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Abstract—Multirate or multichannel sampling related theory
and methods are some of the hottest research topics in modern
signal processing community. Among them, the sampling asso-
ciated with the signal and its derivatives is often encountered
in various real applications. In this paper, we investigate the
sampling theory related to the higher order derivatives of
random signals with the fractional Fourier transform. We first
obtain the uniform sampling theorem associated with the higher
order derivatives of random signals, and then we generalize this
results associated with the periodic nonuniform sampling model
for random signals. The corresponding sampling rate will be
reduced by a factor of n so that the workload will be greatly
reduced. Finally, the simulations are performed to verify the
proposed theorem.

Index Terms—higher order derivative sampling, fractional
Fourier domain, periodic nonuniform sampling, power spectral
density, random signal, mean square error.

I. INTRODUCTION

SHANNON sampling is the classical uniform sampling
theorem, which states that, for a complete reconstruction

of an original bandlimited signal, the sampling rate must
be at least twice the maximum frequency presented in the
signal [1], [2]. Its theory is the milestone both in terms
of achievement and conciseness. However, in most practical
applications, such as in the field of synthetic aperture Radar
(SAR), astronomies and geophysics, the Shannon sampling
conditions are not satisfied. And therefore the research of the
sampling theory becomes one of the hottest research topics
in modern signal processing and applied mathematical com-
munity. There have been published many references about
the generalizations of the classical Shannon sampling with
certain situations [3], [4], [5], [6], [7], [8], [9]. Among them,
how to reduce the sampling rate of a signal by multi-channel
sampling or derivative sampling is one of the challenging
problems in the sampling field.

The early works on sampling with derivative values for
deterministic signals in Fourier domain are proposed by
Fogel [4], Jagerman and Fogel [5], and Linden and Ahramon
[6]. In these works, Shannon sampling theorem is extended
to the uniform sampling [9] and periodic nonuniform sam-
pling model [7], [8] of a deterministic bandlimited signal
f(t) and their derivative f (l)(knT )(l = 0, 1, . . . , n − 1)
and f (l)(n(tp+kNT ))(l = 0, 1, . . . , n − 1; p = 1, 2, . . . , N)
in the Fourier domain. However, all the sampling theories
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mentioned above are related to the Fourier transform. It is
shown in recent research results that many natural signals are
better represented by alternative bases other than the Fourier
basis. For example, the fractional Fourier transform basis,
linear canonical transform basis, wavelet transform basis and
the sparse sampling [10], [11], [12], [13], [14], [15], [16].

As one of the generalizations of the classical Fourier
transform, the fractional Fourier transform has been applied
in signal processing [17], [18], [19], [20], [21], [22]. The
study of the sampling theorems associated with the fractional
Fourier transform has developed in recent years [23], [24],
[25], [26]. The sampling expansion and spectral properties
for a uniformly sampled signal which is bandlimited in the
fractional Fourier domain have been derived from different
ways.

The spectral analysis and reconstruction of periodic
nonuniformly sampled are presented in [27]. A more general
sampling theorem is considered in [28], where the multi-
channel sampling theorem in the fractional Fourier domain
is also studied. In literature [29], for the original bandlimited
random signals in fractional Fourier domain, it can be recon-
structed from its uniform samples and multi-channel samples
in the mean square error (MSE). However, for the best of our
knowledge, there are no papers have been published related
to higher order uniform or periodic nonuniform derivative
sampling theorems for random signals in the fractional
Fourier domain to reduce the sampling rate. Therefore, it
is worthwhile and interesting to investigate the sampling
theorem associated with the higher order derivatives of
random signals in fractional Fourier transform domain.

In this paper, we investigate the uniform and periodic
nonuniform derivatives sampling problems of random signals
based on the fractional Fourier transform. The perfect recon-
struction formulas for a random signal from the uniform and
periodic nonuniform sampling points of its higher derivatives
are obtained. And the sampling rate can be reduced n
times as the Nyquist sampling rate. One comparison and a
quantitative analysis are provided to support our conclusion.
The paper is organized as follows. The preliminaries are sum-
marized in section 2. In section 3, the uniform and periodic
nonuniform derivative sampling theorems for bandlimited
random signals in the fractional Fourier domain are derived.
In section 4, the simulation results are presented to show
the accuracy and usefulness of derived results. Section 5
concludes this paper.
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II. PRELIMINARIES

A. Fractional Fourier Transform (FRFT)

As the generalization of the classical Fourier transform,
the αth FRFT [30] of a signal x(t), denoted as Xα(u), is
defined by

