, 3], so
c(u1, v2) = 5 and c(u2, v2) /∈ [5] if c(u5k+2, v1) = 2, and
c(u1, v2) = 5 and c(u2, v2) /∈ [5] if c(u5k+2, v1) = 3 by
the de�nition of r-hued coloring. If c(u5k+3, v1) = 5,
then c(u5k+2, v1) ∈ [2, 4], so we have c(u5k+1, v1) ∈
{1, 3} when c(u5k+2, v1) = 2. If c(u5k+1, v1) = 1, then
|c(N(u5k+2, v1))| ≤ 3, a contradiction. If c(u5k+1, v1) =
3, then we have c(u5k+1, v2) = 1 and c(u5k, v2) /∈ [5] by
the de�nition. Hence we need at least 6 colors in this
case.

If c(u5k+2, v1) = 3, then we have c(u5k+1, v1) ∈ [1, 2],
so |c(N(u5k+2, v1))| ≤ 3 when c(u5k+1, v1) = 1, and
c(u5k+1, v2) = 1 and c(u5k, v2) /∈ [5] when c(u5k+1, v1) =
2. If c(u5k+2, v1) = 4, then |c(N(u5k+1, v1))| ≤ 3, a con-
tradiction. Hence we have χ4(G) ≥ 6.

We de�ne the coloring c of G as following:

A =


1 5 1 5 · · ·
2 6 2 6 · · ·
3 4 3 4 · · ·
4 3 4 3 · · ·
5 2 5 2 · · ·

 ,

B =

 6 1 6 1 · · ·
4 3 4 3 · · ·
3 4 3 4 · · ·

 ,

and

c =


A
A
...
A
B

 .

Clearly, c is a 4-hued 6-coloring of G, so we have χ4(G) ≤
6, hence χ4(G) = 6.

(vi) When n ≡ 4(mod 5), i. e., n = 5k + 4 for k ≥ 1,
we can obtain that χ4(G) ≥ 6 similarly. We consider the
coloring c of G as following:

A =


1 5 1 5 · · ·
2 6 2 6 · · ·
3 1 3 4 · · ·
4 3 4 3 · · ·
5 2 5 2 · · ·

 ,

B =


1 4 1 4 · · ·
6 5 6 5 · · ·
3 2 3 2 · · ·
4 1 4 1 · · ·

 ,

and

c =


A
A
...
A
B

 .

It is not di�cult to verify that c is a 4-hued 6-coloring of
G, so we have χ4(G) ≤ 6. Hence χ4(G) = 6 in this case.

Subcase 3.3 For r = 5, when n = 5, it is clear that
d(ui, v1) = 5, then |c(N(u1, vj))| = 5 by the de�ni-
tion. Let c(u1, v1) = 1, c(u2, v1) = 2, c(u3, v1) = 3,
c(u4, v1) = 4 and c(u5, v1) = 5. Then c(u1, v2) =
6, c(u2, v2) = 7, c(u3, v2) = 8, c(u4, v2) = 9, and
c(u5, v2) = 10 by the de�nition of r-hued coloring, so
we obtain that χ5(G) ≥ 10.

In the upper coloring c, for j ≥ 3, let c(ui, vj) = c(ui, v1)
when j is odd, and c(ui, vj) = c(ui, v2) when j is even.
It is not di�cult to verify that c is a 5-hued 10-coloring
of G. Hence χ5(G) = 10.

Subcase 3.3.1 If 6|n, then the coloring c of the �rst
column is unique, and χ5(G) ≥ 6 clearly. We can �nd
the coloring c as following:

1 4 1 4 · · ·
2 5 2 5 · · ·
3 6 3 6 · · ·
4 1 4 1 · · ·
5 2 5 2 · · ·
6 3 6 3 · · ·
1 4 1 4 · · ·
...

...
...

...


.

It is not di�cult to verify that c is a 5-hued 6-coloring
of G, so we have χ5(G) = 6.

Subcase 3.3.2 Suppose that 6 - n.

(i) If 7|n, then it is not di�cult to verify that χ5(G) ≥ 7.
We can �nd a 5-hued 7-coloring c as following:

1 4 1 4 · · ·
2 5 2 5 · · ·
3 6 3 6 · · ·
4 7 4 7 · · ·
5 1 5 1 · · ·
6 2 6 2 · · ·
7 3 7 3 · · ·
...

...
...

...


.

