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The Linear k—Arboricity of Cartesian Product of
Multipartite Balanced Complete Graphs®
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Abstract

A linear k—forest of an undirect graph G is a subgraph
whose components are paths with length at most k. The
linear k—arboricity of G, denoted by lay (G), is the min-
imum number of linear k—forests partitioning the edge
set E(G). In the present paper, we studied the linear
(n— 1)—arboricity of Cartesian product graph (K, )™
and (Kn(l))[m]
(n — 1) —arboricity of (K,.,)™ and (Kn(l))[m]
special cases.

, and obtained the exact values of linear

in some
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1 Introduction

Throughout this paper, all graphs we considered are sim-
ple, finite and undirected. Let N represent the set of nat-
ural numbers. For any integers a and b with a < b, we use
the symbol [a,b] to denote the set {n € Nja <n <b}.
For a real number x, [2] represents the smallest integer
no less than x and |z represents the largest integer no
more than z.

A graph G is [—partite (I > 2) if it is possible to partition
the vertex set V' (G) into [ independent sets Vq, Vo, -+, V]
(called partite sets) such that every edge of G joins the
vertices in different sets. A complete [—partite graph
G is a [—partite graph with partite sets Vi, Vo, -,V
having the additional property that if u € V; and v € V;
where ¢ # j, then the edge wv € E(G). If |Vi|] = n;
for all ¢ € {1,2,---,1}, then this graph is denoted by
Knimg, - m- Moreover, if ng = ny = --- = n = n,
then it is called a balanced complete [—partite graph and
denoted by K, ;). For I =2, such graphs are denoted by
K, » and called balanced complete bipartite graphs. We
refer to [5] for other notation and terminology in the
graph theory.

A decomposition of a graph is a list of subgraphs such
that each edge appears in exactly one subgraph in the

*Manuscript received December 29, 2017. This work was sup-
ported by MECF of Tianjin with code 135302JW1713, NSFC with
code 61572358, NSF of Tianjin with code 16JCYBJC23600, Pro-
gram for Innovative Research Team in Universities of Tianjin with
code TD13-5078, and Tianjin Training Programs of Innovation for
Undergraduates with code 201710065092.

fTianfeng Huang, Liancui Zuo and Chunhong Shang are
with College of Mathematical Science, Tianjin Normal Uni-
versity, Tianjin, 300387, China. Email: 1247869368Qqq.com;
gxtthuang@163.com

list. If a graph G has a decomposition G1,Gs, - , Gy,
then we say that G1,G3,--- , Gy decompose G or G can
be decomposed into G1, Gy, - -+ ,G;. Furthermore, a lin-
ear k—forest is a forest whose components are paths of
length at most k. The linear k—arboricity of a graph
G, denoted by lay (G), is the least number of linear
k—forests needed to decompose G.

Habib and Peroche defined linear k—arboricity of a graph
in [6], which is a natural generalization of edge color-
ing. Clearly, a matching induce a linear l-arboricity,
and la; (G) is the edge chromatic number, or chromatic
index x’ (G) of a graph. The ordinary linear arboricity
la(G) (or las (@)) is the case where every component
of each forest is a path without length constraint. Fur-
thermore, the linear k—arboricity is a refinement of the
ordinary linear arboricity.

The Cartesian product of m graphs Gy,Go, -, G
is the graph H = G10G.0---0G,,, where V (H) =

m
[1V(G;) and two vertices (uy,us, - ,un) and
i=1
(v1,v2, -+, Uy, are adjacent if and only if u;v; € E(G;)

for some j and u; = v; for all other i # j. If G, = G
for all ¢ € [1,m], we denote G10G,0---0OG,, by G,
Then we can obtain that

vV (H)| =]]IV (@Gl
=1

B =) |IEGHT]IV(G)

Jj=1 i#]

m

and

dy (u) =Y dg, (u))
=1

for any vertex u = (uy,ug, - ,Upm).

