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Abstract

A linear k−forest of an undirect graph G is a subgraph
whose components are paths with length at most k. The
linear k−arboricity of G, denoted by lak (G), is the min-
imum number of linear k−forests partitioning the edge
set E (G). In the present paper, we studied the linear

(n−1)−arboricity of Cartesian product graph (Kn,n)
[m]

and
(
Kn(l)

)[m]
, and obtained the exact values of linear

(n− 1)−arboricity of (Kn,n)
[m]

and
(
Kn(l)

)[m]
in some

special cases.

Keywords: linear k−forest; linear k−arboricity; Carte-
sian product graphs; multipartite balanced complete
graphs

1 Introduction

Throughout this paper, all graphs we considered are sim-
ple, �nite and undirected. Let N represent the set of nat-
ural numbers. For any integers a and b with a ≤ b, we use
the symbol [a, b] to denote the set {n ∈ N |a ≤ n ≤ b}.
For a real number x, dxe represents the smallest integer
no less than x and bxc represents the largest integer no
more than x.

A graph G is l−partite (l ≥ 2) if it is possible to partition
the vertex set V (G) into l independent sets V1, V2, · · · , Vl
(called partite sets) such that every edge of G joins the
vertices in di�erent sets. A complete l−partite graph
G is a l−partite graph with partite sets V1, V2, · · · , Vl
having the additional property that if u ∈ Vi and v ∈ Vj
where i 6= j, then the edge uv ∈ E (G). If |Vi| = ni
for all i ∈ {1, 2, · · · , l}, then this graph is denoted by
Kn1,n2,··· ,nl

. Moreover, if n1 = n2 = · · · = nl = n,
then it is called a balanced complete l−partite graph and
denoted by Kn(l). For l = 2, such graphs are denoted by
Kn,n and called balanced complete bipartite graphs. We
refer to [5] for other notation and terminology in the
graph theory.

A decomposition of a graph is a list of subgraphs such
that each edge appears in exactly one subgraph in the
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list. If a graph G has a decomposition G1, G2, · · · , Gt,
then we say that G1, G2, · · · , Gt decompose G or G can
be decomposed into G1, G2, · · · , Gt. Furthermore, a lin-
ear k−forest is a forest whose components are paths of
length at most k. The linear k−arboricity of a graph
G, denoted by lak (G), is the least number of linear
k−forests needed to decompose G.

Habib and Peroche de�ned linear k−arboricity of a graph
in [6], which is a natural generalization of edge color-
ing. Clearly, a matching induce a linear 1-arboricity,
and la1 (G) is the edge chromatic number, or chromatic
index χ′ (G) of a graph. The ordinary linear arboricity
la (G) (or la∞ (G)) is the case where every component
of each forest is a path without length constraint. Fur-
thermore, the linear k−arboricity is a re�nement of the
ordinary linear arboricity.

The Cartesian product of m graphs G1, G2, · · · , Gm

is the graph H = G12G22 · · ·2Gm, where V (H) =
m∏
i=1

V (Gi) and two vertices (u1, u2, · · · , um) and

(v1, v2, · · · , vm) are adjacent if and only if ujvj ∈ E (Gj)
for some j and ui = vi for all other i 6= j. If Gi = G
for all i ∈ [1,m], we denote G12G22 · · ·2Gm by G[m].
Then we can obtain that

|V (H)| =
m∏
i=1

|V (Gi)| ,

|E (H)| =
m∑
j=1

|E (Gj)|
∏
i6=j

|V (Gi)|


and

dH (u) =
m∑
j=1

dGj
(uj)

for any vertex u = (u1, u2, · · · , um).

About an upper bound on lak (G), Habib and Peroche
proposed the following conjecture in 1982.

Conjecture 1.1. [7] If G is a graph with maximum
degree ∆ (G) and k ≥ 2, then

lak (G) ≤



⌈
∆(G)·|V (G)|
2b k|V (G)|

k+1 c

⌉
, when ∆ (G) = |V (G)| − 1,

⌈
∆(G)·|V (G)|+1

2b k|V (G)|
k+1 c

⌉
, when ∆ (G) < |V (G)| − 1.