Thus we have χ5(G) ≤ 7, hence χ5(G) = 7.

(ii) For n = 13, if we use �ve colors to color the �rst col-
umn, WLOG, assume that c(ui, v1) ≡ i(mod 5) for 1 ≤
i ≤ 10, then c(u11, v1) = 6, c(u12, v1) = 7, c(u13, v1) = 8
by the de�nition of r-hued coloring, so we need at least
eight colors.

If we use six colors to color the �rst column, WLOG,
assume that c(ui, v1) ≡ i(mod 6) for 1 ≤ i ≤ 12, then we
have c(u13, v1) = 7 by the de�nition of r-hued coloring.
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We consider the coloring c of G as following:

1 4 1 4 · · ·
2 5 2 5 · · ·
3 6 3 6 · · ·
4 1 4 1 · · ·
5 2 5 2 · · ·
6 3 6 3 · · ·
1 4 1 4 · · ·
2 5 2 5 · · ·
3 6 3 6 · · ·
4 7 4 7 · · ·
5 1 5 1 · · ·
6 2 6 2 · · ·
7 3 7 3 · · ·



.

Clearly, it is a 5-hued 7-coloring ofG, so we have χ5(G) ≤
7. Hence χ5(G) = 7.

(ii) For n = 19, if we use �ve colors to color the
�rst column, then c(ui, v1) ≡ i(mod 5) for 1 ≤ i ≤
15, and c(u16, v1) = 6, c(u17, v1) = 7 , c(u18, v1) =
8, c(u19, v1) = 9 by the de�nition of r-hued color-
ing. If we use six colors to color the �rst column, then
c(ui, v1) ≡ i(mod 6) for 1 ≤ i ≤ 18, and c(u19, v1) = 7
by the de�nition of r-hued coloring. Hence χ5(G) ≥ 7.

We consider a 5-hued 7-coloring c of G as following:

1 4 1 4 · · ·
2 5 2 5 · · ·
3 6 3 6 · · ·
4 1 4 1 · · ·
5 2 5 2 · · ·
6 3 6 3 · · ·
1 4 1 4 · · ·
2 5 2 5 · · ·
3 6 3 6 · · ·
4 1 4 1 · · ·
5 2 5 2 · · ·
6 3 6 3 · · ·
1 4 1 4 · · ·
2 5 2 5 · · ·
3 6 3 6 · · ·
4 7 4 7 · · ·
5 1 5 1 · · ·
6 2 6 2 · · ·
7 3 7 3 · · ·



.

Then we have χ5(G) ≤ 7, hence χ5(G) = 7.

Similar as in (i) and (ii), if n ∈ {20, 25, 26, 27}, then we
can obtain that χ5(G) = 7.

(iii) Suppose that n ≥ 30 but 6 - n. It is not di�cult to
verify that there exist nonnegative integers x and y such
that n = 6x+ 7y from [11].

Because d(ui, v1) = 5, we use at least �ve colors in the
�rst column. When n ≡ 0(mod 5), i. e., n = 5k for
k ≥ 6, WLOG, assume that the coloring c of the �rst
column is c(ui, v1) ≡ i(mod 5) for 1 ≤ i ≤ 5k, then
c(u1, v2) = 6, c(u2, v2) = 7, c(u3, v2) = 8, c(u4, v2) = 6,
and c(u5, v2) = 7 by the de�nition of r-hued coloring,

but |c(N(u3, v2))| ≤ 4, a contradiction. So we need at
least nine colors in this coloring.

When n ≡ 1(mod 5), i. e., n = 5k+1 for k ≥ 6, if we use
six colors in the �rst column, WLOG, assume that the
coloring c satis�es c(ui, v1) ≡ i(mod 5) for 1 ≤ i ≤ 5k,
then we have c(u5k+1, v1) = 6, c(u1, v2) = 4, c(u2, v2) =
5, c(u3, v2) = 6, c(u4, v2) = 7, c(u5, v2) = 8, c(u6, v2) =
6, and c(u7, v2) = 9 by the de�nition of r-hued coloring,
so we need at least nine colors in this coloring.

Similarly, we obtain the same result in the case of using
six colors in the �rst column.