About an upper bound on lay (G), Habib and Peroche
proposed the following conjecture in 1982.

Conjecture 1.1. [7] If G is a graph with maximum
degree A (G) and k > 2, then

[W—‘ ., when A(G) =|V(G)] -1,

lak (G) S

2EELE ] when A (6) < V(O] - L

For k = |V (G)| — 1, it is Akiyama’s conjecture.
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Conjecture 1.2. [8] la (G) < [%—‘

In recent years, many parameters and classes of graphs
have been studied. For example, the restricted connec-
tivity of Cartesian product graphs is obtained in [23].
In [24], some results of resistance distance and Kirchhoff
index based on R-graph are obtained. And in [25], some
results on 3-equitable labeling are gained.

So far, there have been many results on the verifica-
tion of Conjecture 1.1 in the literature, especially for
graphs with particular structures. In [6,10,11], the lin-
ear k—arboricity of trees are studied. In [12,13,14],
the linear k—arboricity and the linear arboricity of
some regular graphs are studied. In [15,16,17,18],
the linear 2-arboricity of planar graphs are obtained
and the linear k—arboricity of cubic graphs are ob-
tained. In [2,3,4,9,19], the linear k—arboricity of the
balanced complete multipartite graphs K, (), Knn, Kn,
and Cartesian product of some graphs are studied. In
[20,21,22], the linear k—arboricity of some complete bi-
partite graphs is obtained.

2 Main results

As preparation, we need the following lemmas.

Lemma 2.1. |2| If G = G1UGLU- - UG, then lag (G) <
lak(Gl) + lak(Gg) R lak(Gn).

Lemma 2.2. [9] If H is subgraph of G, then lax(G) >
lak(H).

Lemma 2.3. [9] For any graph G with maximum degree

A(G), then
i3

E|V(
lak(G)zmaX{( (@)/2], [|E |/{ L;Jrl
A spanning sub-

Assume that G and H are graphs.
graph of G is called an H—factor if each component of
F is isomorphic to H. If G is expressible as an edge-
disjoint union of H—factors, then this union is called an
H —factorization.

Lemma 2.4. [1] If a graph G has an H—factorization
with ¢ H—factors, then

lag(G) < t-lag(H).

Lemma 2.5. [2] Let G = G;0G20---0G,,. Then
G can be decomposed into the edge-disjoint union of a
Gy—factor, a Gy—factor, ---, and a G,,,—factor. There-
fore we have

lax(G1O0GL0---0G,,)

<lax(G1) +lag(Ge) + -+ + lag(Gi)
Let
oK

MNom ,Mm 9

G = Knlﬂll DK7L2,”2D e

then G can be decomposed into the edge-disjoint
union of a K, », —factor, a K,, »,—factor, ---, and a

K, n, —factor, so (Kn,n)[m] has a K, ,—factorization
that contains m K, ,—factors.

Corollary 2.1. If m is even, G = (Knm)[m] has a
(Knm)m —factorization with (Knm)m
is odd, then G =
the edge-disjoint union of -1 (K, )
K, »—factor.

—factors. If m

(Knm,)[m] can be decomposed into

2l _factors and a

Proof. G = (Knvn)[m]can be decomposed into the edge-

disjoint union of m K, ,, —factors by Lemma 2.5, and any
two K, ,—factors can form a K7 , —factor. So Corollary
holds. O

Lemma 2.6.
2n — 2.

3] lag(Knyp) = [2] +1ifn—1<k <

Lemma 2.7. [2] Let X = {1,292, - ,2,} and Y =
{v1,y2, - ,yn} be two parts of K, , for odd n > 5.
Then the balanced complete bipartite graph K, , can
be decomposed into 25 linear (n — 1)—forests F; and
Q, where each F; consists of two vertex-disjoint paths of

length (n —1) for i € [1, 251], and
(n—1)/2

Q= U

i=1

TiYiTn+1—iYn+1—iTi U TofrYndt

is a vertex-disjoint union of "T’l cycles of length four and
an isolated edge.