For k = |V (G)| − 1, it is Akiyama's conjecture.
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Conjecture 1.2. [8] la (G) ≤
⌈

∆(G)+1
2

⌉
.

In recent years, many parameters and classes of graphs
have been studied. For example, the restricted connec-
tivity of Cartesian product graphs is obtained in [23].
In [24], some results of resistance distance and Kirchho�
index based on R-graph are obtained. And in [25], some
results on 3-equitable labeling are gained.

So far, there have been many results on the veri�ca-
tion of Conjecture 1.1 in the literature, especially for
graphs with particular structures. In [6,10,11], the lin-
ear k−arboricity of trees are studied. In [12,13,14],
the linear k−arboricity and the linear arboricity of
some regular graphs are studied. In [15,16,17,18],
the linear 2-arboricity of planar graphs are obtained
and the linear k−arboricity of cubic graphs are ob-
tained. In [2,3,4,9,19], the linear k−arboricity of the
balanced complete multipartite graphs Kn(m), Kn,n,Kn,
and Cartesian product of some graphs are studied. In
[20,21,22], the linear k−arboricity of some complete bi-
partite graphs is obtained.

2 Main results

As preparation, we need the following lemmas.

Lemma 2.1. [2] If G = G1∪G2∪· · ·∪Gn, then lak(G) ≤
lak(G1) + lak(G2) + · · ·+ lak(Gn).

Lemma 2.2. [9] If H is subgraph of G, then lak(G) ≥
lak(H).

Lemma 2.3. [9] For any graph G with maximum degree
∆(G), then

lak(G) ≥ max

{
d∆(G)/2e ,

⌈
|E(G)|

/⌊
k |V (G)|
k + 1

⌋⌉}
.

Assume that G and H are graphs. A spanning sub-
graph of G is called an H−factor if each component of
F is isomorphic to H. If G is expressible as an edge-
disjoint union of H−factors, then this union is called an
H−factorization.

Lemma 2.4. [1] If a graph G has an H−factorization
with t H−factors, then

lak(G) ≤ t · lak(H).

Lemma 2.5. [2] Let G = G12G22 · · ·2Gm. Then
G can be decomposed into the edge-disjoint union of a
G1−factor, a G2−factor, · · · , and a Gm−factor. There-
fore we have

lak(G12G22 · · ·2Gm)

≤ lak(G1) + lak(G2) + · · ·+ lak(Gm)

Let
G = Kn1,n1

2Kn2,n2
2 · · ·2Knm,nm

,

then G can be decomposed into the edge-disjoint
union of a Kn1,n1

−factor, a Kn2,n2
−factor, · · · , and a

Knm,nm
−factor, so (Kn,n)

[m]
has a Kn,n−factorization

that contains m Kn,n−factors.

Corollary 2.1. If m is even, G = (Kn,n)
[m]

has a

(Kn,n)
[2]−factorization with m

2 (Kn,n)
[2]−factors. If m

is odd, then G = (Kn,n)
[m]

can be decomposed into

the edge-disjoint union of m−1
2 (Kn,n)

[2]−factors and a
Kn,n−factor.

Proof. G = (Kn,n)
[m]

can be decomposed into the edge-
disjoint union ofmKn,n−factors by Lemma 2.5, and any
two Kn,n−factors can form a K2

n,n−factor. So Corollary
holds.

Lemma 2.6. [3] lak(Kn,n) =
⌈
n
2

⌉
+ 1 if n − 1 ≤ k ≤

2n− 2.

Lemma 2.7. [2] Let X = {x1, x2, · · · , xn} and Y =
{y1, y2, · · · , yn} be two parts of Kn,n for odd n ≥ 5.
Then the balanced complete bipartite graph Kn,n can
be decomposed into n−1

2 linear (n − 1)−forests Fi and
Q, where each Fi consists of two vertex-disjoint paths of
length (n− 1) for i ∈ [1, n−1

2 ], and

Q =

(n−1)/2⋃
i=1

xiyixn+1−iyn+1−ixi
⋃
xn+1

2
yn+1

2

is a vertex-disjoint union of n−1
2 cycles of length four and

an isolated edge.