Moreover, we can de�ne the coloring c with seven col-
ors on the �rst column as c(ui, v1) ≡ i(mod 6) for
1 ≤ i ≤ 6x, c(ui, v1) ≡ i(mod 7) for 6x+ 1 ≤ i ≤ 7y, and
then c(ui, v2) ≡ (c(ui, v1) + 3)(mod 6) for 1 ≤ i ≤ 6x,
c(ui, v2) ≡ (c(ui, v1) + 3)(mod 7) for 6x + 1 ≤ i ≤ 7y,
c(ui, vj) = c(ui, v1) when j is odd, and c(ui, vj) =
c(ui, v2) when j is even. Clearly, c is a 5-hued 7-coloring
of G and optimal, so χ5(G) = 7.

Similarly, we can obtain the same result in the case of
n ≡ i(mod 5) for i ∈ [2, 4].

Subcase 3.3.3 Suppose that n ∈ {8, 15, 22, 23, 29}.

(i) For n = 8, it is not di�cult to verify that the coloring
c on the �rst column as c(ui, v1) ≡ i(mod 8) is optimal,
so χ5(G) ≥ 8. We consider a 8-coloring of G as following:

1 4 1 4 · · ·
2 5 2 5 · · ·
3 6 3 6 · · ·
4 7 4 7 · · ·
5 8 5 8 · · ·
6 1 6 1 · · ·
7 2 7 2 · · ·
8 3 8 3 · · ·


.

Clearly, it is a 5-hued 8-coloring ofG, so we have χ5(G) ≤
8. Hence χ5(G) = 8.

(ii) For n = 15, if we use �ve colors to color the �rst col-
umn, WLOG, assume that c(ui, v1) ≡ i(mod 5) for 1 ≤
i ≤ 15, then, by the de�nition of r-hued coloring, we have
c(u1, v2) = 6, c(u2, v2) = 7, c(u3, v2) = 8, c(u4, v2) = 6,
and c(u5, v2) = 9, so we need at least nine colors in this
coloring.

If we use six colors to color the �rst column, assume
that c(ui, v1) ≡ i(mod 6) for 1 ≤ i ≤ 12, then we have
c(u13, v1) = 7, c(u14, v1) = 8, and c(u15, v1) = 9, so we
need at least nine colors in this coloring.

If we use seven colors to color the �rst column, as-
sume that c(ui, v1) ≡ i(mod 7) for 1 ≤ i ≤ 14, then
c(u15, v1) = 8, so we need at least eight colors in this
coloring, too.
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We consider the coloring c of G as following:

1 4 1 4 · · ·
2 5 2 5 · · ·
3 6 3 6 · · ·
4 7 4 7 · · ·
5 1 5 1 · · ·
6 2 6 2 · · ·
7 3 7 3 · · ·
1 4 1 4 · · ·
2 5 2 5 · · ·
3 6 3 6 · · ·
4 7 4 7 · · ·
5 8 5 8 · · ·
6 1 6 1 · · ·
7 2 7 2 · · ·
8 3 8 3 · · ·



.

Clearly, it is a 5-hued 8-coloring ofG, so we have χ5(G) ≤
8. Hence χ5(G) = 8.

Similar as (i) and (ii), we can obtain that χ5(G) = 8 in
the case of n ∈ {22, 23, 29}.

Subcase 3.3.4 n ∈ {9, 10, 11, 17}.

(i) For n = 9, it is not di�cult to verify that the color-
ing c with c(ui, v1) ≡ 1(mod 9) is optimal, so we have
χ5(G) ≥ 9. We consider a 9-coloring of G as following:

1 4 1 4 · · ·
2 5 2 5 · · ·
3 6 3 6 · · ·
4 7 4 7 · · ·
5 8 5 8 · · ·
6 9 6 9 · · ·
7 1 7 1 · · ·
8 2 8 2 · · ·
9 3 9 3 · · ·


.

Clearly, it is a 5-hued 9-coloring ofG, so we have χ5(G) ≤
9. Hence χ5(G) = 9.

(ii) For n = 17, if we use �ve colors to color the �rst
column, WLOG, assume that c(ui, v1) ≡ i(mod 5) for
1 ≤ i ≤ 15. Then, by the de�nition of r-hued coloring,
we have c(u16, v1) = 6 and c(u17, v1) = 7, so we have
c(u1, v2) = 4, c(u2, v2) = 5, c(u3, v2) = 6, c(u4, v2) =
7, c(u5, v2) = 8, c(u6, v2) = 6, and c(u7, v2) = 9, thus
we need at least nine colors in this coloring.

