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Abstract—The paper is devoted to theory of classical Young
measures and associated with them Young functionals i.e.
certain mappings that assign to any Carathodory function an
integral with respect to related Young measure. The main result
provides us with probabilistic characterization of such mea-
sures in the case where associated sequence of fast oscillating
functions has uniform representation - a notion introduced in
this paper. In many interesting cases this new characterization
enables one to find an explicit formulae for the density functions
of the Young measures and thus also to compute effectively
the values of corresponding Young functionals. In other cases,
where the explicit formulae for the densities cannot be received,
the main result makes it possible to take advantage of Monte
Carlo methods to evaluate the Young functional’s values.

Index Terms—Young measures, Young functionals, fast-
oscillating sequences, periodic functions, Monte Carlo.

I. INTRODUCTION

THEre are many physical phenomena that can be de-
scribed and explained by analysis of the suitable func-

tionals corresponding to the respective physical quantities.
The natural way of analysis of such functionals can be
performed with the use of variational methods, among of
which the minimization methods are one of the most pow-
erful. Their usage can be justified as a conclusion from
the variational laws of nature such as, say, the least action
principle. Therefore there is no surprise that variational
methods have been proved useful in engineering. One may
look at [1], [2], [3], [5], [9], [10], or at books [11], [13] (and
the references cited there) to mention just a few examples
from vast literature on this subject.

In general, we minimize the energy functional J of the
form

J (u) =

∫
Ω

H
(
x, u(x),∇u(x)

)
dx,

where Rd ⊃ Ω is a bounded Lipschitz domain; u: Ω→ K ⊂
Rl is a function from a suitable Sobolev space V (with K
being a compact set); and H: Ω×Rd×Rld → R∪{+∞} is a
function satisfying certain growth and regularity conditions.

In the nonlinear elasticity theory we have d = l = 3, Ω is
the considered elastic body, u is the displacement of Ω, H
is density of the internal energy (it usually depends on some
physical constants).

The functional J is bounded below ’by nature’ so there
exists a minimizing sequence for J , that is a sequence
{uk} ⊂ V such that

lim
k→∞

J (uk) = inf{J (v) : v ∈ V }.
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However in general, for example when minimizing energy
functionals corresponding to the multi-well potentials, the
integrand does not satisfy convexity condition guaranteeing
achieving by J its infimum. In that case elements of the
minimizing sequence are the functions that oscillate rapidly
around the weak (or weak∗) limit of that sequence. This
situation is met in engineering for example when energy
functionals of certain alloys are minimized. With the help
of microscope one can observe what is by engineers called a
’microstructure’ – a structure somehow between the micro-
and macroscoping scale.

The following example shows the crucial role of rapid
oscillations in the arising of microstructure, [13]. Consider
a function sequence {sin kx}, k ∈ N, defined on an

interval (0, π2 ). On one hand we have
π
2∫
0

sin(kx)dx →
π
2∫
0

0dx, as k → ∞, while on the other
π
2∫
0

sin2(kx)dx →

π
4 6=

π
2∫
0

02dx.

This in particular shows that even when the func-
tion ϕ is continuous and a function sequence uk
satysfies lim

∫
uk(x)dx =

∫
u0(x)dx, the equality

lim
∫
ϕ(uk(x))dx =

∫
ϕ(u0(x))dx does not have to be true

in general.
More generally we can say: the existence of the weak

limit of a function sequence does not guarantee even the
existence of the weak limit of the sequence whose elements
are compositions of the elements of the aforementioned
sequence with fixed (even continuous) function.

In the context of the variational methods a generalization
of the above example is presented in [11], see also [7].

One of the ways of dealing with such problems is the L.
C. Young’s idea: enlarging the space of admissible functions
from Sobolev spaces to the space of parametrized measures
ν := {νx}x∈Ω,which are now called Young measures. Young
measures theory has a long history. It starts with the seminal
work [15] where the main concept was introduced with
the aim to provide extended solutions for some non-convex
problems in variational calculus. After then Young developed
his pioneering ideas in [16]. These ”generalized limits” of
oscillating sequences where called by Young himself ”gener-
alized curves” in the one dimensional case, and ”generalized
surfaces” in more general situation. Nowadays this concept
has found applications in the solution of various non-convex
optimization problems - that are at the core of many different
contemporary engineering theories. They arise e.g. in optimal
control, nonlinear evolution equation, variational calculus,
micromagnetic phenomena in ferro-magnetic materials as
well as in microstructures theory in continuum mechanics. It
turns out that even the simplest form of a Young measure,

IAENG International Journal of Applied Mathematics, 48:4, IJAM_48_4_03

(Advance online publication: 7 November 2018)

 
______________________________________________________________________________________ 



namely this where the measure does not depend on the
parameter x ∈ Ω, is important both in the theory and
applications. Such Young measures are called homogeneous
ones.