Lemma 2.8. [4] lan−1

(
Kn(m)

)
=
⌈
mn
2

⌉
.

In the following, we studied the linear (n−1)−arboricity
of Cartesian product graph (Kn,n)

[m]
and

(
Kn(l)

)[m]
.

Theorem 2.1. lan−1(Kn,n2Kn,n) = n+ 2.

Proof. We can obtain that

|V (Kn,n2Kn,n)| = 4n2,

dKn,n2Kn,n
(u) = 2n,

and
|E(Kn,n2Kn,n)| = 4n3.

Applying Lemma 2.3, we have

lan−1(Kn,n2Kn,n) ≥ n+ 2.

In the following, we will show that

lan−1(Kn,n2Kn,n) ≤ n+ 2.

Case 1. n is even.

It is obvious that

lan−1(Kn,n2Kn,n) ≤ 2lan−1(Kn,n)

≤ 2(n/2 + 1) = n+ 2

by Lemma 2.5 and Lemma 2.6.
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Case 2. n is odd.

Subcase 2.1. n = 3.

We will show that la2(K3,32K3,3) ≤ 5 by direct con-
struction in the following.

Let
K3,32K3,3 = Kn1,n1

2Kn2,n2
,

where n1 = n2 = 3.

Let
V (Kn1,n1

) = {up| p ∈ [1, 6]},

and
X1 = {u1, u2, u3} , Y1 = {u4, u5, u6}

be two parts of Kn1,n1 .

Let
V (Kn2,n2) = {vp| p ∈ [1, 6]},

and
X2 = {v1, v2, v3} , Y2 = {v4, v5, v6}

be two parts of Kn2,n2
.

Let
F1 = {(u1, v5)(u1, v1)(u1, v6),

(u1, v2)(u1, v4)(u1, v3),
(u2, v1)(u2, v5)(u2, v3),
(u2, v4) (u2, v2) (u2, v6) ,
(u3, v1) (u3, v6) (u3, v2) ,
(u3, v4) (u3, v3) (u3, v5) ,
(u4, v5) (u4, v1) (u4, v6) ,
(u4, v2) (u4, v4) (u4, v3) ,
(u5, v1) (u5, v5) (u5, v3) ,
(u5, v4) (u5, v2) (u5, v6) ,
(u6, v1) (u6, v6) (u6, v2) ,
(u6, v4) (u6, v3) (u6, v5)},

F2 = {(u1, v1) (u5, v1) (u3, v1) ,
(u4, v1) (u2, v1) (u6, v1) ,
(u1, v2) (u6, v2) (u2, v2) ,
(u4, v3) (u3, v2) (u5, v2) ,
(u5, v3) (u1, v3) (u6, v3) ,
(u2, v3) (u4, v3) (u3, v3) ,
(u1, v4) (u5, v4) (u3, v4) ,
(u4, v4) (u2, v4) (u6, v4) ,
(u1, v5) (u6, v5) (u2, v5) ,
(u4, v5) (u3, v5) (u5, v5) ,
(u5, v6) (u1, v6) (u6, v6) ,
(u2, v6) (u4, v6) (u3, v6)},

F3 = {(u1, v1) (u1, v4) , (u1, v2) (u1, v5) ,
(u1, v3) (u1, v6) , (u2, v1) (u2, v4) ,
(u2, v2) (u2, v5) , (u2, v3) (u2, v6) ,
(u3, v1) (u3, v4) , (u3, v2) (u3, v5) ,
(u3, v3) (u3, v6) , (u4, v1) (u4, v4) ,
(u4, v2) (u4, v5) , (u4, v3) (u4, v6) ,
(u5, v1) (u5, v4) , (u5, v2) (u5, v5) ,
(u5, v3) (u5, v6) , (u6, v1) (u6, v4) ,
(u6, v2) (u6, v5) , (u6, v3) (u6, v6)},

