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Abstract—In this work, a high-order Boussinesq-Burgers
equation is investigated. Painlevé analysis and Lax pairs are
given out, and an auto-Bäcklund transformation is presented
via the truncated Painlevé expansion, a basic Darboux transfor-
mation of a spectral problem is considered. Some new solutions
are given, including travelling wave solutions, periodic solutions
and soliton and so on.

Index Terms—high-order Boussinesq-Burgers equation,
Painlevé analysis, Lax pairs, Bäcklund transformation, Darboux
transformation.

I. INTRODUCTION

IT is known that there are many approaches to find the
exact solutions for a given partial differential equation

in the nonlinear science, such as the symmetry reduction,
Homogeneous balance method [1], Hirota’s bilinear method
[2,3], Bäcklund transformation [4-6], Darboux transforma-
tion [7,8] and the variable separation approach, etc. The
Painlevé analysis [9-15] plays a very important role because
it can be used not only to isolate out integrable models but
also to find many other integrable properties such as the
Bäcklund transformations, Lax pair, Schwarzian form and
more new integrable models.

In this work, we will discuss the following high-order
Boussinesq-Burgers equation [16-19]

ut − 3σu2ux + 3
2σ(uv)x − 1

4σuxxx = 0,
vt +

3
2σvvx − 3σ(u2v)x + 3σuxuxx + 3

2σuuxxx

− 1
4σvxxx = 0.

(1)

where σ is a non-zero arbitrary constant.
Zuo and Zhang [16] first applied the simplified Hirota’s

method to derive multiple kink solutions, where they used
this derivation to claim that Eq. (1) is integrable although
other justifications, such as Painlevé analysis and Lax pairs,
were not given to confirm this result. Guo et al. [17] applied
the homogeneous balance method to find multiple-soliton
(kink) solutions of Eq. (1). Jaradat et al. [18] and Wazwaz
[19] used function expansion methods to investigate soliton
and periodic solutions.

Our aim from this work is two fold. The first goal is to
investigate Painlev integrability and Lax pairs of the high-
order Boussinesq-Burgers equation (1), which claim that Eq.
(1) is integrable. We aim second to find more soliton and
periodic solutions based on an auto-Bäcklund transformation
and Darboux transformation.
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II. PAINLEVÉ INTEGRABILITY AND AUTO-BÄCKLUND
TRANSFORMATION

The Painlevé analysis is a powerful method for testing the
integrability of any nonlinear partial differential equations.
The Weiss-Tabor-Carnevale (WTC) method [9] and Kruskals
simplification method are the most widely applied tools
to prove the Painlevé property [9]. More details are given
in Refs. [10-15]. To proceed with the Painlevé singularity
analysis, we set

u = ϕα
∞∑
j=0

ujϕ
j ,

v = ϕβ
∞∑
j=0

vjϕ
j .

(2)

where we are searching for the singular solution manifold
given by ϕ = ϕ(x, t), and uj , vj(j = 0, 1, 2, · · · ) are
functions of (x, t), and α and β are negative integers to be
determined.

In order to get the leading orders of the solutions of Eq.
(1), we suppose they have the forms as below

u ∼ u0ϕ
α, v ∼ v0ϕ

β . (3)

Inserting Expressions (3) into Eq. (1) and balancing the
highest order derivative terms with the nonlinear terms, we
can obtain that α = −1, β = −2, and the following relations

Case 1: u0 = 1
2ϕx, v0 = 1

2ϕ
2
x,

Case 2: u0 = −1
2ϕx, v0 = 1

2ϕ
2
x,

Case 3: u0 = ϕx, v0 = ϕ2
x,

Case 4: u0 = −ϕx, v0 = ϕ2
x,

For simplicity, we only discuss the Painlevé property in
Case 1, the process of which can be extended to the others
similarly.

For the purpose of getting the resonances, at which the
solutions have arbitrary coefficient functions, we suppose the
solutions have the following forms

u ∼ u0ϕ
−1 + ujϕ

j−1,
v ∼ v0ϕ

−2 + vjϕ
j−2.