Lemma 2.8. [4] la,—1 (K,,L(m)) = (%]

In the following, we studied the linear (n — 1)—arboricity

of Cartesian product graph (KWL)[m] and (Kn(l))[m].

Theorem 2.1. la,_1(K, 0K, ,)=n+2.

Proof. We can obtain that
|V(Kn,nDKn,n)‘ - 4n23

dk, .ok, ,(u) =2n,

and
|E(KpnOK, )| = 4n®.

Applying Lemma 2.3, we have
lan—l(Kn,nDKn,n) >n+2.
In the following, we will show that

lan_l(KmnDKn,n) <n+2.

Case 1. n is even.
It is obvious that
lan—l(Kn,nDKn,n) S 2lan—1(Kn,n)

<2(n/24+1)=n+2
by Lemma 2.5 and Lemma 2.6.

(Advance online publication: 28 August 2018)
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and
KO =""Z.2P UN

for i € [1,2n], j € [1,2n].
Here L

M ="""c,up,

1

N ="""ciup,

and

Ca = (us, ve) (Ui, Vegn) (Wi Ungp1—k) (Wi, Vang1—x) (Wi, Uk) ,

PQ = (’u,i,’l)n+1> (ui,van) s
2 2

Cl = (uk, vj) Wty v5) Unt1—k, V) (Uant1—k, v5) (Uk,vj),

/
P2 = (’U,n-;l,’u‘j) (u3n2+1,vj>

for k € [1,”7_1].

Let

E; = {(us, v1) (Wign, 1), (Ui, v2) (Wign, v2) ,
5 (Uia v2n) (ui+n7 'UQn)}-

Now all edges E;, M; and M;.,, form “5* (K,0Cy) and
one Cy for i € [1,n]. Since each K,OCy can be decom-
posed into two 2P, (for example, we have

KQDC4 = {(ul, 1}1) (u1,1}4) (’U,271)4) (UQ,Ul) 5
(u1,v3) (u1,v2) (u2,v2) (u2,v3)}

U{(u1,va) (u1,v1) (ug,v1) (uz,v2),
(u1,v4) (u1,v3) (u2,v3) (u2,v4)}

where V (K3) = {u1,us} and V (Cy) = {v1,v2,v3,04})
and Cy; = 2P;, we have two isomorphic edge-disjoint
linear 3—forests 251 (2P;) U Ps.

Let
E=FEUFEU---UE,,
M=M UMyU---UM,,,
N =N;{UNyU---U Na,.

Then it is clear that £ C E (N), and

E(N) — E = {(uk, vj)(u2n+1-k, vj),
(Wkns 05) (Unt1—k, vy) |k € [1, 258], 5 € [1,2n]}.

Obviously, E (N) — E can form a linear (n — 1)-forest.
Thus, we can use three colors to color M U N. Hence

n—1 n-—
+

an-1 (Kn, ) 2 2

+3=n+2

for odd n > 5.

Therefore, we have obtained that la,—1 (K, ,0K, ) =
n+ 2. O

+

Theorem 2.2. [2(7277121)} <la,_1 (Kn,n)[m] < [%1
m.

Proof. It is not difficult to verify that
[V (KnnOKppnO- - OKpp)| = (2”)m )

dk, ,0K, 00K, ,(u) =mn

for any vertex u = (uy,ug, -+ ,Up), and

B(K DK 0 0K, )| = m-n? - (20)" 72

Applying Lemma 2.3, we have

2
L (K o)™ > [ mn }

2(n—1)

B [m(n; 22 2(nm— 1)} '

We will show that
lan—l (Kn,n)[m] S ’V

mn“ n
— m
2

according to the parity of n.
Case 1. n is even.
By Lemma 2.4 and Lemma 2.6, we obtain that

lanfl (Kn,n)[m] <m- lanfl (Kmn)

Case 2. n is odd.