In contemporary literature the Young measures are defined
under different assumptions about underlying spaces and
analyzed from different standpoints. This paper focuses on
the classical Young measures related to sequences of rapidly
oscillating functions. Presented here results are partly based
on our conference presentations [7], [8].

The structure of the paper is the following. In the next
section we introduce some preliminary definitions and re-
sults from the Young measure theory. In Section III we
define some classes of fast-oscillating sequences and state
new proposition that provide a direct link between the
Young measure theory and the probability theory. Section
IV presents exemplary theoretical result that is a conclusion
from the main proposition stated in Section III. This conclu-
sion allows one to find explicit forms of the density functions
of related classical Young measures in various situations.
Section VI illustrates the usefulness of our new results in the
problems of computing Young functionals’ values Finally we
make some remarks about possible further extensions.

II. PRELIMINARY DEFINITIONS AND RESULTS

NOw we introduce basic notions of the Young measure
theory from the point of view of nonlinear elasticity. Our pre-
sentation follows the approach taken in [13], where the reader
is referred to for detailed information along with necessary
notions from functional analysis and further bibliography.
Another book treating Young measures thoroughly in the
context the optimization theory and variational calculus is
[14].

Let Ω be a nonempty, open and bounded subset of Rd
with smooth boundary. Denote by L∞(Ω) the Banach space
of essentially bounded functions defined on Ω with values in
a compact set K ⊂ Rl. Let {fn} be a sequence of functions
converging to some function f0 weakly∗ in L∞ and denote
by ϕ a continuous real valued function with domain Rl.
By the continuity of ϕ the sequence {ϕ(fn)} is uniformly
bounded in L∞ norm and Banach-Alaoglu theorem yields
the existence of the (not relabeled) subsequence such that
ϕ(fn) → g weakly∗ in L∞. However, in general g is not
ϕ(f0), moreover, it is not even a function with domain in
Rl. To quote from [13]: ’The Young measure associated with
{fn} furnishes the link among {fn}, f0, g and ϕ.’ We now
state the basic existence theorem for Young measures in its
full generality.

Theorem 2.1: (see Theorem 2.2 in [13]) Let Ω ⊂ Rd be a
measurable set and let zn: Ω→ Rl be measurable functions
such that

sup
n

∫
Ω

h(|zn|)dx <∞,

where h: [0,∞) → [0,∞) is a continuous, nondecreas-
ing function such that limt→∞ h(t) = ∞. There exist
a subsequence, not relabeled, and a family of probability
measures ν = {νx}x∈Ω (the associated Young measure)
depending measurably on x with the property that whenever
the sequence {H(x, zn(x))} is weakly convergent in L1(Ω)

for any Carathéodory function H(x, λ): Ω×Rl → R∪{∞},
the weak limit is the function

H(x) =

∫
Rl

H(x, λ)dνx(λ).

The family of probability measures ν = {νx}x∈Ω is called
the Young measure associated with the sequence {zn}.

Let us recall that the Carathéodory function is a function
that is measurable with respect to the first and continuous
with respect to the second variable.

It often happens that the Young measure ν = {νx}x∈Ω

does not depend on x ∈ Ω. In this case we denote it merely
by ν; such Young measure is called homogeneous.