(4)

Substituting Expressions (4) into Eq. (1) and collecting the
terms with the lowest powers of ϕ, we can derive the general
recursion relations

Q(j)

(
uj

vj

)
=

(
Fj

Gj

)
, (5)

where

Fj = −1
4 (j

3 − 6j2 + 11j − 6)σϕ3
xuj +

3
4 (j − 3)σϕ2

xvj ,
Gj =

3
4 (j

3 − 8j2 + 19j − 12)σϕ4
xuj

−1
4 (j

3 − 9j2 + 26j − 24)σϕ3
xvj .
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Setting

detQ(j) = 1
16 (j

6 − 15j5 + 82j4 − 186j3 + 97j2

+201j − 180)σ2ϕ6
x,

we find that the resonances occur at j = −1, 1, 3, 3, 4, 5 and
the resonance j = −1 usually corresponds to the arbitrariness
of the singular manifold ϕ(x, t) = 0.

To verify the compatibility conditions of Eq. (1), substi-
tuting

u ∼ ϕ−1
5∑

j=0

ujϕ
j , v ∼ ϕ−2

5∑
j=0

vjϕ
j (6)

into Eq. (1), where the upper limit of the sum five means the
largest resonance, we get that there are sufficient numbers of
arbitrary functions at the non-negative resonances, i.e., u1

or v1,u3, v3, u4 or v4, and u5 or v5 are arbitrary, and the
following conditions can be obtained

v1 = −1

2
ϕxx, (7)

u2 = −12σu2
1ϕx + 6σu1ϕxx + σϕxxx + 6σϕxu1,x − 4ϕt

6σϕ2
x

,

(8)

v2 =
12σu2

1ϕx + 6σu1ϕxx + σϕxxx − 4ϕt

6σϕx
(9)

(u4 and v5 can be seen in Appendix A). In summary, from
the above analysis we can conclude that Eq. (1) has the
Painlevé property and hence is expected to be integrable.

At the same time, Bäcklund transformation is a powerful
tool in the study on the solutions of the nonlinear evolution
equations. The Painlevé truncation provides us a straightfor-
ward way to obtain auto-Bäcklund transformation.

To achieve auto-Bäcklund transformation, we must work
with the general form ϕ(x, t) = 0 of the noncharacteristic
singularity manifold. With leading-order analysis, we obtain
the truncated Painlevé expansion at the constant level term
as

u = u0ϕ
−1 + u1,

v = v0ϕ
−2 + v1ϕ

−1 + v2.
(10)

Substituting (10) into Eq. (1) and making the coefficients of
like powers of ϕ vanish with symbolic computation, we can
derive

u0 = ±1

2
ϕx, v0 =

1

2
ϕ2
x, v1 = −1

2
ϕxx, (11)

and u1 and v2 have to be a set of solutions of Eq. (1), and
1
2ϕxt − 3

4σu1,xϕxx − 3
2σu

2
1ϕxx − 3

4σu1ϕxxx

+ 3
4σv2ϕxx + 3

4σv2,xϕx − 3σu1u1,xϕx

− 1
8σϕxxxx = 0,

(12)

−1
8ϕx(8ϕt − 12σu2

1ϕx − 6σu1ϕxx + 6σv2ϕx

−σϕxxx) = 0,
(13)

− 1
2ϕxxt +

3
4σu1,xxxϕx + 3

2σu1,xϕxxx

+ 3
2σu1,xxϕxx + 3

4σu1ϕxxxx + 3σu1u1,xϕxx

−3σu1v2ϕxx − 3
4σv2,xϕxx + 3

2σu
2
1ϕxxx

−3σv2u1,xϕx − 3
4σv2ϕxxx − 3σu1v2,xϕx

+ 1
8σϕxxxxx = 0,

(14)