If m is even, then by Lemma 2.4, Corollary 2.1 and The-
orem 2.1, we have

lanfl (Kn,n)[m] <

m
=—-(n+2)=—+m.

If m is odd, then by Lemma 2.4, 2.6, Corollary 2.1 and

Theorem 2.1, we obtain that

lan 1(Kn n)[m] <
lan 1(KnnDKnn)+lan 1(K )
35 1= ] 4

=2 (n+2)+

In a word, we have
[35 ] <towt ()™ < [52] 4

O

Corollary 2.2. Foroddn > 5 and m < n—1, we have
lanfl (Kn,n)[m] - m<7;+1) + 1.

Proof. For odd n > 5 and m < n — 1, we have

lanf 1 (Kn,n)["b]

m(n+1 m
- (2 : + ’VQ(n—l)—‘

_ m(n+1) +1

by Lemma 2.3.

Similar to subcase 2.2 proof process of Theorem 2.1, we
can obtain that

lag 1 (Knn)™ <25l omi24m—1="2000 19 O

(Advance online publication: 28 August 2018)
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Corollary 2.3. For odd n > 5, when odd m > n or
even m =k (n — 1) with k£ > 1, we have

S lanfl (Kn,n)[m]

m(n+1 m
mitd + ’72(7171)

m(n+1)
< D o [om,

Proof. By Lemma 2.3, we can know that

e {unm— 1>W

lan—l (Kn,n)[m] > 9

for odd n. Assume that n > 5 is odd.

Case 1. m==Fk(n—1)is even with k£ > 1.

Then by Lemma 2.5 and Corollary 2.2, we have

lanfl (Kn,n>[m] S k- lanfl (Kn;n)[n_l]
<k- % - % + [L—| )

n—1

Case 2. mis odd and m > n.

Let m=k(n—1)+rr #0. Then r is odd. By Lemma
2.5 and Corollary 2.2, we have

lan—l (Kn,n)["L] S k- lan—l (Kn,n)[n_l] + lan—l (Knn)[T]

mintl) 4 [LW . O

2 n—1

§k~n2;1+(nzl)r+1:

Theorem 2.3. We have
lan—1(Kn)BKyqy) = nl
when at least one of n and [ is even, and
nl <lap 1 (K, OKy @) <nl+1

otherwise.

Proof. On the one hand, we can obtain that
[V(K,OK,w)| = (nl)?,dx, 05, (W) = 20 (n — 1)
for any vertex u = (u1,us), and
|E(K,yOK,q)| = 1*n* (n—1).
Applying Lemma 2.3, we have
lan—1(Kp@)BKyqy) > nl.

On the other hand, by Lemma 2.5 and Lemma 2.8, we
obtain that

nl

lan—1 (Kn(l)DKn(l)) < 2la,_1 (Kn(l)) —9. {2—‘ _

Furthermore, we have
lap—1 (Kn@yBKnq)) < nl
when n is even or [ is even, and
lan—1 (K,)OK,q) <nl+1

otherwise. Thus the result holds. O

Theorem 2.4. {anl‘l <lap_1 (Kn(l))[m] <m- {%ﬂ

Proof. 1t is not difficult to verify that
’V(Kn(l)DKn(l)D . DKn(l))| = (nl)m s
dKn(l)DKn(I,)D"'DKn(Z) (u) = ml(n - 1)
for any vertex u = (u1,us), and

mn™™t (n — 1)

| B (BB K0 -+ BE )| = 5

Applying Lemma 2.3, we have

mnl
a1 (Kn))™ > {2—‘ '

By Lemma 2.5 and Lemma 2.8, we obtain that

m l
lan 1 (Ko@) ™ < mlag 1 (Kuq) =m- [ﬂ ~

Hence, we have

mnl m nl
{2—‘ <lap— (Kn(l))[ ! <m- {2—‘ .

Particularly, we obtain that
lan—1(Kn(z))[m] -

when at least one of n and [ is even, and
l m l
0] 2

otherwise. So Theorem holds. O
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