F4 = {(u1, v1) (u4, v1) , (u2, v1) (u5, v1) ,
(u3, v1) (u6, v1) , (u1, v2) (u4, v2) ,
(u2, v2) (u5, v2) , (u3, v2) (u6, v2) ,
(u1, v3) (u4, v3) , (u2, v3) (u5, v3) ,
(u3, v3) (u6, v3) , (u1, v4) (u4, v4) ,
(u2, v4) (u5, v4) , (u3, v4) (u6, v4) ,
(u1, v5) (u4, v5) , (u2, v5) (u5, v5) ,
(u3, v5) (u6, v5) , (u1, v6) (u4, v6) ,
(u2, v6) (u5, v6) , (u3, v6) (u6, v6)},

and
F5 = {(u1, v6) (u1, v2) (u5, v2) ,

(u1, v3) (u1, v5) (u5, v5) ,
(u2, v1) (u2, v6) (u6, v6) ,
(u2, v4) (u2, v3) (u6, v3) ,
(u4, v1) (u3, v1) (u3, v5) ,
(u3, v2) (u3, v4) (u4, v4) ,
(u4, v6) (u4, v2) (u2, v2) ,
(u4, v3) (u4, v5) (u2, v5) ,
(u5, v1) (u5, v6) (u3, v6) ,
(u5, v4) (u5, v3) (u3, v3) ,
(u6, v5) (u6, v1) (u1, v1) ,
(u6, v2) (u6, v4) (u1, v4)}.

Then, it is not di�cult to verify that each Fi is a linear
2−forest for i ∈ [1, 5], and thus the result holds.

Subcase 2.2. n ≥ 5.

Let
Kn,n2Kn,n = Kn1,n1

2Kn2,n2

where n1 = n2 = n.

Let
V (Kn1,n1) = {up| p ∈ [1, 2n]},

and

X1 = {u1, u2, · · · , un} , Y1 = {un+1, un+2, · · · , u2n}

be two parts of Kn1,n1
.

Let
V (Kn2,n2

) = {vp| p ∈ [1, 2n]},

and

X2 = {v1, v2, · · · , vn} , Y2 = {vn+1, vn+2, · · · , v2n}

be two parts of Kn2,n2
.

Clearly, the vertex subset { (ui, vj)| j ∈ [1, 2n]} induces
a balanced complete bipartite graph which is de-

noted by K
(i)
n,n for i ∈ [1, 2n], and the vertex subset

{ (ui, vj)| i ∈ [1, 2n]} induces a balanced complete bipar-

tite graph which is denoted by K
(j)
n,n for j ∈ [1, 2n].

It is obvious that Kn,n2Kn,n can be decomposed into

2n disjoint balanced complete bipartite graphs K
(i)
n,n for

i ∈ [1, 2n] and 2n disjoint balanced complete bipartite

graphs K
(j)
n,n for j ∈ [1, 2n].

By Lemma 2.7, we can obtain that

K(i)
n,n =

n− 1

2
· 2Pn ∪Mi
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and

K(j)
n,n =

n− 1

2
· 2P ′n ∪Nj

for i ∈ [1, 2n], j ∈ [1, 2n].

Here

Mi =
n− 1

2
C4 ∪ P2,

Nj =
n− 1

2
C ′4 ∪ P ′2,

and

C4 = (ui, vk) (ui, vk+n) (ui, vn+1−k) (ui, v2n+1−k) (ui, vk) ,

P2 =
(
ui, vn+1

2

)(
ui, v 3n+1

2

)
,

C ′4 = (uk, vj) (uk+n, vj) (un+1−k, vj) (u2n+1−k, vj) (uk, vj) ,

P ′2 =
(
un+1

2
, vj

)(
u 3n+1

2
, vj

)
for k ∈

[
1, n−1

2

]
.

Let

Ei = {(ui, v1) (ui+n, v1) , (ui, v2) (ui+n, v2) ,
· · · , (ui, v2n) (ui+n, v2n)}.