ϕxtϕx + 1
2ϕtϕxx + 3

4σv2ϕxxϕx − 3
2σu1ϕxxxϕx

− 3
4σu1ϕ

2
xx + 3σu1v2ϕ

2
x − 9

2σu
2
1ϕxxϕx

− 3
2σu1,xxϕ

2
x − 3σu1u1,xϕ

2
x − 3σu1,xϕxxϕx

− 1
4σϕxxxxϕx − 1

8σϕxxxϕxx = 0,

(15)

−1
4ϕ

2
x(4ϕt − 6σu1,xϕx − 12σu2

1ϕx

−6σu1ϕxx − σϕxxx) = 0.
(16)

Therefore, we obtain an auto-Bäcklund transformation of Eq.
(1) as follows

u = ± 1
2

∂
∂x lnϕ+ u1,

v = −1
2

∂2

∂x2 lnϕ+ v2.
(17)

We take the trivial vacuum solution u1 = 0, v2 = 0 as
the seed solution, then constraint conditions (12)-(16) are
simplified to

ϕt −
1

4
σϕxxx = 0, (18)

and the auto-Bäcklund transformation (17) can be read as

u = ±1
2

∂
∂x lnϕ,

v = − 1
2

∂2

∂x2 lnϕ.
(19)

We are going to find the solutions of Eq. (18) in the form

ϕ = 1 + p(ξ)eη = 1 + p(Kx+ Ct)ekx+ct, (20)

where K, k,C and c are all constants, whereas function p(ξ)
may be sine, cosine, hyperbolic sine, hyperbolic cosine and
so on. Now, we consider some special situations

Case 1 p(ξ) = 1
In this case, the general solution of Eq. (18) reads

ϕ1 = 1 + ekx+
σ
4 k3t. (21)

Case 2 p(ξ) = sin(ξ) or p(ξ) = cos(ξ)
After some calculation, we obtain the solutions of Eq. (18)

ϕ2 = 1 + sin
[
Kx+ σ

4K(3k2 −K2)t
]

ekx+
σ
4 k(k2−3K2)t,

(22)

and
ϕ3 = 1 + cos

[
Kx+ σ

4K(3k2 −K2)t
]

ekx+
σ
4 k(k2−3K2)t.

(23)

Case 3 p(ξ) = sinh(ξ) or p(ξ) = cosh(ξ)
Similarly, we get the solutions of Eq. (18)

ϕ4 = 1 + sinh
[
Kx+ σ

4K(K2 + 3k2)t
]

ekx+
σ
4 k(k2+3K2)t,

(24)

and
ϕ5 = 1 + cosh

[
Kx+ σ

4K(K2 + 3k2)t
]

ekx+
σ
4 k(k2+3K2)t.

(25)

The corresponding analytic solutions of Eq. (1) read

ui = ±1
2

∂
∂x lnϕi,

vi = − 1
2

∂2

∂x2 lnϕi.
(26)

where i = 1, 2, · · · , 5. Because Eq. (18) is linear, some kinds
of ϕ solution listed above can be combined appropriately.
Then we can get various kinds of analytic solutions. The
results read

ϕ6 = 1 +
N∑
i=1

ekix+
σ
4 k3

i t, (27)

ϕ7 = 1 +
N∑
i=1

sin
[
Kix+ σ

4Ki(3k
2
i −K2

i )t
]

ekix+
σ
4 ki(k

2
i−3K2

i )t,

(28)
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ϕ8 = 1 +
N∑
i=1

cos
[
Kix+ σ

4Ki(3k
2
i −K2

i )t
]

ekix+
σ
4 ki(k

2
i−3K2

i )t,

(29)

ϕ9 = 1 +
N∑
i=1

sinh
[
Kix+ σ

4Ki(K
2
i + 3k2i )t

]
ekix+

σ
4 ki(k

2
i+3K2

i )t,

(30)

and

ϕ10 = 1 +
N∑
i=1

cosh
[
Kix+ σ

4Ki(K
2
i + 3k2i )t

]
ekix+

σ
4 ki(k

2
i+3K2

i )t.