If we use six colors to color the �rst column, WLOG, as-
sume that c(ui, v1) ≡ i(mod 6) for 1 ≤ i ≤ 17. Then
c(u13, v2) = 4, and thus c(u14, v2) = 5, c(u15, v2) =
6, c(u16, v2) = 7, c(u17, v2) = 8, c(u1, v2) = 6, and
c(u2, v2) = 9.

If we use seven colors to color the �rst column, WLOG,
assume that c(ui, v1) ≡ i(mod 7) for 1 ≤ i ≤ 14.
Then c(u15, v1) = 3, c(u16, v1) = 4, c(u17, v1) = 5 and
c(u17, v2) = 6, so we have c(u16, v2) = 2, c(u15, v2) =
1, c(u14, v2) = 8, c(u13, v2) = 2, and c(u12, v2) = 9.

If we use eight colors to color the �rst column, WLOG,
assume that c(ui, v1) ≡ i(mod 8) for 1 ≤ i ≤ 16, then we
have c(u17, v1) = 9.

Therefore, we need at least nine colors in every case.

We de�ne the coloring c of G as follows:

1 4 1 4 · · ·
2 5 2 5 · · ·
3 6 3 6 · · ·
4 7 4 7 · · ·
5 8 5 8 · · ·
6 1 6 1 · · ·
7 2 7 2 · · ·
8 3 8 3 · · ·
1 4 1 4 · · ·
2 5 2 5 · · ·
3 6 3 6 · · ·
4 7 4 7 · · ·
5 8 5 8 · · ·
6 9 6 9 · · ·
7 1 7 1 · · ·
8 2 8 2 · · ·
9 3 9 3 · · ·



.

Clearly, c is a 5-hued 9-coloring of G, so we have χ5(G) ≤
9. Hence χ5(G) = 9.

(iii) For n = 11, similar as (i) and (ii), it is not di�cult
to show that χ5(G) ≥ 9. We consider the coloring c of
G as following: 

1 7 1 7 · · ·
2 8 2 8 · · ·
3 9 3 9 · · ·
4 1 4 1 · · ·
5 2 5 2 · · ·
6 3 6 3 · · ·
7 4 7 4 · · ·
8 5 8 5 · · ·
9 6 9 6 · · ·
4 2 4 2 · · ·
5 3 5 3 · · ·


.

Clearly, c is a 5-hued 9-coloring, so we have χ5(G) ≤ 9,
hence χ5(G) = 9.

(iv) For n = 10, it is not di�cult to prove χ5(G) ≥ 9
similar as (i) and (ii).

We consider a 9-coloring of G as following:

1 6 2 7 1 6 · · ·
2 7 3 8 2 7 · · ·
3 8 4 9 3 8 · · ·
4 6 5 7 4 6 · · ·
5 9 1 6 5 9 · · ·
1 7 2 8 1 7 · · ·
2 6 3 7 2 6 · · ·
3 8 4 9 3 8 · · ·
4 7 5 8 4 7 · · ·
5 9 1 6 5 9 · · ·


.

Clearly, if m is odd, then it is a 5-hued 9-coloring, so we
have χ5(G) ≤ 9, hence we obtain that χ5(G) = 9 in this
case.

Suppose that m is even. If we use nine colors to color G,
then there is some vertex in any adjacent two columns
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whose color number of neighbors must be 4 no matter
what the coloring is. Therefore, the color number of
the neighbors of this vertex in the �rst column or the
last column is 4 which contradicts the 5-hued nature.
Hence χ5(G) ≥ 10. Consider a 10-coloring c of G with
c(ui, vj) ≡ (2(i− 1) + j)(mod 10) as following:

1 2 3 4 5 6 7 8 9 · · ·
3 4 5 6 7 8 9 10 1 · · ·
5 6 7 8 9 10 1 2 3 · · ·
7 8 9 10 1 2 3 4 5 · · ·
9 10 1 2 3 4 5 6 7 · · ·
1 2 3 4 5 6 7 8 9 · · ·
3 4 5 6 7 8 9 10 1 · · ·
5 6 7 8 9 10 1 2 3 · · ·
7 8 9 10 1 2 3 4 5 · · ·
9 10 1 2 3 4 5 6 7 · · ·


.

Clearly, |c(N(ui, vj))| = min{5, d(u1, vj)}, so c is a 5-
hued 10-coloring of G, hence we have χ5(G) = 10 for
even m.