Now all edges Ei,Mi and Mi+n form n−1
2 (K22C4) and

one C4 for i ∈ [1, n]. Since each K22C4 can be decom-
posed into two 2P4 (for example, we have

K22C4 = {(u1, v1) (u1, v4) (u2, v4) (u2, v1) ,
(u1, v3) (u1, v2) (u2, v2) (u2, v3)}

∪{(u1, v2) (u1, v1) (u2, v1) (u2, v2) ,
(u1, v4) (u1, v3) (u2, v3) (u2, v4)}

where V (K2) = {u1, u2} and V (C4) = {v1, v2, v3, v4})
and C4 = 2P3, we have two isomorphic edge-disjoint
linear 3−forests n−1

2 (2P4) ∪ P3.

Let
E = E1 ∪ E2 ∪ · · · ∪ En,

M = M1 ∪M2 ∪ · · · ∪M2n,

N = N1 ∪N2 ∪ · · · ∪N2n.

Then it is clear that E ⊆ E (N), and

E (N)− E = {(uk, vj)(u2n+1−k, vj),
(uk+n, vj)(un+1−k, vj)|k ∈ [1, n−1

2 ], j ∈ [1, 2n]}.

Obviously, E (N) − E can form a linear (n − 1)-forest.
Thus, we can use three colors to color M ∪N . Hence

lan−1 (Kn,n2Kn,n) ≤ n− 1

2
+
n− 1

2
+ 3 = n+ 2

for odd n ≥ 5.

Therefore, we have obtained that lan−1 (Kn,n2Kn,n) =
n+ 2.

Theorem 2.2.
⌈

mn2

2(n−1)

⌉
≤ lan−1 (Kn,n)

[m] ≤
⌈
mn
2

⌉
+

m.

Proof. It is not di�cult to verify that

|V (Kn,n2Kn,n2 · · ·2Kn,n)| = (2n)
m
,

dKn,n2Kn,n2···2Kn,n(u) = mn

for any vertex u = (u1, u2, · · · , um), and

|E(Kn,n2Kn,n2 · · ·2Kn,n)| = m · n2 · (2n)
m−1

.

Applying Lemma 2.3, we have

lan−1(Kn,n)[m] ≥
⌈

mn2

2 (n− 1)

⌉
=

⌈
m (n+ 1)

2
+

m

2 (n− 1)

⌉
.

We will show that

lan−1 (Kn,n)
[m] ≤

⌈mn
2

⌉
+m

according to the parity of n.

Case 1. n is even.

By Lemma 2.4 and Lemma 2.6, we obtain that

lan−1 (Kn,n)
[m] ≤ m · lan−1 (Kn,n)

= m ·
(n

2
+ 1
)

=
mn

2
+m.

Case 2. n is odd.

If m is even, then by Lemma 2.4, Corollary 2.1 and The-
orem 2.1, we have

lan−1 (Kn,n)
[m] ≤ m

2
· lan−1 (Kn,n2Kn,n)

=
m

2
· (n+ 2) =

mn

2
+m.

If m is odd, then by Lemma 2.4, 2.6, Corollary 2.1 and
Theorem 2.1, we obtain that

lan−1 (Kn,n)
[m] ≤

m−1
2 · lan−1 (Kn,n2Kn,n) + lan−1 (Kn,n)

= m−1
2 · (n+ 2) +

⌈
n
2

⌉
+ 1 =

⌈
mn
2

⌉
+m.

In a word, we have⌈
mn2

2(n−1)

⌉
≤ lan−1 (Kn,n)

[m] ≤
⌈
mn
2

⌉
+m.

Corollary 2.2. For odd n ≥ 5 and m ≤ n−1, we have

lan−1 (Kn,n)
[m]

= m(n+1)
2 + 1.

Proof. For odd n ≥ 5 and m ≤ n− 1, we have

lan−1(Kn,n)[m]

≥ m(n+1)
2 +

⌈
m

2(n−1)

⌉
= m(n+1)

2 + 1

by Lemma 2.3.