One may also look at the Young measure as at object asso-
ciated with any measurable function defined on a nonempty,
open, bounded subset Ω of Rd with values in a compact
subset K of Rl. Such a conclusion can be derived from
the theorem 3.6.1 in [14]. Due to this theorem it can be
proved that the Young measure associated with a simple
function is homogeneous and is the convex combination of
Dirac measures. These Dirac measures are concentrated at
the values of the simple function under consideration while
coefficients of the convex combination are proportional to
the Lebesgue measure of the sets on which the respective
values are taken on by the function; see [12] for details and
more general results concerning simple method of obtaining
explicit form of Young measures associated with oscillating
functions (similar, although mathematically more compli-
cated situation, is met in elasticity when the deformed body
has a laminate structure; see e.g. Section 4.6 in [11]). On
the basis of this concept a more general characterization of
a Young measure associated with any Borel function was
introduced in [6]. The main result stated there provides direct
link between the Young measure concepts and the probability
theory. Namely, the following theorem holds:

Theorem 2.2: Let f : Rd ⊃ Ω → K ⊂ Rl be a Borel
function with Young measure ν. Then ν is the probability
distribution of the random variable Y = f(U), where U has
a uniform distribution on Ω.

Now, let us recall the notion of classical Young measure
associated with a sequence of oscillating functions {fk}, see
e.g. [14].

Definition 2.1: The classical Young measure generated by
the sequence {fk} is a family of probability measures ν =
{νx}x∈Ω satysfying the condition:

for any Carathéodory function H∫
Ω

H(x, fk(x))dx
k→∞−→

∫
Ω

∫
K

H(x, y)dνx(y)dx (1)

The application that assigns to any Carathéodory function
H the integral given on the right-hand side of the above
equation is called Young functional. Its values on H will be
denoted here as YF(H) while the integrals on the left-hand
side of 1 will be denoted as C(fk, H)

Basically, the above definition presents the original under-
standing of the Young measure, as introduced in his work
[16]. These measures are of our main concern in this paper.
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III. MAIN RESULT AND ITS THEORETICAL APPLICATIONS

A. Rapidly oscillating sequences with uniform representation

Let function f : [a, b) → K ⊂ R be a Borel function
defined on the interval [a, b), b > a, and let fe:R → K
be the periodic extension of f (with the period equal to
T = b− a).

Let Ω be a given interval. A sequence {fk} of functions
fk: Ω→ K, k = 1, 2, ... defined by the formula

fk(x) = fe(kx), x ∈ Ω (2)

will be called a Rapidly Oscillating Sequence with Uniform
representation f , and denoted as ROSU(f ). In such a case
we will also say that f generates rapidly oscillating sequence
{fk}. Note, that the interval Ω - the domain of elements of
ROSU(f ) - does not have to be the same as [a, b) i.e. the
domain of f .

Example 1 In this example we present illustrative plots
of some elements of ROSU(f ), where

f(x) = (x− 2)2, x ∈ [0, 13/4) (3)

Its purpose is not only to illustrate the behavior of ROSU
(which as a matter of fact is quite obvious) but also to
illustrate the concept of classical Young measure associated
with the sequence {fk}. The plots of the function f given by
(3) as well as of examplary elements of ROSU(f ) with the
domain Ω = [0, 5) are presented in Fig.1. Namely it shows
the plots of f1, f5 and f35.

It is seen that the graphs of fk are getting denser when k
tends to infinity. Unfortunately, a conventional weak* cluster
point of {fk} loses most of the information about the fast
oscillations in {fk} because, in some sense, it takes into
account only the mean values of {fk} - as the integrals
simply do. That is why we need a new concept of the limit
and here the theory of Young measures appears to be very
helpful. If νx is the Young measure associated with {fk}
then, roughly speaking, for any measurable set A ⊂ K
the intuitive meaning of νx(A) is the probability that for
an infinitesimally small neighborhood S of x ∈ Ω and
sufficiently large k’s we can ”find” fk(s) in A, when s
changes within S. In some sense it reflects the ”density”
of the values in K - it can be observed in the plot (d) (for
f35 ) where ”more frequent values” create darker straps.

B. Characterization of the Classical Young measures gener-
ated by the ROSU(f )

It results directly from the definition of ROSU(f ) that
its behaviour, as k tends to infinity, is exactly the same
in every neighborhood of any x ∈ Ω. In other words, its
asymptotic behavior in an arbitrarily small interval I ⊂ Ω
does not depend on where the interval is placed within the
domain. Consequently, it is obvious that the classical Young
measure generated by the ROSU(f ) is the homogeneous
Young measure (i.e. it does not depend on x ∈ Ω).

