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Abstract—Semi-analytical solutions are considered for a delay
logistic equation with non-smooth feedback control, in a one
dimensional reaction-diffusion domain. The feedback mecha-
nism involves varying the population density in the boundary
region, in response to the population density in the centre of the
domain. The effect of the two sources of delay, from the logistic
equation itself and the feedback term, is explored. The Galerkin
method, which assumes a spatial structure for the solution, is
used to approximate the governing partial differential equation
by a system of ordinary differential equations. The form of
feedback is chosen to leave the steady-state solution unchanged
and guarantee positive population densities at the boundary.
Whilst physically realistic, the feedback is non-smooth as it
has discontinuous derivatives. A local stability analysis, of
the four smooth parts of the full system, allows a band of
parameter space, in which Hopf bifurcations occur, to be
found. A precise estimate of the Hopf bifurcation parameter
space, for the non-smooth system, is obtained using a hybrid
stability condition. This is found by considering the dominant
eigenvalues of the smooth parts of the system. Examples of
bifurcation diagrams, stable solutions and limit cycles are shown
in detail. Comparisons of the semi-analytical and numerical
solutions show that the semi-analytical solutions are highly
accurate.

Index Terms—logistic equation, reaction-diffusion-delay
equations, non-smooth feedback control, Hopf bifurcations,
semi-analytical solutions

I. INTRODUCTION

REACTION-diffusion equations with delays arise in
many fields such as biology, chemistry, population

ecology and physics, and have been investigated extensively.
The introduction of a delay into the governing equation can
introduce instability, via a Hopf bifurcation, with the sub-
sequent development of limit cycles and periodic solutions.
[1] introduced a delay into the competition term and obtained
the delay logistic equation

du

dt
= λu(t)(1− u(t− 1)), (1)

which has a steady-state solution for 0 < λ < π
2 and periodic

solutions for λ > π
2 , see [2]. [3] considered a generalised

logistic equation with distributed delay. The form of the delay
allowed the generalised delay equation to be written as a set
of two coupled point delay equations. Explicit expressions
were then obtained for the occurrence of Hopf bifurcations.
[4] found an asymptotic solution to the delay logistic equa-
tion, for the case when the delay is large. He derived explicit
expressions describing the periodic solution, including the
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period and the maximum and minimum amplitudes. A good
comparison was found between the analytical and numerical
solutions, for large λ. [5] studied the stability of a model
for pluripotent stem cell dynamics while [6] investigated the
boundedness and stability of solutions to a Nicholson-type
delay system. [7] considered classes of functional differential
equation models which arise in attempts to describe temporal
delays in HIV pathogenesis and [8] studied Nicholson-type
systems with delays and considered the existence of positive
periodic solutions.

The effects of feedback control in biology have been
studied by many authors. [9], [10] considered feedback
regulation of a logistic growth system, and considered the
feedback delay. Sufficient conditions were obtained for the
global asymptotic stability for the logistic equation in the
delay feedback case. [11] experimentally considered the
control of the collective dynamics with global time-delayed
feedback in populations of electrochemical oscillators. Direct
and differential delayed feedbacks were implemented. They
also showed the effects of feedback gain and time delay on
the collective behaviour of the populations.

Semi-analytical models of reaction-diffusion equations
have been developed for a range of applications, such as
the reversible Selkov model with feedback delay [13], the
logistic equation [14] and the Brusselator model [15]. All
these models yielded accurate solutions, compared with the
full numerical results. [16] examined semi-analytical solu-
tions for the Belousov-Zhabotinskii equations in a reaction-
diffusion cell. Non-smooth feedback control, with delay, was
investigated. The Galerkin method was used to approximate
the governing delay pdes by a system of delay odes. Steady
state, transient solutions and Hopf bifurcation points were
found. A band of parameter space was found, in which the
Hopf bifurcations occur. Examples of a stable and unstable
limit cycle were shown with an excellent comparison ob-
tained between semi-analytical and numerical solutions.