Xα(u) = Fα[x(t)](u) =

∫ +∞

−∞
x(t)Kα(u, t)dt (1)

where the kernel function Kα(u, t) is given as follows:

Kα(u, t) =


Aαe

j(t2+u2) cotα/2−jtu cscα, α ̸= kπ

δ(t− u), α = 2kπ

δ(t+ u), α = (2k − 1)π
(2)

and Aα =
√

(1− j cotα)/2π. The inverse FRFT is ex-
pressed as follows:

x(t) = F−α[Xα(u)](t) =

∫ +∞

−∞
Xα(u)K

∗
α(u, t)du (3)

When α = π/2, the FRFT reduces to the Fourier transform
(FT). Superscript ∗ is the complex conjugation.

B. Power Spectral Density

In traditional Fourier transform (FT) domain, for a random
signal {x(t),−∞ < t < +∞}, we often use the autocorre-
lation function and the power spectral density to represent
its characters. If its autocorrelation function

Rxx(t1, t2) = Rxx(t2 + τ, t2) = E[x(t1)x
∗(t2)] (4)

is independent of t2 and only depends on their difference
τ = t1−t2, where E{•} indicates the statistical expectation,
then the random signal x(t) is said to be stationary in the
wide sense [31].

Motivated by the fact that the FRFT generalizes the FT in a
rotational manner, the αth fractional autocorrelation function
of x(t) is defined as [31], [32], [33], [34]

Rα
xx(τ) = lim

T→∞

1

2T

∫ T

−T

Rxx(t2 + τ, t2)e
jt2τ cotαdt2

= Pxx(ρ+ τ, ρ)ejρτ cotα (5)

where Pxx(t+ τ, t) is the power spectral density of x(t) and
the equation (5) is valid for all ρ. Likewise, the αth fractional
power spectral density is given in [31]

Pα
xx(u) =

√
1 + j cotα

2π
Fα[R

α
xx(τ)](u)e

−ju2 cotα/2 (6)

When α = π/2, equation (6) becomes the Wiener-Khinchine
theorem.

In additional, a random signal x(t) is said to be bandlimit-
ed in the αth fractional Fourier domain if its fractional power
spectral density satisfies

Pα
xx(u) = 0, |u| > ur (7)

where ur is called the bandwidth of the random signal x(t)
in fractional Fourier domain. When α = π/2, the x(t) is
bandlimited in Fourier [35].

C. The periodic nonuniform sampling model

The periodic nonuniform sampling is a special case of
nonuniform sampling, which is known as block sampling. In
the periodic nonuniform sampling model, the sampling points
are divided into several groups of points. The groups have
a recurrent period NT , and each group has N nonuniform
sampling points. Denoting the points in one period by
tp + nNT, p = 1, 2, . . . , N ;n ∈ (−∞,+∞). The model of
this periodic nonuniform sampling distribution is depicted in
Fig.1, and that the version is redrawn based on Jenq’s idea
[8].

Fig. 1. Periodic nonuniform sampling model.

III. MAIN RESULTS

Based on the latest results associated with the FRFT, we
investigate and obtain the higher order derivatives sampling
theorems of random signals in FRFT domain in this section.
We discuss the uniform sampling case firstly and then
investigate the case of periodic nonuniform sampling.

A. Uniform Sampling Theorem

We investigate the higher order derivatives sampling prob-
lems associated with the FRFT and the main result can be
represented in Theorem 1.

Theorem 1: Let a random signal x(t) be bandlimited
in the αth FRFT domain with the bandwidth ur, which has
n−1 order continuous derivative. If xc(t) = x(t)ej(t

2/2) cotα

is stationary in the wise sense, then x(t) can be reconstructed
as

x(t) = l·i·m·e
− j

2 t
2 cotα

+∞∑
k=−∞

n−1∑
l=0

(x(t)e
j
2 t

2 cotα)(l)|t=knT

· sl(t− knT ) (8)

in which,

sl(t) =
n−1∑
r=l

arlsr(t), l = 0, 1, · · · , n− 1, (9)

sr(t) =
1

r!
trsincn

(
t

nT

)
, (10)

and the coefficients arl are the solutions of

s
(l′)
l (0) =

n−1∑
r=l

sr
(l′)(0)arl = δll′ (11)

l′ = l, · · · , n− 1; l = 0, · · · , n− 1,

IAENG International Journal of Applied Mathematics, 48:3, IJAM_48_3_13

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



And l·i·m· stands for limit in the mean square or convergence
in probability as well, i.e.,

lim
K→∞

E{|x(t)−
K∑

k=−K

n−1∑
l=0

e−
j
2 t

2 cotα(x(t)e
j
2 t

2 cotα)(l)|t=knT

· sl(t− knT )|2} = 0 (12)