Now, let US denote a random variable uniformly dis-
tributed on S. Let us consider two functions g1 : Ω1 → K
and g2 : Ω2 → K. We will say that the two functions identi-
cally transform a uniform distribution if the distributions of
the random variables g1(UΩ1

) and g2(UΩ2
), are the same.

This fact will be denoted by g1 ≈ g2. Obviously the ”≈” is
the equivalence relation.

Note that if the ROSU(f ) is defined on the same interval as
the generating function f , then any of its elements transform
a uniform distribution identically as the function f , i.e.
fk ≈ f for any k = 1, 2, .... Now let us consider the case
where the ROSU(f ) is defined on interval Ω that is different
than the domain [a, b) of the generating function f . In such
a case it can be seen that fk(UΩ)

D→ f(U[a,b)), where D→
denotes the convergence in distribution, see [4]. In other
words the distribution of f(U[a,b)) is a vague limit of the
distributions of fk(UΩ). Indeed, for k’s large enough so the
length of interval Ω is greater than (b − a)/k we have for
any measurable subset A ⊂ K:

|P (fk(UΩ) ∈ A)− P (f(U[a,b)) ∈ A)| < 1/k

Finally, by Theorem 2.2 we know, that the distribution
of Y = f(U[a,b)) is the Young measure associated with
the function f . Thus we can formulate the following result
concerning classical Young measures.

Proposition 3.1: Classical Young measure generated by
ROSU(f ) is the homogeneous Young measure. This measure
is identical with the distribution of the random variable
Y = f(U[a,b)).

IV. THEORETICAL APPLICATIONS

On the basis of the above general characterization of the
classical Young measure generated by ROSU(f ) we can
obtain a number of rules which allow one to find an explict
form of the classical Young measure in various specific cases.
For example, let us consider the following situation.

Let [a, b) be the interval-domain of the function f . Let us
consider an open partition of [a, b) into a number of open
intervals I1, I2, . . . , In such that the intervals are pairwise

disjoint and
n⋃
i

Ii = [a, b], where A denotes the closure of

the set A.
Let function f be continuously differentiable on each

interval of the partition and let f ′(x) 6= 0 for all x ∈
n⋃
l=1

Il

Using the well-known probabilistic result concerning the
distributions of such functions of random variables we can
obtain the following corollary of the Proposition 3.1.

Corollary 4.1: The classical Young measure generated by
any ROSU(f ) is a homogeneous one and its density g with
respect to the Lebesgue measure on K is of the following
form

g(y) =
1

b− a

n∑
l=1

|h′l(y)|1Dl(y) (4)

where hl is the inverse of f on the interval Il, while
Dl = f(Il) is the domain of hl. The symbol 1 stands for the
charactertistic function of the set indicated in its subscript.

V. APPLICATIONS TO COMPUTATION OF YOUNG
FUNCTIONAL’S VALUES

To show in what way the above theoretical results work in
practice, let us consider a case where both sides of the Eq.
1 can be computed precisely.

Example 1 - continuation
As previously let us consider the function (3) that is

defined on the interval [0, 13/4) and the ROSU(f ) that is
defined on the interval [0, 5). Now our aim is to compute
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Fig. 1: A function f given by Eq. (3) and functions f1, f3 and f35 belonging to ROSU(f ) with the domain Ω = [0, 5).
Plots of these functions are labeled as a, b, c, and d, respectively

the integrals C(fk, H) that appear on the left-hand side of
the Eq. 1 for the exemplary Carathéodory function H(x, y) =
x2y.

Fig. 2 provides us with the graphical illustration of the
C(f3;H) and C(f5;H) in this case. The values of these
integrals are the areas of the surfaces presented in plot (a)
and (b), respectively.

In order to compute the limit value in Eq. 1 let us note,
that in the considered case

Ak ≤ C(fk, H) ≤ Bk (5)

where

Ak = 2197(169[20k/13]− 585[20k/13]2+
980[20k/13]3)/184320k3

Bk = 2197(564 + 1939[20k/13] + 2355[20k/13]2+
980[20k/13]3)/184320k3

(6)
with [x] denoting the greatest integer less than or equal to
x. Because the limit of both Ak, Bk as k tends to infinity is
the same and equales L1 = 6125/144, it is also the limit of
C(fk, H) that we have been looking for.