[17] investigated bifurcation theory for non-smooth piece-
wise continuous ode systems. Many important applications,
such as control and switching problems, friction systems
and impact oscillators, are described by such systems. They
reviewed bifurcation theory for steady-state solutions which
lie on discontinuity boundaries and described the new types
of instabilities which can occur in the non-smooth system.
[18] considered the stability of a plane piecewise smooth
linear system with two dependent variables and discontinu-
ous derivatives at the steady-state solution. They obtained a
hybrid condition for the overall stability of the system, which
related the complex eigenvalues of the two smooth systems,
which comprised the full non-smooth system.

In this paper, we study the delay logistic equation in a 1-
D reaction-diffusion cell with non-smooth feedback control.
The feedback consists of varying the population density in
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the boundary region in response to the population density
in the domain centre. Also, to be physically realistic, the
population density at the boundary must be positive, which
requires the introduction of a modulus term in the feedback
response, leading to a non-smooth system. Another key
aspect of the problem is the effect of two different delay
terms, on the stability of the system. The Galerkin method
is used to find a semi-analytical model consisting of a set
of non-smooth delay odes. The non-smooth system consists
of four different sets of smooth odes, and we first study the
stability of each smooth part of the system. This approach
gives three regions, a region in which all smooth parts of
the system are stable, a region in which all are unstable, and
an intermediate region where some smooth parts are stable
and some are unstable. The ideas of [16]–[18] are then used
to provide a precise semi-analytical prediction of the region
Hopf bifurcations occur for the full non-smooth system.

In Section II the semi-analytical ode model is derived
using the Galerkin method for a 1-D cell geometry. In Section
III a stability analysis is performed to determine the points
of Hopf bifurcation with parameter maps of the Hopf points
drawn. In Section IV steady state, limit cycle solutions and
bifurcation diagrams are presented. Good comparisons are
found between the semi-analytical and numerical solutions.
In Section V some conclusions are made.

II. SEMI-ANALYTICAL MODEL

The diffusive delay logistic pde, for a 1-D geometry, is
written as

ut = uxx + λu(t)(1− u(t− τ1)), (2)
u(x, t) = 0, at x = ±1, u(x, t) = ua, t ≤ 0. (3)

where u(x, t) represents the population density, λ is the
growth or proliferation rate and τ1 represents the delay term
in the logistic equation. The boundary condition (3) is of
Dirichlet form with a zero population and the initial condition
represents an uniform population ua for t ≤ 0. (2) and (3)
has an unique steady-state solution and we let u = us be the
steady-state solution at the domain centre, x = 0. The pde
(2) and (3) has oscillatory solutions; [14] mapped the areas
of parameter space, in which Hopf bifurcations occurred.

One of the key aims of control is to change the stability
of steady-state solutions via alteration of a parameter, in
response to feedback from the system. For the pde (2) we
use feedback of the form

u(x, t) = H|us − u(0, t− τ2)|, at x = ±1, (4)

at the boundaries. Now for a stable system u(0, t) → us as
t → ∞ so the feedback does not change the occurrence of
steady-state solutions. H > 0 is the feedback parameter and
this response is proportional to the difference between the
transient and steady-state solutions at x = 0. The modulus
sign ensures that the population in the boundary region
is always positive, as negative populations are unphysical.
Note that the modulus term results in a continuous feedback
system but with non-smooth derivatives. It is of interest here
to determine how the feedback (4) modifies the stability of
(2) and (3).

The Galerkin method is used for the derivation of a semi
analytical model for (2) and (4). In this method, a spatial

form of the profile concentration is assumed, see [13], [14].
The Galerkin method is an analytical technique, which uses
orthogonality of basis functions, so that we can replace the
system of pdes by a lower order system of odes. In this
model, the following trial function is used for the expansion

u(x, t) = (u1(t)−H|u1s + u2s − u1d2 − u2d2 |) cos
(πx

2

)
+u2(t) cos

(
3πx

2

)
+H|u1s + u2s − u1d2 − u2d2 |, (5)

where uid2 = ui(t− τ2), i = 1, 2.