Proof: Let xc(t) denotes the chirped form of the signal
x(t), i.e., xc(t) = x(t)ej(t

2/2) cotα. Since the random signal
x(t) is bandlimited in the αth FRFT domain with the
bandwidth ur, by (6) and (7), we can derive

Pα
xx(τ) =

∫ ur

−ur

[Pα
xx(u)e

ju2 cotα
2 ]e

−j
2 (u2+τ2) cotα+juτ cscαdu

=

∫ ur

−ur

Pα
xx(u)e

− j
2 cotα+juτ cscαdu (13)

Since xc(t) is wise-sense stationary, we can obtain its auto-
correlation function from

E[x(t1)e
j
t2
1
2 ) cotαx∗(t2)e

−j
t2
2
2 cotα] = ej((t2+τ)2−t22/2) cotα

· E[x(t2 + τ), x∗(t2)] = e
j
2 τ

2 cotα+jt2τ cotαRxx(t2 + τ, t2)
(14)

and equation (5). The autocorrelation function of xc(t) can
be written as

Rxcxc
(τ) = e

j
2 τ

2 cotαRxx(t2 + τ, t2) = e
j
2 τ

2 cotαRα
xx(τ).

(15)

Combining equations (13) and (15), we have

Rxcxc(τ) = e
j
2 τ

2 cotαRα
xx(τ) =

∫ ur

−ur

Pα
xxe

juτ cscαdu (16)

We can see that xc(t) is conventionally bandlimited with
ur cscα. Therefore, let the estimate be x̂c(t), where

x̂c(t) =
+∞∑

k=−∞

n−1∑
l=0

x(l)
c (knT )sl(t− knT ) (17)

Then, we have

E{[xc(t)− x̂c(t)]x
(l)∗
c (mnT )} = E{xc(t)x

(l)∗
c (mnT )}−

+∞∑
k=−∞

n−1∑
l=0

E{x(l)
c (knT )x(l)∗

c (mnT )}sl(t− knT ) (18)

Let Rc(l)
xcxc(t) express the autocorrelation function of x

(l)
c (t)

and p(t) = E{xc(t)x
(l)∗
c (mnT )}. Noted that the random

signal xc(t) is bandlimited in the FT domain. Due to xc(t)
is stationary, so the FT auto-correlation function of xc(t)
can be expressed as Rxcxc(τ) = E{x∗

c(t)xc(t + τ)}, and
Rxcxc(τ) is only a function of the variable τ . Then, we have

R(l)
xcxc

(τ) = E{x∗
c(t)x

(l)
c (t+ τ)}, l = 0, 1, . . . , n− 1 (19)

and the equation is valid for all t.

Applying the higher order derivative uniform sampling to
the deterministic function p(t) yields

p(t) = E{xc(t)x
(l)∗
c (mnT )}

=
+∞∑

k=−∞

n−1∑
l=0

p(l)(knT )sl(t− knT )

=

+∞∑
k=−∞

n−1∑
l=0

E{x(l)
c (t)|t=knTx

(l)∗
c (mnT )}sl(t− knT )

=

+∞∑
k=−∞

n−1∑
l=0

Rc(l)
xcxc

(knT −mnT )sl(t− knT ) (20)

Substituting equation (20) into equation (18), we deduce

E{[xc(t)− x̂c(t)]x
(l)∗
c (mnT )}

=+∞
k=−∞

n−1∑
l=0

Rc(l)
xcxc

(knT −mnT )sl(t− knT )−

+∞∑
k=−∞

n−1∑
l=0

Rc(l)
xcxc

(knT −mnT )sl(t− knT ) = 0 (21)

This means that, for very m, [xc(t)− x̂c(t)] is orthogonal to
x
(l)
c (mnT ). Since x̂c(t) is a linear summation of x(l)

c (mnT ),
[xc(t)− x̂c(t)] is also orthogonal to x̂c(t), i.e.,

E{[xc(t)− x̂c(t)]x̂
∗
c(t)} = 0 (22)

On the other hand, we can obtain from equation (18)

E{[xc(t)− x̂c(t)]x
∗
c(t)}

= Rxcxc
(t, t)−

+∞∑
k=−∞

n−1∑
l=0

E{x(l)
c (knT )x∗

c(t)}sl(t− knT )