Subcase 3.4 Suppose that r ≥ 6. If n ≡ 0(mod7), then
χr(C2

m) ≥ 7 by Observation 1.1. De�ne the coloring c of
G as following:

1 4 7 3 6 2 5 1 4 7 · · ·
2 5 1 4 7 3 6 2 5 1 · · ·
3 6 2 5 1 4 7 3 6 2 · · ·
4 7 3 6 2 5 1 4 7 3 · · ·
5 1 4 7 3 6 2 5 1 4 · · ·
6 2 5 1 4 7 3 6 2 5 · · ·
7 3 6 2 5 1 4 7 3 6 · · ·
1 4 7 3 6 2 5 1 4 7 · · ·
...

...
...

...
...

...
...

...
...

...


.

Clearly, c is a r-hued 7-coloring of G, so we have χr(G) ≤
7. Hence χr(G) = 7. Suppose that n ≡ i(mod7) for
i ∈ [1, 6] in the following.

Subcase 3.4.1 Suppose that n ∈ {15, 22, 23, 29, 30, 31},
or 8 | n, or n ≥ 36.

(i) If 8 | n, then the coloring c of the �rst column is
c(ui, v1) ≡ i(mod 8) which is a optimal coloring, so we
have χr(G) ≥ 8. De�ne the coloring c of G as following:

1 4 7 2 5 8 3 6 1 4 7 · · ·
2 5 8 3 6 1 4 7 2 5 8 · · ·
3 6 1 4 7 2 5 8 3 6 1 · · ·
4 7 2 5 8 3 6 1 4 7 2 · · ·
5 8 3 6 1 4 7 2 5 8 3 · · ·
6 1 4 7 2 5 8 3 6 1 4 · · ·
7 2 5 8 3 6 1 4 7 2 5 · · ·
8 3 6 1 4 7 2 5 8 3 6 · · ·
1 4 7 2 5 8 3 6 1 4 7 · · ·
...

...
...

...
...

...
...

...
...

...
...


.

Clearly, c is a 6-hued 8-coloring of G, so we have χr(G) ≤
8. Hence χr(G) = 8.

(ii) n = 15. If we use �ve colors to color the �rst column,
WLOG, assume that c(ui, v1) ≡ i(mod 5) for 1 ≤ i ≤

15. Then, by the de�nition of r-hued coloring, we have
c(u1, v2) = 6, c(u2, v2) = 7, c(u3, v2) = 8, c(u4, v2) = 9,
and c(u5, v2) = 10, so we need at least ten colors in this
coloring.

If we use six colors to color the �rst column, WLOG,
assume that c(ui, v1) ≡ i(mod 6) for 1 ≤ i ≤ 12. Then
c(u1, v13) = 7, c(u1, v14) = 8, and c(u1, v15) = 9, so we
need at least nine colors in this coloring.

If we use seven colors to color the �rst column, WLOG,
assume that c(ui, v1) ≡ i(mod 7) for 1 ≤ i ≤ 14. Then
c(u1, v15) = 8, so we need at least eight colors in this
coloring.

Therefore, we need at least eight colors in every case.

We can �nd a coloring c of G as following:

1 4 7 3 6 1 4 · · ·
2 5 8 4 7 2 5 · · ·
3 6 1 5 8 3 6 · · ·
4 7 2 6 1 4 7 · · ·
5 8 3 7 2 5 8 · · ·
6 1 4 8 3 6 1 · · ·
7 2 5 1 4 7 2 · · ·
8 3 6 2 5 8 3 · · ·
1 4 7 3 6 1 4 · · ·
2 5 1 4 7 2 5 · · ·
3 6 2 5 1 3 6 · · ·
4 7 3 6 2 4 7 · · ·
5 1 4 7 3 5 1 · · ·
6 2 5 1 4 6 2 · · ·
7 3 6 2 5 7 3 · · ·



.

Clearly, c is a 6-hued 8-coloring of G, so we have χr(G) ≤
8. Hence χr(G) = 8.