The trial expansion (5) is chosen so that u = u1 + u2 is the
population density at the domain centre and the boundary
condition (4) is satisfied. At the steady-state us = us1 +us2.
The pde (2) is not satisfied exactly, but the free parameters
in the above expression are created from evaluating aver-
aged versions of the governing pde, weighted by the basis
functions cos

(
1
2πx

)
and cos

(
3
2πx

)
. Therefore, we obtain a

system of two odes as

du1
dt

=
2π

Hπ − 4H + π
[−π

2

8
u1 + λ(

1

2
u1 −

4

15π
u2u1d1

− 36

35π
u2u2d1 −

4

3π
u1u1d1) + λH(

4

3π
u1M2 −

1

2
u1M2

−1

2
u1d1M1 +

4

15π
u2d1M1 +

4

3π
u1d1M1 +

4

15π
u2M2)

+λHM1(
kπ2

8
− 10

3π
HM2 +

4− π
2π

+HM2)

− 4

15π
λu1u2d1 ], (6)

du2
dt

=
6π

3π + 4H
[−9kπ2

8
u2 + λ(

1

2
u2 −

36

35π
u2u1d1

+
4

9π
u2u2d1 −

4

15π
u1u1d1) + λH(

36

35π
u2M2

−1

2
u2M2 −

1

2
u2d1M1 +

36

35π
u2d1M1 +

4

15π
u1M2)

+λHM1(
2

5π
HM2 −

2

3π
+

4

15π
u1d1)− 36

35π
u1u2d1λ],

M1 = f(u1s + u2s − u1d2 − u2d2),

M2 = f(u1s + u2s − u1dd − u2dd), f(u) = sgn(u)u

uid1 = ui(t− τ1), uid2 = ui(t− τ2),

uidd = ui(t− τ1 − τ2) i = 1, 2.

The series (5) is truncated after two terms, which represents
a trade-off between the complexity of the expressions and the
accuracy of the semi-analytical solution. Sufficient accuracy
with little expression swell is provided by two-term method.
The one-term solutions are derived by allowing u2 = 0.
As (6) includes modulus terms, it represents a non-smooth
system with discontinuous derivatives. Depending on the sign
of the two expressions involving the modulus signs (M1

and M2 in (6)) we have four different smooth ode systems,
termed pp, pn, np and nn, where p refers to the sgn function
in M1 or M2 being positive and n to it being negative.

In order to obtain the steady-state solutions, we let
du1

dt = du2

dt = 0 in (6), which reduces them to sets of
transcendental equations. We also note that at the steady
state, the feedback response (involving the parameter H)
terms can be neglected. The Maple software package is
then used to obtain the steady-state solutions by solving
the transcendental equations, h1 = h2 = 0. The fourth-
order Runge-Kutta scheme and the Crank-Nicholson finite
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difference method are used to calculate numerical solutions
to the ode and pde models, respectively. The temporal
and spatial and temporal discretizations use for the finite-
difference scheme are ∆x = 0.05 and ∆t = 1× 10−2. This
implicit scheme is unconditionally stable.

III. STABILITY ANALYSIS AND BIFURCATION DIAGRAMS

This section discusses the theoretical approach for the
stability analysis, to determine the points of Hopf bifurcation.
Stability theory is well understood for systems of smooth
odes but it is less well developed for non-smooth ode
systems, see [16]–[18] for a review of current theories. The
analysis of the semi-analytical non-smooth ode system is a
generalisation of [17], [18], who developed the stability of
a non-smooth system consisting of two smooth linear ode
systems. We explore the role the dominant eigenvalues of
the smooth parts of (6) play, in the development of a hybrid
stability condition. A semi-analytical map in which Hopf
bifurcations occur is found and compared with numerical
results. Also, the effects of the delay terms in the logistic pde
and feedback are studied in detail. Hopf bifurcation points
are studied for the delay ode model (6). The smooth ode
systems are expanded in a Taylor series about the steady-
state solution

ui = uis + εgie
−µt, i = 1, 2, ε� 1 (7)