Similar to subcase 2.2 proof process of Theorem 2.1, we
can obtain that

lan−1 (Kn,n)
[m] ≤ n−1

2 ·m+ 2 +m− 1 = m(n+1)
2 + 1.
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Corollary 2.3. For odd n ≥ 5, when odd m ≥ n or
even m = k (n− 1) with k > 1, we have

m(n+1)
2 +

⌈
m

2(n−1)

⌉
≤ lan−1 (Kn,n)

[m]

≤ m(n+1)
2 +

⌈
m

n−1

⌉
.

Proof. By Lemma 2.3, we can know that

lan−1 (Kn,n)
[m] ≥ m (n+ 1)

2
+

⌈
m

2 (n− 1)

⌉
for odd n. Assume that n ≥ 5 is odd.

Case 1. m = k (n− 1) is even with k > 1.

Then by Lemma 2.5 and Corollary 2.2, we have

lan−1 (Kn,n)
[m] ≤ k · lan−1 (Kn,n)

[n−1]

≤ k · n
2+1
2 = m(n+1)

2 +
⌈

m
n−1

⌉
.

Case 2. m is odd and m ≥ n.

Let m = k (n− 1) + r, r 6= 0. Then r is odd. By Lemma
2.5 and Corollary 2.2, we have

lan−1 (Kn,n)
[m] ≤ k · lan−1 (Kn,n)

[n−1]
+ lan−1 (Kn,n)

[r]

≤ k · n
2+1
2 + (n+1)r

2 + 1 = m(n+1)
2 +

⌈
m

n−1

⌉
.

Theorem 2.3. We have

lan−1(Kn(l)2Kn(l)) = nl

when at least one of n and l is even, and

nl ≤ lan−1(Kn(l)2Kn(l)) ≤ nl + 1

otherwise.

Proof. On the one hand, we can obtain that∣∣V (Kn(l)2Kn(l))
∣∣ = (nl)

2
, dKn(l)2Kn(l)

(u) = 2l (n− 1)

for any vertex u = (u1, u2), and∣∣E(Kn(l)2Kn(l))
∣∣ = l3n2 (n− 1) .

Applying Lemma 2.3, we have

lan−1(Kn(l)2Kn(l)) ≥ nl.

On the other hand, by Lemma 2.5 and Lemma 2.8, we
obtain that

lan−1

(
Kn(l)2Kn(l)

)
≤ 2lan−1

(
Kn(l)

)
= 2 ·

⌈
nl

2

⌉
.

Furthermore, we have

lan−1

(
Kn(l)2Kn(l)

)
≤ nl

when n is even or l is even, and

lan−1

(
Kn(l)2Kn(l)

)
≤ nl + 1

otherwise. Thus the result holds.

Theorem 2.4.
⌈
mnl

2

⌉
≤ lan−1

(
Kn(l)

)[m] ≤ m ·
⌈
nl
2

⌉
.

Proof. It is not di�cult to verify that∣∣V (Kn(l)2Kn(l)2 · · ·2Kn(l))
∣∣ = (nl)

m
,

dKn(l)2Kn(l)2···2Kn(l)
(u) = ml(n− 1)

for any vertex u = (u1, u2), and

∣∣E(Kn(l)2Kn(l)2 · · ·2Kn(l))
∣∣ =

mnmlm+1 (n− 1)

2
.

Applying Lemma 2.3, we have

lan−1(Kn(l))
[m] ≥

⌈
mnl

2

⌉
.

By Lemma 2.5 and Lemma 2.8, we obtain that

lan−1

(
Kn(l)

)[m] ≤ m · lan−1

(
Kn(l)

)
= m ·

⌈
nl

2

⌉
.

Hence, we have⌈
mnl

2

⌉
≤ lan−1

(
Kn(l)

)[m] ≤ m ·
⌈
nl

2

⌉
.

Particularly, we obtain that

lan−1(Kn(l))
[m] =

mnl

2

when at least one of n and l is even, and⌈
mnl

2

⌉
≤ lan−1

(
Kn(l)

)[m] ≤ mnl

2
+
m

2

otherwise. So Theorem holds.
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