(31)

where the parameters ki,Ki(i = 1, 2, · · · , N,N > 1) are all
arbitrary. The solution (26), while ϕ satisfies Eqs. (28)-(31)
in turn, had not been given in Refs. [16-19].

To understand the analytic solutions well, we plot the
solution (26), while ϕ satisfes Eq. (27) with some special
parameters in Fig 1 and Fig 2.

−10
0

10
20

30

−20

−10

0

10

20
0

0.2

0.4

0.6

0.8

1

xt

u

Fig. 1 Spatial structure of two-travelling wave solution
(26), while ϕ satisfes Eq. (27) with N = 2, k1 = 1, k2 = 2

and σ = −1.
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Fig. 2 Spatial structure of two-soliton (26), while ϕ satisfes
Eq. (27) with N = 2, k1 = 1, k2 = 2 and σ = −1.

Moreover, different kinds of solutions ϕ given in Eq.
(18) can be combined to form some new kinds of analytic
solutions. For example

ϕ11 = 1 + ekx+
σ
4 k3t

+sin
[
Kx+ σ

4K(3k2 −K2)t
]
ekx+

σ
4 k(k2−3K2)t

+sinh
[
Kx+ σ

4K(K2 + 3k2)t
]
ekx+

σ
4 k(k2+3K2)t,

(32)

ϕ12 = 1 + ekx+
σ
4 k3t

+cos
[
Kx+ σ

4K(3k2 −K2)t
]
ekx+

σ
4 k(k2−3K2)t

+cosh
[
Kx+ σ

4K(K2 + 3k2)t
]
ekx+

σ
4 k(k2+3K2)t,

(33)

ϕ13 = 1 + ekx+
σ
4 k3t

+sin
[
Kx+ σ

4K(3k2 −K2)t
]
ekx+

σ
4 k(k2−3K2)t

+cos
[
Kx+ σ

4K(3k2 −K2)t
]
ekx+

σ
4 k(k2−3K2)t

+sinh
[
Kx+ σ

4K(K2 + 3k2)t
]
ekx+

σ
4 k(k2+3K2)t

+cosh
[
Kx+ σ

4K(K2 + 3k2)t
]
ekx+

σ
4 k(k2+3K2)t,

(34)

and

ϕ14 = 1 +
N∑
i=1

ekix+
σ
4 k3

i t

+
N∑
i=1

sin
[
Kix+ σ

4Ki(3k
2
i −K2

i )t
]
ekix+

σ
4 ki(k

2
i−3K2

i )t

+
N∑
i=1

cos
[
Kix+ σ

4Ki(3k
2
i −K2

i )t
]
ekix+

σ
4 ki(k

2
i−3K2

i )t

+
N∑
i=1

sinh
[
Kix+ σ

4Ki(K
2
i + 3k2i )t

]
ekix+

σ
4 ki(k

2
i+3K2

i )t

+
N∑
i=1

cosh
[
Kix+ σ

4Ki(K
2
i + 3k2i )t

]
ekix+

σ
4 ki(k

2
i+3K2

i )t.

(35)
and so on, where the parameters k,K and ki,Ki(i =
1, 2, · · · , N,N > 1) are all arbitrary.

III. LAX PAIRS AND DARBOUX TRANSFORMATIONS

Based on the AKNS procedure [10,20], Lax pairs of Eq.
(1) are obtained as below

Φx = MΦ,M =

(
λ+ u ux + v

1 − λ− u

)
, (36)

Φt = NΦ, N =

(
A B
C −A

)
, (37)

where

Φ =

(
ϕ1

ϕ2

)
,

A =
1

4
σ
[
4λ3 − 2(ux + v)λ− vx + 4uux − 2uv + 4u3

]
,

B = 1
4σ

[
4(ux + v)λ2 + 2(ux + v − u2)xλ− 4uvλ

+(ux + v)xx − 4uuxx + 4u2ux − 4u2
x − 4uvx

−6uxv + 4u2v − 2v2
]
,

C =
1

2
σ
(
2λ2 − 2uλ+ 2u2 − v

)
.