We substitute these expressions into the odes (6), and lin-
earise around the steady state. µ is the growth rate and gi
represent the amplitudes of the small perturbations at time
t = 0. The Jacobian matrix gives the characteristic equation
F (µ) = m1 + im2 = 0 for the decay rate µ. We set µ = iw
to be purely imaginary and the points of Hopf bifurcation
then occur for

h1 = h2 = m1 = m2 = 0. (8)

The Hopf bifurcation curves, of the two smooth ode systems,
pp and nn, are very similar to the two smooth systems, pn
and np, respectively, with the curves the same to graphical
accuracy. So, the two smooth systems pp and nn are found
and plotted. This approach gives three regions: a region in
which both smooth odes (pp and nn) of the system are
stable; a region in which both are unstable; and a mixed
region in which one ode is stable and the other unstable.
Hopf bifurcations for the full non-smooth ode system occur
in this mixed region of the parameter space.

To resolve the exact parameter space in which Hopf
bifurcations occur for the non-smooth system (6), we first
consider a linear non-smooth system, see [17].

v̇ =

{
A−v if cT v ≤ 0,
A+v if cT v ≥ 0,

(9)

where the eigenvalues of A± and λ = ς± ± iω±, (ω± > 0)
are complex, the steady state solution v = 0 and A± ∈
R2×2, c = R2. Then the discontinuous system (9) is stable
if

λs =
ς+

ω+
+
ς−

ω− < 0. (10)

An insight into this combined stability condition can be
found by letting the solutions

v = deς
±t cos(ω±t), (11)
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pp smooth system

nn smooth system

numerical solution

(a)
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semi-analytical prediction

numerical solution

(b)

Fig. 1. (color online) Hopf bifurcation curves in the λ − τ1 plane with
H = 0.1 and τ2 = 0. Shown are the two-term semi-analytical predictions
(black solid line) of the pp and nn smooth systems, numerical solutions of
(2) and (4) (red dotted line) and the semi-analytical prediction (10) for the
non-smooth system-(blue crosses).

of the two odes v̇ = A±v. The solution stays in its portion
of the phase plane space for time t = π

ω± , before v changes
sign. Hence, the growth or decay during this time is ς±π

ω± ,
which leads to the combined stability condition (10).

The two-term model (6) consists of two odes. In the
parameter region where the Hopf bifurcation occurs the
eigenvalues comprise a dominant complex conjugate pair
plus other eigenvalues with negative real parts of larger
magnitudes. Hence the dynamics of the pp and nn smooth
odes is governed by the dominant complex conjugate pair of
eigenvalues and hence is similar to each smooth part of (9).

If we assume that the components of the vector v are all
positive (the pp case where the sng term for M1 is positive)
at t = 0, then at a later time the components will all become
negative (the nn case where the sgn term for M1 is negative).
So if the dominant eigenvalues of the pp and nn cases are
given by ς± ± iω±, then (10) should apply with λs = 0
representing a condition for neutral stability. Hence we obtain
a semi-analytical estimate of the parameter region in which
Hopf bifurcations occur for the non-smooth system.