(iii) If n ∈ {22, 23, 29, 30, 31}, or n ≥ 36, then we obtain
χr(G) ≥ 8 as (i) similarly. It is not di�cult to verify that
there exist nonnegative integers x and y such that n =
7x+ 8y from [11]. We consider the coloring c of G with
c(ui, v1) ≡ i(mod 7), c(ui, vj) ≡ (c(ui, vj−1) + 3)(mod 7)
for j ≥ 2 and 1 ≤ i ≤ 7x as following:

1 4 7 3 6 1 4 · · ·
2 5 1 4 7 2 5 · · ·
3 6 2 5 1 3 6 · · ·
4 7 3 6 2 4 7 · · ·
5 1 4 7 3 5 1 · · ·
6 2 5 1 4 6 2 · · ·
7 3 6 2 5 7 3 · · ·


,

c(ui, v1) ≡ i(mod 8), and c(ui, vj) ≡ (c(ui, vj−1) +
3)(mod 8) for j ≥ 2 and 7x+ 1 ≤ i ≤ n as following:

1 4 7 3 6 1 4 · · ·
2 5 8 4 7 2 5 · · ·
3 6 1 5 8 3 6 · · ·
4 7 2 6 1 4 7 · · ·
5 8 3 7 2 5 8 · · ·
6 1 4 8 3 6 1 · · ·
7 2 5 1 4 7 2 · · ·
8 3 6 2 5 8 3 · · ·


.
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Clearly, c is a r-hued 8-coloring of G, so we have χr(G) ≤
8. Hence χr(G) = 8.

Subcase 3.4.2 Suppose that n ∈ {9, 17, 18, 25, 26,
27, 33, 34}.

(i) For n = 9, it is not di�cult to verify that the coloring
c of the �rst column with c(ui, v1) ≡ i(mod 9) is an
optimal coloring, so we have χr(G) ≥ 9. De�ne the
coloring c of G as following:

1 4 7 1 4 · · ·
2 5 8 2 5 · · ·
3 6 9 3 6 · · ·
4 7 1 4 7 · · ·
5 8 2 5 8 · · ·
6 9 3 6 9 · · ·
7 1 4 7 1 · · ·
8 2 5 8 2 · · ·
9 3 6 9 3 · · ·


.

Clearly, it is a r-hued 9-coloring ofG, so we have χr(G) ≤
9. Hence we obtain that χr(G) = 9.

(ii) For n = 17, if we use �ve colors to color the �rst
column, WLOG, assume that c(ui, v1) ≡ i(mod 5) for
1 ≤ i ≤ 15. Then, by the de�nition of r-hued coloring,
we have c(u3, v2) = 6, and c(u4, v2) = 7, c(u5, v2) =
8, c(u6, v2) = 9 and c(u7, v2) = 10.

If we use six colors to color the �rst column, WLOG, as-
sume that c(ui, v1) ≡ i(mod 6) for 1 ≤ i ≤ 17. Then
we have c(u1, v2) = 6, c(u2, v2) = 7, c(u3, v2) = 8,
c(u17, v2) = 9, and c(u16, v2) = 10.

If we use seven colors to color the �rst column, WLOG,
assume that c(ui, v1) ≡ i(mod 7) for 1 ≤ i ≤ 14.
Then, by the de�nition of r-hued coloring, we obtain
that c(u15, v1) = 3, c(u16, v1) = 4, c(u17, v1) = 5,
c(u1, v2) = 6, c(u2, v2) = 7, c(u3, v2) = 8, c(u17, v2) = 9,
and c(u16, v2) = 10.

If we use eight colors to color the �rst column, WLOG,
assume that c(ui, v1) ≡ i(mod 8) for 1 ≤ i ≤ 16. Then
we have c(u17, v1) = 9, so we need at least nine colors in
this case.

We can �nd a coloring c of G as following:

1 4 7 2 5 8 3 6 1 4 7 · · ·
2 5 8 3 6 1 4 7 2 5 8 · · ·
3 6 1 4 7 2 5 8 3 6 1 · · ·
4 7 2 5 8 3 6 1 4 7 2 · · ·
5 8 3 6 1 4 7 2 5 8 3 · · ·
6 1 4 7 2 5 8 3 6 1 4 · · ·
7 2 5 8 3 6 1 4 7 2 5 · · ·
8 3 6 1 4 7 2 5 8 3 6 · · ·
1 4 7 2 5 8 3 6 1 4 7 · · ·
2 5 8 3 6 9 4 7 2 5 8 · · ·
3 6 9 4 7 1 5 8 3 6 9 · · ·
4 7 1 5 8 2 6 9 4 7 1 · · ·
5 8 2 6 9 3 7 1 5 8 2 · · ·
6 9 3 7 1 4 8 2 6 9 3 · · ·
7 1 4 8 2 5 9 3 7 1 4 · · ·
8 2 5 9 3 6 1 4 8 2 5 · · ·
9 3 6 1 4 7 2 5 9 3 6 · · ·



.