= Rxcxc(0)−
+∞∑

k=−∞

n−1∑
l=0

R(l)
xx(knT − t)sl(t− knT ) (23)

Similarly, applying the higher order derivative uniform sam-
pling to the deterministic functionRxcxc(τ − τ0) yields

Rxcxc(τ − τ0) =
+∞∑

k=−∞

n−1∑
l=0

R(l)
xcxc

(knT − τ0)sl(t− knT )

(24)
Choosing the variables τ = τ0 = t in equation (24), we
obtain

Rxx(0) =
+∞∑

k=−∞

n−1∑
l=0

R(l)
xx(knT − t)sl(t− knT ) (25)

Substituting equation (25) into equation (23) yields

E{[x(t)− x̂(t)]x∗(t)} = 0 (26)

Therefore, combining equations (19) and (22), we can obtain

E[|x(t)− x̂(t)|2] = E{[x(t)− x̂(t)][x∗(t)− x̂∗(t)]

= E{[x(t)− x̂(t)]x∗(t)} − E{[x(t)− x̂(t)]x̂∗(t)} = 0
(27)

So we have proven the following equation,

xc(t) = l·i·m·

+∞∑
k=−∞

n−1∑
l=0

x(l)
c (knT )sl(t− knT ) (28)
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then,

x(t) = l·i·m·e
− j

2 t
2 cotα

+∞∑
k=−∞

n−1∑
l=0

(x(t)e
j
2 t

2 cotα)(l)|t=knT

· sl(t− knT ) (29)

Conclusion comes from sorting out.

B. Periodic Nonuniform Sampling

In the periodic nonuniform sampling model, the groups
have a recurrent period NT , and each group has N nonuni-
form sampling points. Denote the points in one period by
tp + nNT, p = 1, 2, . . . , N ;n ∈ (−∞,+∞).

Theorem 2: Let a random signal x(t) satisfy the con-
ditions of Theorem 1, then x(t) can be reconstructed from
the periodic nonuniform sampling model by the following
reconstruction formula,

x(t) = l·i·m·e
− j

2 t
2 cotα

+∞∑
k=−∞

n−1∑
l=0

(x(t)e
j
2 t

2 cotα)(l)|t=n(tp+kNT )slp[t− n(tp + kNT )] (30)

in which,

slp(t) =
n−1∑
r=l

arpsrp(t), l = 0, · · · , n− 1, p = 1, · · · , N

(31)

srp(t) =
tr

r!

∏N
q=1 sinπ((t+ n(tp − tq))/nNT )∏N

q=1
q ̸=p

sinπ(n(tp − tq)/nNT )

1

π( t
nNT )

n

(32)
and the coefficients arp are solutions of

slp(0) =
n−1∑
r=l

arpsrp(0) = δll′ , l
′ = l, · · · , n−1; p = 1, · · · , N.

(33)
Here l·i·m· stands for limit in the mean square or conver-
gence in probability as well, i.e.,

lim
K→∞

E{|x(t)− e−
j
2 t

2 cotα
K∑

k=−K

N∑
p=1

n−1∑
l=0

(x(t)e
j
2 t

2 cotα)(l)

|t=n(tp+kNT ) · slp[t− n(tp + kNT )]|2} = 0 (34)

Proof: Similar to the proof of Theorem 1, and we omit
it here.

IV. SIMULATION RESULTS

To illustrate the importance and correctness of the results
in FRFT domain, the uniform and periodic nonuniform
derivative sampling are chosen as examples to perform the
simulation in this section.

A. Uniform Sampling

In this simulation, the nominal sampling period is choosed
as T = 0.1 and parameter α = arcsin(2/π), n = 4.
By applying the uniform reconstruction theorems in FRFT
domain, the reconstruction signal x(t) can be obtained. We
assume that the original random signal x(t) is shown in Fig.2
and its ur=5 in Fig.3. That is to say, when |u| > 5, the
fractional power spectral density Pα

xx(u) of x(t) equals 0.
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Fig. 2. Original random signal.
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Fig. 3. ur of the Original random signal.

We use theorem 1 to reconstruct the original random signal
x(t) and get the result show in Fig.4. At this time the
sampling interval is nT = 0.4, which is 4 times the original
sampling interval, that is, the sampling rate has been reduced
by 4 times. In addition, if applied the classical Fourier higher
derivative sampling theorem to signal x(t), we can get the
result show in Fig.5. We find that the reconstruction result
is far from using theorem 1. Finally, we calculated the error
of the two methods respectively and expressed in Fig.6.
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Reconstructed signal

Original signal

Fig. 4. Reconstructed signal and original signal.