where λ is a spectral parameter independent of x and t. The
compatibility condition Φxt = Φtx yields a zero curvature
equation

Mt −Nx + [M,N ] = 0, (38)

which leads to Eq. (1) by the direct computation.
Now we consider a Darboux transformation

ϕ = Tϕ, (39)

where T is defined by

Tx + TM = MT. (40)
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A new spectral problem reads

ϕx = Mϕ, (41)

where M has the same form as M , except replacing u and
v with u and v. We assume

T = a0

(
λ+ a1 b1
c1 d1

)
, (42)

where a0, a1, b1, c1, and d1 are functions of x and t. Sub-
stituting (42) into (40), we compare the coefficients of λ,
j = 2, 1, 0. The case of j = 2 is trivial. For the case of
j = 1, we have

a0u− a0u+ a0x = 0, (43)

b1 =
1

2
(ux + v), (44)

c1 =
1

2
, (45)

For the case of j = 0, using (43)-(45) we can derive

a1x =
1

2
(ux + v)− 1

2
(ux + v), (46)

d1(ux + v) = (a1 − u)(ux + v) +
1

2
(ux + v)x, (47)

d1 = a1 − u, (48)

d1x = 2d1(u− u). (49)

On the other hand, from relation TrM = TrM = 0. The
solutions ϕ, ϕ of (36) and (41) are two 2× 2 matrices. Thus
detϕ = detϕ = constant, it means that there is a constant
λ = λ1 and a solution ϕ = (ϕ1, ϕ2)

T of (36), which satisfy

a0(λ1 + a1)ϕ1 + a0b1ϕ2 = 0,
a0c1ϕ1 + a0d1ϕ2 = 0.

Then, we have

a1 = − 1
2 (ux + v)ϕ2

ϕ1
− λ1,

d1 = − 1
2
ϕ1

ϕ2
.

(50)

If u and v are given, (ϕ1, ϕ2) is a solution of the Eq. (36) with
λ = λ1, then seven unknown functions a0, a1, b1, c1, d1, u
and v can be defined by seven relations (43)-(45) and (48)-
(50). The relations (46) and (47) can be proved to be
satisfied automatically. Especially u and v can be expressed
as follows:

u = − 1
2 (ux + v)ϕ2

ϕ1
+ 1

2
ϕ1

ϕ2
− λ1,

v = − 1
2 (ux + v)x

ϕ2

ϕ1
− 1

2 (ux + v)(ϕ2

ϕ1
)x − 1

2 (
ϕ1

ϕ2
)x

+ux + v.

(51)

At the same time, substituting the transformation (42) into
ϕt = Nϕ, where N has the same form as N in (37) except
changing u, v into u, v, the compatibility condition ϕxt =
ϕtx holds, i.e., M t −Nx + [M,N ] = 0, so that (u, v) is a
new solution of Eq (1).

When u and v are constants and v ̸= 0, (u, v) is a solution
of Eq (1). Let us take this solution as our ’seed’. The result
(ϕ1, ϕ2) can be expressed as follows:

ϕ1 = (c1 + λ1 + u)eξ1 + (−c1 + λ1 + u)e−ξ1 ,
ϕ2 = eξ1 + e−ξ1 ,

(52)

where

ξ1 = c1[x+ σ(λ2
1 − uλ1 + u2 − v

2 )t],

c1 =
√

(λ1 + u)2 + v,
ϕ1

ϕ2
= (λ1 + u) + c1 tanh(ξ1).