Clearly, c is a r-hued 9-coloring of G, so we have χr(G) ≤
9. Hence χr(G) = 9.

(iii) If n ∈ {18, 25, 26, 27, 33, 34}, then there exist non-
negative integers x and y such that n = 8x + 9y. Sim-
ilar as (i) and (ii), we have χr(G) ≥ 9. We con-
sider the coloring c of G with c(ui, v1) ≡ i(mod 8)
and c(ui, vj) ≡ (c(ui, vj−1) + 3)(mod 8) for j ≥ 2 and
1 ≤ i ≤ 8x as following:

1 4 7 2 5 8 3 6 1 4 7 · · ·
2 5 8 3 6 1 4 7 2 5 8 · · ·
3 6 1 4 7 2 5 8 3 6 1 · · ·
4 7 2 5 8 3 6 1 4 7 2 · · ·
5 8 3 6 1 4 7 2 5 8 3 · · ·
6 1 4 7 2 5 8 3 6 1 4 · · ·
7 2 5 8 3 6 1 4 7 2 5 · · ·
8 3 6 1 4 7 2 5 8 3 6 · · ·


,

and c(ui, v1) ≡ i(mod 9) and c(ui, vj) ≡ (c(ui, vj−1) +
3)(mod 9) for j ≥ 2 and 8x+ 1 ≤ i ≤ n as following:

1 4 7 2 5 8 3 6 1 4 7 · · ·
2 5 8 3 6 9 4 7 2 5 8 · · ·
3 6 9 4 7 1 5 8 3 6 9 · · ·
4 7 1 5 8 2 6 9 4 7 1 · · ·
5 8 2 6 9 3 7 1 5 8 2 · · ·
6 9 3 7 1 4 8 2 6 9 3 · · ·
7 1 4 8 2 5 9 3 7 1 4 · · ·
8 2 5 9 3 6 1 4 8 2 5 · · ·
9 3 6 1 4 7 2 5 9 3 6 · · ·


.

Clearly, c is a r-hued 9-coloring of G, so we have χr(G) ≤
9. Hence χr(G) = 9.

Subcase 3.4.3 Suppose that n ∈ {5, 10, 11, 12, 13,
19, 20}.

(i) For n = 5, with the same reason in Subcase 3.3, we
obtain that χr(G) ≥ 10. Let c be the coloring with
c(ui, vj) ≡ (2i + j)(mod 10). Then it is not di�cult to
verify that c is a r-hued 10-coloring of G, so we have
χr(G) ≤ 10. Hence χr(G) = 10.

(ii) For n = 10, if we use �ve colors to color the �rst
column, WLOG, assume that c(ui, v1) ≡ i(mod 5) for
1 ≤ i ≤ 10. Then, by the de�nition of r-hued color-
ing, we have c(u1, v2) = 6, c(u2, v2) = 7, c(u3, v2) =
8, c(u4, v2) = 9, and c(u5, v2) = 10, so we need at least
ten colors in this coloring.

If we use six colors to color the �rst column, WLOG,
assume that c(ui, v1) ≡ i(mod 6) for 1 ≤ i ≤ 6.
Then we have c(u7, v1) = 2, c(u8, v1) = 3, c(u9, v1) =
4, c(u10, v1) = 5, c(u1, v2) = 6, c(u2, v2) = 7, c(u3, v2) =
8, c(u10, v2) = 9, and c(u9, v2) = 10.

If we use seven colors to color the �rst column, WLOG,
assume that c(ui, v1) ≡ i(mod 7) for 1 ≤ i ≤ 7. Then
c(u8, v1) = 3, c(u9, v1) = 4, c(u10, v1) = 5, c(u1, v2) =
6, c(u2, v2) = 7, c(u3, v2) = 8, c(u4, v2) = 1, c(u5, v2) =
2, c(u6, v2) = 9, and c(u7, v2) = 10.