Figures 1 and 2 show Hopf bifurcation curves in the λ−τ1
plane with H = 0.1. The other parameters are τ2 = 0
and τ2 = τ1 respectively. Figures 1 and 2 (a) shows the
semi-analytical predictions from the pp and nn smooth ode
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Fig. 2. (color online) Hopf bifurcation curves in the λ − τ1 plane with
H = 0.1 and τ2 = τ1. Shown are the two-term semi-analytical predictions
(black solid line) of the pp and nn smooth systems, numerical solutions of
(2) and (4) (red dotted line) and the semi-analytical prediction (10) for the
non-smooth system-(blue crosses).
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Fig. 3. (color online) Hopf bifurcation curves in the λ − τ1 plane with
H = 0.1. Shown are the semi-analytical predictions (10) of the non-smooth
system: τ2 = 0 (black dots), τ2 = τ1 (blue dashed line), τ2 = 2τ1 (green
solid line) and τ2 = 3τ1 (red dotted line).

systems, semi-analytical predictions (10) of the non-smooth
system and numerical solutions. Figures 1 and 2 (b) show
the numerical Hopf bifurcation points and the semi-analytical
predictions (10) for the non-smooth system, for the same
feedback cases. The stability curves for the sets of smooth
odes separates the parameter space into three regions: one in
which all smooth odes are unstable (the upper right part of
the figure), one in which they are all stable (the lower left part
of the figure); and third middle band of mixed stability. It can
be seen that the numerical Hopf bifurcation points lie inside
this mixed stability band. The semi-analytical predictions
(10) for the non-smooth system lie inside this region of
mixed stability and provide an accurate prediction of the
numerical occurrence of limit cycles, with with errors less
than 1% for all choices of λ.

Figure 3 shows Hopf bifurcation curves in the λ − τ1
plane with H = 0.1. Shown are the two-term semi-analytical
predictions (10) for the non-smooth system for τ2 = 0,
τ2 = τ1, τ2 = 2τ1 and τ2 = 3τ1. As τ1 increases, the critical
value of the proliferation rate λ is decreased for all cases, so
feedback, from the more distant past, in the logistic equation
itself is destabilizing. However, increasing the feedback delay
has the opposite effect; for fixed τ1, increasing the value of
τ2 stabilizes the system.

Figure 4 shows Hopf bifurcation curves in the λ − τ1
plane. Shown are semi-analytical predictions (10) of the non-
smooth system for feedback with no delay, (a) τ2 = 0,
(b) τ2 = 0.5τ1, (c) τ2 = τ1. The feedback parameter
H = 0, 0.3, 0.5 and 0.7. For all cases increasing the delay
in the logistic equation, τ1, destabilizes the system and
the critical value of λ1 is decreased. The effect of the
feedback parameter H is to stabilize or destabilize regions
of parameter space depending on the value of τ2. For the
case of feedback with no delay the system is destabilized
as H increases, as the critical value of λ is decreased as H
increases. However, in the cases of feedback with delay, the
effect of increasing the feedback parameter H is to stabilize
the system, with the critical value of λ increasing. Hence the
interplay of feedback strength and delay is quite complex
with both stabilizing and destabilizing scenarios possible.

Figure 5 shows Hopf bifurcation curves in the λ − τ2
plane. Shown are semi-analytical predictions (10) of the
non-smooth system. The feedback parameter for four cases
are H = 0.1, 0.3, 0.5 and 0.7 and τ1 = 2. Increasing the
delay in the feedback condition, τ2, causes the system to be
destabilized. However, the effect of increasing the feedback
parameter H is stabilizing, so the combination of feedback
together with delay can stabilize the system.

IV. BIFURCATION DIAGRAMS, STEADY-STATE AND
TRANSIENT SOLUTIONS

In this section, bifurcation diagrams and the evolution to
both steady-state solutions and limit cycles are considered.
Note that the bifurcation diagram display long time solu-
tions, of the steady-state amplitude and the maximum and
minimum amplitudes of the periodic oscillations, so are not
functions of the initial population ua. Also the bifurcation
diagrams show the populations at the domain centre.