From (51), we get a new solution

u = 1
2
(λ1+u+c1 tanh(ξ1))

2−v
λ1+u+c1 tanh(ξ1)

− λ1,

v = 1
2

c21v sech2(ξ1)
(λ1+u+c1 tanh(ξ1))2

− 1
2c

2
1 sech

2(ξ1) + v.
(53)

IV. DISCUSSION

In this work, with symbolic computation, we have per-
formed the Painlevé analysis for Eq. (1), and Lax pairs be
obtained following the AKNS procedure. We have given
the auto-Bäcklund transformation via the truncated Painlevé
expansion and a basic Darboux transformation of spectral
problem for Eq. (1). Some analytic solutions are given,
including the travelling wave solutions, soliton solutions and
periodic solutions and so on.

APPENDIX A

u4 = v4

2ϕx
− 1

36σ2ϕ6
x

(
54σ2u3ϕ

4
xϕxx − 18σ2v3ϕ

3
xϕxx

+216σ2u3
1ϕ

2
xϕxx + 180σ2u2

1ϕxϕ
2
xx − 144σ2u1u1xxϕ

3
x

−84σ2u2
1ϕ

2
xϕxxx − 36σ2u1ϕ

2
xϕxxxx + 72σu1ϕ

2
xϕxt

−42σ2u1xϕ
2
xϕxxx − 20σϕxϕxxxϕt − 18σ2u1xxϕ

2
xϕxx

+6σ2ϕxϕxxϕxxxx − 24σϕxϕxxϕxt + 36σ2u1xϕxϕ
2
xx

+72σ2u1u3ϕ
5
x − 36σ2u1v3ϕ

4
x − 432σ2u2

1u1xϕ
3
x

−96σu2
1ϕ

2
xϕt + 24σu1xϕ

2
xϕt + 16ϕxϕ

2
t − 12σ2u1xxxϕ

3
x

+4σ2ϕxϕ
2
xxx − 36σ2u1ϕ

3
xx − 6σ2ϕ2

xxϕxxx + 24σϕ2
xxϕt

−3σ2ϕ2
xϕxxxxx + 12σϕ2

xϕxxt − 24σu1tϕ
3
x − 18σ2v3xϕ

4
x

+36σ2u3xϕ
5
x + 144σ2u4

1ϕ
3
x + 90σ2u1ϕxϕxxϕxxx

−108σ2u2
1xϕ

3
x − 108σ2u1u1xϕ

2
xϕxx − 144σu1ϕxϕxxϕt

)
,

and

v5 = 4u5ϕx − 1
6σϕ2

x

(
24u1u2u1x + 24σu1u

2
2ϕx

+12σu1u3xϕx + 24σu2
1u3ϕx + 12σu2u2xϕx

+12σu3u1xϕx − 12σu2v3ϕx − 12σu3v2ϕx − 12σu1v4ϕx

+9σu3xϕxx + 5σu3ϕxxx − 3σv4ϕxx + 6σu3xxϕx

+6σu2
2ϕxx − 4u2t + 24σu4ϕxϕxx + 12σu1u3ϕxx

+24σu1u4ϕ
2
x + σu2xxx + 24σu2u3ϕ

2
x − 8u3ϕt

−6σv2u2x − 3σv4xϕx − 6σu1v3x − 6σu2v2x
+18σu4xϕ

2
x − 6σv3u1x + 12σu2

1u2x

)
.
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some nonlinear partial differential equation,”Optik , pp. 10780-10785,
2016.

[6] A.M. Wazwaz, “Multiple-soliton solutions for extended(3+1)-
dimensional Jimbo-Miwa equations,”Appl. Math. Lett., vol. 64, pp.
21-26, 2017.

[7] E. Fan, “Darboux transformation and soliton-like solutions for the
Gerdjikov-Ivanov equation,”J. Phys. A: Math. Gen., vol. 33, pp. 6925-
6933, 2000.

[8] Y. L, W.X. M and J.E. Zhang, “Darboux transformations of classical
Boussinesq system and its new solutions,”Phys. Lett. A, vol. 275, pp.
60-66, 2000.

[9] J. Weiss, M. Tabor and G. Carnevale, “The Painlevé property for partial
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