If we use eight colors to color the �rst column, WLOG,
assume that c(ui, v1) ≡ i(mod 8) for 1 ≤ i ≤ 8. Then
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we have c(u9, v1) = 4 and c(u10, v1) = 5, and thus we
obtain that c(u1, v2) = 6, c(u2, v2) = 7, c(u3, v2) =
8, c(u4, v2) = 1, c(u5, v2) = 2, c(u6, v2) = 3, c(u7, v2) =
9 and c(u8, v2) = 10.

If we use nine colors to color the �rst column, WLOG,
assume that c(ui, v1) ≡ i(mod 9) for 1 ≤ i ≤ 9. Then we
have c(u10, v1) = 5 and c(u1, v2) ∈ {4, 6, 7, 8} by the de�-
nition of r-hued coloring. We can obtain that χr(G) ≥ 10
as upper paragraph similarly.

We consider the coloring c with c(ui, vj) ≡ (2i +
j)(mod 10). It is not di�cult to verify that c is r-hued 10-
coloring ofG, so we have χr(G) ≤ 10. Hence χr(G) = 10.

(iii) For n ∈ {11, 12, 13, 19, 20}, similar as (i) and (ii),
we can obtain that χr(G) ≥ 10. If n = 11, then we
consider the coloring c of G as following:

1 4 7 10 2 5 8 · · ·
2 5 8 11 3 6 9 · · ·
3 6 9 1 4 7 10 · · ·
4 7 10 2 5 8 11 · · ·
5 8 11 3 6 9 1 · · ·
6 9 1 4 7 10 2 · · ·
7 10 2 5 8 11 3 · · ·
8 11 3 6 9 1 4 · · ·
9 1 4 7 10 2 5 · · ·
10 2 5 8 11 3 6 · · ·
11 3 6 9 1 4 7 · · ·


.

It is not di�cult to verify that c is a r-hued 11-coloring
of G, so we have χr(G) ≤ 11.

If n = 12, then we consider the coloring c of G as follow-
ing: 

1 4 7 10 2 5 8 · · ·
2 5 8 11 3 6 9 · · ·
3 6 9 1 4 7 10 · · ·
4 7 10 2 5 8 11 · · ·
5 8 11 3 6 9 1 · · ·
6 9 1 4 7 10 2 · · ·
7 10 2 5 8 11 3 · · ·
8 11 3 6 9 1 4 · · ·
9 1 4 7 10 2 5 · · ·
10 2 5 8 11 3 6 · · ·
11 3 6 9 1 4 7 · · ·
6 9 1 4 7 10 2 · · ·



.

Clearly, c is a r-hued 11-coloring of G, so we obtain that
χr(G) ≤ 11.

If n = 13, then we consider the coloring c of G as follow-

ing: 

1 2 3 4 1 2 · · ·
3 4 5 6 3 4 · · ·
5 6 7 8 5 6 · · ·
7 8 9 10 7 8 · · ·
9 10 1 2 9 10 · · ·
1 2 3 4 1 2 · · ·
3 4 5 6 3 4 · · ·
5 6 7 8 5 6 · · ·
7 8 9 10 7 8 · · ·
9 10 1 2 9 10 · · ·
4 3 6 5 4 3 · · ·
6 5 8 7 6 5 · · ·
8 7 10 9 8 7 · · ·



.

It is not di�cult to verify that c is a r-hued 10-coloring
of G, so we have χr(G) ≤ 10. Hence χr(G) = 10.

If n = 19, then we consider the coloring c of G as follow-
ing: 

1 4 7 1 4 · · ·
2 5 8 2 5 · · ·
3 6 9 3 6 · · ·
4 7 1 4 7 · · ·
5 8 2 5 8 · · ·
6 9 3 6 9 · · ·
7 1 4 7 1 · · ·
8 2 5 8 2 · · ·
9 3 6 9 3 · · ·
1 4 7 1 4 · · ·
2 5 8 2 5 · · ·
3 6 9 3 6 · · ·
4 7 10 4 7 · · ·
5 8 1 5 8 · · ·
6 9 2 6 9 · · ·
7 10 3 7 10 · · ·
8 1 4 8 1 · · ·
9 2 5 9 2 · · ·
10 3 6 10 3 · · ·



.

Clearly, it is a r-hued 10-coloring of G, so we have
χr(G) ≤ 10. Hence χr(G) = 10.

If n = 20, then the coloring c with c(ui, vj) ≡ (2i +
j)(mod 10) is a r-hued 10-coloring of G, so we have
χr(G) ≤ 10. Hence χr(G) = 10.

In a word, the proof of our result is completed.
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