We use Monte Carlo method to circle the simulation 100
times, and get the mean value of 100 mean square errors
of the original signal and reconstructed signal, as shown in
Table.1. It can be seen from the table that the mean square
error of fractional Fourier transform is 16.5102 (uniform
sampling of 2001 points), but the mean square error with
Fourier transform is 71.7477 (uniform sampling of 2001
points). We can see that using fractional Fourier transform
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Fig. 5. Reconstructed signal and original signal.
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Fig. 6. MSE of theorem 1 and classical Fourier.

can not only make the sampling rate low, but also reduce the
reconstruction error.

TABLE I
UNIFORM DERIVATIVE SAMPLING

Transformation Type MSE

Higher Order FT (n=2) 71.7477
Higher Order FrFT (n=2) 16.5102

B. Periodic Uniform Sampling

In this simulation, the nominal sampling period is choosed
as T = 0.1 and parameter α = arcsin(2/π), n = 2.
By applying the uniform reconstruction theorems in FRFT
domain, the reconstruction signal x(t) can be obtained. We
assume that the original random signal x(t) is shown in Fig.7
and its ur=5 in Fig.8. That is to say, when |u| > 5, the
fractional power spectral density Pα

xx(u) of x(t) equals to 0.
We use theorem 2 to reconstruct the original random signal

x(t) and get the result show in Fig.9. We assume that x(t)
is a FRFT domain bandlimited signal of α = arcsin(2/π).
And we calculate the reconstruction formula of periodic
nonuniform sampling when n = 2 and N = 3. So the
original sampling points in time domain are tp + kNT =
tp+3 ·1 ·k; p = 1, 2, 3 and sampling points of derivative are
2(tp + kNT ) = 2(tp + 3 · 1 · k); p = 1, 2, 3, that is to say,
sampling rate of derivative is 1

2 times the original sampling
rate. And we assume that x1 = 0, x2 = 0.105, x3 = 0.195.
By bringing those values into equation (34), we can derive
the reconstruction formula.

In addition, if applied the classical Fourier higher deriva-
tive sampling theorem to signal x(t), we can get the result
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Fig. 7. Original random signal.
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Fig. 8. ur of the Original random signal.

show in Fig.10. We find that the reconstruction result is far
from using theorem 2. Finally, we calculate the errors of the
two methods respectively and plot them in Fig.11.
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Fig. 9. Reconstructed signal and original signal.

We use Monte Carlo method to circle the simulation 100
times, and get the mean value of 100 mean square errors
of the original signal and reconstructed signal, as shown in
Table.2. It can be seen from the table that the mean square
error of fractional Fourier transform is 14.7998, but the mean
square error with Fourier transform is 91.4637. We can see
that using fractional Fourier transform can not only make the
sampling rate low, but also reduce the reconstruction error.

The derived theorems and the simulation results for ran-
dom signals state that the random signal can be reconstructed
from its uniform derivative samples or periodic nonuniform
derivative samples in the FRFT domain perfectly. There are
kinds of applications in signal processing, especially for the
nonstationary random signals, since they are not bandlimited
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Fig. 10. Reconstructed signal and original signal.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 
FT
FRFT

FT

FRFT

Fig. 11. MSE of theorem 2 and classical Fourier.

in the Fourier domain, whereas maybe bandlimited in the
FRFT domain. Such as the periodic nonuniform sampling
model as a simple and interesting nonuniform sampling mod-
el, which occurs in interleaved ADCs for the nonstationary
signals in the FRFT domain. Hence, the current application
of the periodic nonuniform sampled signal in the FRFT
domain can be found in the interleaved A/D converters. In
these cases, the derivative samples are obtained in these data
acquisition systems. Based on the theorem 1 and theorem
2, we can reconstructed the original random nonstationary
signal from its uniform or periodic nonuniform derivative
samples and the sampling rate is far less Nyquist sampling
rate.

V. CONCLUSION

In this paper, we have investigated the problem of high-
er order derivative sampling and reconstruction of random
signals associated with FRFT domain. It is shown that for
bandlimited random signals in the FRFT domain, the original
signal can be reconstructed from its uniform and periodic
nonuniform derivative sampling in the MSE sense. And sam-
pling rate can be reduced by n times so that sampling can be
easily realized in practical applications. The sampling error
formula and analysis will be our future research directions.

TABLE II
RECURRENT NONUNIFORM DERIVATIVE SAMPLING

Transformation Type MSE

Higher Order FT (n=2) 91.4637
Higher Order FrFT (n=2) 14.7998
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