Figure 6 illustrates the steady-state profile for the popula-
tion density u versus x. The parameters are the proliferation
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(a) - Feedback without delay (τ2 = 0)
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(b) - Feedback delay (τ2 = 1
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(c) - Feedback delay (τ2 = τ1)

Fig. 4. (color online) Hopf bifurcation curves in the λ− τ1 plane: H = 0
(black dots), H = 0.3 (blue dashed line), H = 0.5 (green solid line) and
H = 0.7 (red dotted line). Shown is the semi-analytical prediction (10) of
the non-smooth system: (a) the case τ2 = 0, (b) the case τ2 = 1

2
τ1, (c)

the case τ2 = τ1.
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τ 2
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H=0
H=0.5

H=0.7

H=0.3

Fig. 5. (color online) Hopf bifurcation curves in the λ−τ2 plane: H = 0.1
(black dots), H = 0.3 (blue dashed line), H = 0.5 (green solid line) and
H = 0.7 (red dotted line). Shown is the semi-analytical prediction (10) of
the non-smooth system for τ1 = 2.
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numerical solution

Fig. 6. (color online) The steady-state population density u against x. The
parameter λ = 10. Shown are the one-term (blue dashed line) and two-term
(black solid line) semi-analytical solutions and the numerical solutions (red
dotted line) of the pde (2).
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Fig. 7. (color online) The steady-state population density u, against
proliferation rate λ at x = 0. Shown are the one-term (blue dashed line)
and two-term (black solid line) semi-analytical solutions and the numerical
solutions (red dotted line) of the pde (2).
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Fig. 8. (color online) Bifurcation diagram of the population density u for
H = 0.1 and τ1 = τ2 = 2. The two-term (black solid line) semi-analytical
solutions and numerical solution (red dotted line) are shown.

rate λ = 10 and τ1 = 0. Both one- and two-term semi-
analytical of equations as well as numerical solutions of (2)
and (3) are shown. The solution for the population density
u has a single central peak. A good comparison between the
two-term semi-analytical and numerical solutions is obtained
with an error of less than 1%. In this figure, the two-term
case has a density of u = 0.85 at x = 0, very close to the
numerical density, of u = 0.86. The one-term solution is
reasonably accurate but does not model the flat population
density profile, near the centre of the domain, accurately. The
one-term density is u = 0.89 at x = 0, an error of about 3%.
The accuracy of the semi-analytical profiles are qualitatively
similar to those for cubic auto-catalytic reactions [19] and
the Nicholson’s blowflies equation [14].

Figure 7 shows the steady-state population density u,
versus proliferation rate λ. The one- and two-term semi-
analytical models as well as numerical solutions are shown
at x = 0. A unique steady-state solution for the population
density u is found. The non-uniform steady-state solution
bifurcates from the uniform steady-state solution u = 0
at λ = π2

4 and increases exponentially as λ increases,
before approaching a maximum population density of u ' 1.
There is an excellent comparison between the two-term semi-
analytical and numerical solutions, with no more than 2%
error for all values of proliferation rate up to λ = 20. Note
that the numerical steady-state solution of (2) is found with
the delay τ1 = 0 as no Hopf bifurcations occur in this case.

Figure 8 shows the bifurcation diagram of the population
density u, for H = 0.1 and τ1 = τ2 = 2. The numerical and
two-term semi-analytical solutions are obtained. The uniform
steady-state solution, u = 0, occurs when λ < π2

4 . The non-
uniform steady-state solution is stable for π2

4 < λ < λc.
After the supercritical Hopf bifurcation point, λ > λc,
periodic solutions occur. The two-term semi-analytical and
numerical Hopf bifurcation points are λc = 3.31 and
3.32, respectively. The two-term semi-analytical solutions
are extremely accurate in both the stable and oscillatory
regimes of the bifurcation diagram. The main difference is a
slight variation in the maximum amplitude of the oscillatory
solution, for large λ, but is no greater than 4%, for the
parameter ranges shown in this figure.