Now let us find the limit with the help of the Eq. 1.
i.e. by computation of the value of the Young functional
YF(H). For this purpose we need to know the classical
Young measure generated by the ROSU(f ). With the help of
Corollary 4.1 one can easily receive the following formula
for its density function:

g(y) = 4/(13
√
y)1[0,25/16)(y)

+2/(13
√
y)1[25/16,4)(y)

Thus the value of the Young functional in the considered
case is the following (recall that the Young measure νx is

homogeneous in this case, so we can omit subscript ”x” in
the denotations) :

YF(H) =

∫
Ω

∫
K

H(x, y)dν(y)dx = (7)

∫
[0,5)

∫
[0,4)

H(x, y)g(y)dydx =

4∫
2

25/16∫
0

4x2y

13
√
y
dydx+ (8)

4∫
2

4∫
25/16

2x2y

13
√
y
dydx =

6125

144
= L1 (9)

So, as it should be expected, the ”whole information”
about the rapid oscillations in this case is contained in the
classical Young measure and - due to the Proposition 3.1 -
can be revealed with the help of the Corollary 4.1. Because
we are going to make use of this example as a kind of
benchmark in our next considerations, let us also compute
both the limit and the Young functional values for another
Carathéodory function, namely let H(x, y) = x cos(y). In
this case little calculus shows that C(fk;H) satisfy (5) with

Ak = [20k/13]
16k2 (3

√
2π(F (2

√
2/π) + F (5/(2

√
2π)))+

13
√

2π[20k/13](F (2
√

2/π) + FC(5/(2
√

2π))+
8(sin(25/16)− sin(4)))

Bk = 1+[20k/13]
16k2 (13

√
2π[20k/13](F (2

√
2/π)+

F (5/(2
√

2π)) + 16
√

2π(F (2
√

2/π)+

F (5/(2
√

2π)) + 8(sin(25/16)− sin(4)))
(10)

where F denotes the special function known as the Fresnel
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(a) (b)

Fig. 2: Graph of two exemplary surfaces - plot (a) and plot (b) - the area of which are, respectively, the values of the
integrals C(f3;H) and C(f5;H). These integrals are elements of the sequence on the left-hand side of the Eq. 1

function that is given by the following integral:

F (z) =

z∫
0

cos(πt2/2)dt

Again, the limits of both Ak, Bk are the same, so they are
the same as the limit of C(fk, H) in this case. It equals

L2 = (25
√

2π/13)(F (2
√

2/π) + F (5/(2
√

2π)) (11)

The same value can be obtain with the help of our result.
Indeed, it is easy to check, that the integral (7) in the
considered case takes on the form:

4∫
2

25/16∫
0

4x cos(y)

13
√
y

dydx+

4∫
2

4∫
25/16

2x cos(y)

13
√
y

dydx

and it is equal to L2.
Our example is relatively simple and ”smooth” - we were

able to compute the limits explicitly. However even here one
can notice the benefits resulting from our Proposition. It is
quite clear that even in this case where the oscillations have
such smooth nature, the computation of the limit of C(fk, H)
for more complex Carathéodory functions could be much
more difficult task than the calculation of the value of the
Young functional YF(H).

The possibility of derivation of explicit formulae for the
density functions of classical Young measures is not the
only benefit resulting from our Proposition 3.1. In many
interesting cases explicit formulae for these densities cannot
be found. For instance, if one wants to make use of Corollary
4.1 they have to obtain the inverses of f on particular
subintervals of its domain, but it is not always possible.
However in all such cases thanks to Proposition 3.1 one may
use directly Monte Carlo simulations in order to evaluate
values of the Young functionals.

The idea of the Monte Carlo simulation is well-known.
Its main concept is to draw a sample Z1, Z2, ..., Zm of
realizations of independent random variables with the same
distribution as the random phenomenon under study. Based

on this sample, important information concerning stochastic
characteristics of the examined distribution can be derived
with the help of statistical-inference tools. Monte Carlo
simulations are also frequently used to evaluate values of
integrals in various situations. Because now we consider
cases where the classical Young measure is not given ex-
plicitly, we adopt this approach to evaluate Young functional

YF(H) =
d∫
c

( b∫
a

H(x, y)dν(y)
)
dx. When the change of

integration order is possible, then this integral is equal to

YF(H) =
b∫
a

( d∫
c

H(x, y)dx)
)
dν(y).