Figure 9 shows the bifurcation diagram of the population
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 2.5  3  3.5  4  4.5

u

λ

H=0.1

H=0

H=0.3

Fig. 9. (color online) Bifurcation diagram of the population density u for
τ1 = τ2 = 2 and H = 0 (black solid line), H = 0.1 (red dotted line)
and H = 0.3 (blue dashed line). The two-term semi-analytical solutions
are shown.
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Fig. 10. (color online) Bifurcation diagram of the population density u
for τ1 = 2, H = 0.1 and τ2 = 1 (blue dashed line), τ2 = 2 (black solid
line) and τ2 = 3 (red dotted line). The two-term semi-analytical solutions
are shown.

density u for H = 0, 0.1 and 0.3. The other parameters
are τ1 = τ2 = 2. The two-term semi-analytical is obtained
in each case. The two-term solutions lose stability at the
supercritical Hopf bifurcation point, which occurs at λ =
3.25 for the case with no feedback H = 0 and λ = 3.31, 3.70
for the cases with feedback strength H = 0.1 and H =
0.3, respectively. It can be seen that the effect of increasing
feedback strength is to stabilize the system. For the cases
H = 0 and 0.1 the subcritical Hopf bifurcation point only
moves slightly but the feedback causes a significant increase
in the amplitude of the limit cycles, for larger values of λ.

Figure 10 shows the bifurcation diagram of the population
density u for τ2 = 1, 2 and 3. The other parameters are τ1 =
2 and H = 0.1. The two-term semi-analytical is obtained
in each case. The two-term solutions lose stability at the
supercritical Hopf bifurcation point, which occurs at λ =
4.06 for the case τ2 = 1 and λ = 3.31, 3.11 for the cases
τ2 = 2 and τ2 = 3, respectively. It can be seen that the
effect of increasing the delay parameter τ2 is to destabilize
the system, as the critical vale of λ is decreased.

Figures 11 shows the population density u, versus time
t, at x = 0. The parameters are H = 0.1, ua = 0.1 and
τ1 = τ2 = 2. Figure 11(a) has λ = 3.1 while figure 11(b)
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Fig. 11. (color online) The population density u against time t, at point
x = 0 have the parameters H = 0.1, ua = 0.1 and τ1 = τ2 = 2. The
two-term semi analytical solutions are represented by black solid line while
red dotted line represents numerical solutions.

has λ = 3.5. The two-term semi-analytical and numerical
solutions are shown. For figure 11(a) λ = 3.1 < λc = 3.31
and the solution evolves to a steady-state, with u(0, t) ' 0.25
as the time becomes large, after some initial relaxation os-
cillations. There is an excellent comparison existing between
the numerical and the two-term semi-analytical solutions,
with an error not going beyond 2% at λ = 50. The relaxation
oscillations are also well modelled by the semi-analytical
solution. For figure 11(b) λ = 3.5 > λc = 3.31 and periodic
solutions occur. The numerical period and amplitude of the
limit cycle are 6.86 and 1.25, respectively. These values
are very close to the two-term semi-analytical period and
amplitude, 6.87 and 1.26, respectively. The errors in the
two-term semi-analytical values are less than 1%. Also the
locations of the peaks and troughs of the limit cycle is well
modeled by the semi-analytical solutions.

V. CONCLUSIONS

This paper has developed a lower-order semi-analytical
model for the delay logistic equation with feedback control
in the 1-D domain. The Galerkin method was used to obtain
a system of delay odes. Steady-state solutions, limit cycles
and Hopf bifurcation points were all found. Theoretical
predictions for the Hopf bifurcation points were developed
by examining the dominant eigenvalues associated with the

smooth parts of the ode system in order to obtain a hybrid
stability condition for the non-smooth ode model. The effects
of logistic equation and feedback delay were both considered,
with both stabilizing and destabilizing scenarios possible.
Comparisons of the two-term semi-analytical and numerical
solutions further showed the utility of the semi-analytical
method. Generally, the semi-analytical solutions represent
a novel way of predicting the stability of non-smooth pde
systems and future work will apply these methods to other
relevant applications.
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