By Proposition 1, the Young measure ν is the probability
distribution of the random variable Y=f(U(a,b)). So, we may
look at the Young-functional-value as the expected value

of the random variable
d∫
c

H(x, Y )dx and it is well-known

that it can be best-estimated by its empirical mean (i.e. the
arithmetic mean of its randomly generated values). Thus we
propose to make use of the following procedure YFE(H, f ,
a, b, c, d, N) to evaluate values of the Young functional:

•Step 0: Set k = 1
Step 1: Set t=Random((a,b))
Step 2: Set y=f(t)
Step 3: Set z[k]=INT(H(x,y),x,c,d)
Step 4: N times repeat Steps 1 to 3
Step 5: Set sample=(z[1],...,z[N])
Step 6: Set YF=Mean(sample)
Step 7: Return YF

The above procedure is called with the following argu-
ments: the formula that defines the Caratheodory function
H, the formula for the function f that defines the ROSU
and its domain, i.e. the interval [a,b), the domain [c,d) of
the ROSU itself, and the size N of the sample that will be
used to evaluate the Young functional value. The subroutine
Random(I) returns a pseudorandom number generated ac-
cording to the uniform probability distribution defined on an
interval I. The subroutine INT(H(x,y), x,c,d) returns the value
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TABLE I: Results Of Monte Carlo Evaluations of the Young
Functional Values for Problems Considered in Example 1

Caratheodory Sample Estimated Relative
integrand size value error

10000 42.4312 0.0024
H(x, y) = x2y 20000 42.5480 0.0003

50000 42.4768 0.0014
10000 5.4585 0.0137

H(x, y) = x cos(y) 20000 5.6104 0.0138
50000 5.5431 0.0016

of the integral
d∫
c

H(x, y)dx. Obviously the integration can be

done numerically, because when the subroutine is called, the
value of y is already fixed, as it is set up at the Step 2. The
usefulness of the Monte Carlo simulations in computation of
the values of the Young functionals is supported by the data
presented in Table I.

As one can see, the accuracy of the Monte Carlo evalua-
tions are realy very good (let us recall that the true values
are L1 and L2, given by (9) and (11), respectively). Other
examples of the advantages resulting from the Monte Carlo
approach to computation of Young functionals’ values can
be found in [8].

The pseudocode of the procedure YFE presented in this
section can be implemented in various ways. In our research
we use the following version coded in Wolfram Mathematica
10.5 programming environment:

Mean[Table[
NIntegrate[H[x,f[RandomReal[{a,b}]]],
{x,c,d}],NN]]

where NN is the sample size, while the remaining symbols
have an analogous meaning as in the description of the YFE.

Now, let us consider the following function G:

G(y) =

d∫
c

H(x, y)dx (12)

If the Caratheodory integrands are such that the function G
has got known open formula valid for all y ∈ (a, b), then a
faster version of YFE can be obtain by changing the original
Step 3 in the following way:
Step 3: Set z[k]=G(y)

In our exemplary problems, it can be actually done, so we
made use of the following Wolfram Mathematica code:

Mean[Table[G[f[RandomReal[{a,b}]]]],NN]]

where, for the problems discussed in Example 1 G(y) =
125y/3 if H(x, y) = x2y and G(y) = 25 cos(y)/2 if
H(x, y) = x cos(y). Recall that in both cases the limits in
integral (12) are c = 0, d = 5

We see that practical implementation of presented Monte
Carlo evaluation procedure is very simple and taking into
account the accuracy of the values we have obtained, it is
also very competitive alternative tool for engineers.

VI. FINAL REMARK

The probability theory provides us with a number of
different versions of the theorems concerning the probability
distributions of functions of random variables and/or vectors.

As a consequence, various different rules for computing
explicit formulae for the density functions of classical Young
measures generated by ROSU(f ) can also be obtained on the
basis of the result stated in Proposition 3.1.

We are also sure that the same approach enables devel-
opment of analogous results related to rapidly oscillating
sequences with uniform representation which are defined on
open and bounded subsets of Rd. In our opinion it is very
promising direction of future research.
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