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Abstract—Parameter estimation in nonlinear regression mod-
els (NRMs) represents a major challenge for various scientific
computing applications. In this study, we briefly consider a
recent population-based metaheuristic algorithm named Jaya,
which is used in estimating the parameters of NRMs. The
algorithm is experimentally tested on a set of benchmark
regression problems of various levels of difficulty. We show that
the algorithm can be used as an alternative means of parameter
estimation in NRMs. It is efficient in computational time and
achieves a high success rate and accuracy.

Index Terms—Nonlinear regression models, Parameter esti-
mation, Optimisation, Metaheuristics, Jaya algorithm.

I. INTRODUCTION

Regression analysis is an important statistical method for
modelling the relationship between two or more variables
using a data set. It has been used extensively in various
areas of human and scientific activity to describe social and
econometric phenomena [1].

Two major types of regression models exit: linear and
nonlinear. In linear (LRM) and nonlinear (NRM) regression
models, the regression function is linear and nonlinear, re-
spectively, with respect to the parameters [2]. The parameter
estimation problem in an LRM can be solved optimally
using the method of ordinary least squares. By contrast,
the same problem in NRMs cannot be solved easily. It
is also a difficult task for traditional optimisation methods
such as Gauss - Newton, and Levenberg - Marquardt. This
difficulty of parameter estimation in NRMs is mainly due to
the increased functional complexity [1].

The parameter estimation problem in NRMs is reduced to
an optimisation problem. More specifically, it involves min-
imising the nonlinear least squares. Not only can some classic
optimisation methods be used to find the optimal values
of parameters in NRMs but some population-based modern
metaheuristic algorithms. The major problem of classic op-
timisation methods is the trapping local minimal (e.g. Gauss
- Newton) [3] as well as the required use of considerable
mathematical operations such as matrix operations, gradient
operation and Jacobean matrix calculation (e.g. Gauss -
Newton and Levenberg - Marquardt) [4], [5]. Therefore,
metaheuristic methods can be an alternative to nonlinear re-
gression parameter estimation. These methods can mainly be
classified into two categories: evolutionary algorithms (EA)
(e.g. genetic algorithms (GA)) and swarm intelligence based
algorithms (SI) (e.g. particle swarm optimisation (PSO)) [6].
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Recently, Rao [6] introduced a population-based metaheuris-
tic, known as Jaya. It is based on the idea that for a given
problem the best solution can be obtained while avoiding
the worst solution. In this study, we used the Jaya algorithm
for the nonlinear regression optimisation problem because
it is a straightforward and reliable optimisation algorithm
which uses few parameters and is easy to implement [7],
[8]. The Jaya algorithm prevents solutions from becoming
trapped in local optima, giving it a notable advantage over
other population-based optimisation methods [8].

Several studies have proposed using GA and PSO methods
to address the parameter estimation problem of NRMs such
as [9], [10], [1], [2]. In this study, we consider using the
Jaya algorithm for the parameter estimation of NRMs. The
Jaya algorithm is evaluated on 14 known nonlinear regression
tasks having various levels of difficulty. Experimental results
show that the algorithm is stable and reliable in solving the
parameter estimation problem.

The remainder of the paper is organized as follow. In Sec-
tion II, we briefly describe the Jaya optimization algorithm
for nonlinear regression. Section III presents the numerical
results and comparisons of the Jaya optimisation algorithm
with well-known NRMs. Finally, the conclusions of our study
are presented in Section IV.

II. SEQUENTIAL JAYA OPTIMISATION ALGORITHM

Originally proposed by Rao [6], [11], the Jaya algorithm
is a population-based metaheuristic for solving optimisation
problems. The basic idea of the Jaya algorithm is that it
consistently (i.e. at every iteration) tries to improve the
solution by avoiding the worst possible solution. Through
this mechanism, the algorithm aims to be successful or
‘victorious’ (‘jaya’ is a Sanskrit word meaning ‘victory’) [6]
by finding the best possible solution. Algorithm 1 presents
the framework of the Jaya algorithm.

First, the algorithm accepts the control input parameters,
such as the population size n, number of parameters m,
lower and upper limits of the parameters (Xmin, Xmax),
and the maximum number of iterations max iter. The
algorithm also accepts the objective function f(x) of the
optimisation problem. The algorithm then begins by initial-
ising the population in the search space which represents
candidate solutions (line 2). The population of the solutions
is represented by an n × m matrix Xi,j , where n is the
population size, or number of candidate solutions, and m
is the number of parameters. The population matrix for the
algorithm is expressed as follows:
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Algorithm 1: Sequential Jaya algorithm
Input: Population size n, number of variables m, limits

of variables (Xmin, Xmax), maximum number
of iterations max iter

Output: Best solution
1 iteration← 0
2 Initialize population(X , n, m)
3 Evaluate population(X , n, m, fv)
4 repeat
5 Memorise best and worst solution in the

population(X , n, m, fv, best, worst)
6 Update the population of solutions(X , n, m, fv,

best, worst)
7 iteration← iteration+ 1
8 until iteration 6= max iter
9 Print the best solution

Xi,j =


X11 X12 . . . X1m

X21 X22 . . . X2m

...
...

. . .
...

Xn1 Xn2 . . . Xnm


where i = 1, 2, . . . , n and j = 1, 2, . . . ,m. The values of
the matrix X should be within the limits of the parameters,
Xmin ≤ Xi,j ≤ Xmax. During the initialisation phase, the
population matrix is randomly generated using the following
equation 1, within the limits of parameters to be optimised:

Xi,j = Xmin + rand(0, 1)(Xmax −Xmin) (1)

where i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Here, rand(0,1)
is a random number in the range [0,1].

The next step is to evaluate the population of solutions
(line 3 of Algorithm 1). In this step, the algorithm calculates
the fitness value of each candidate solution of the population
based on the objective function f .

At each iteration, the Jaya algorithm performs two steps:
it memorises the best and worst solutions in the population
(line 5 of Algorithm 1), it updates the population of solutions
based on the best and worst solutions (line 6 of Algorithm 1).
During the memorisation step, the algorithm examines the
fitness values in the entire population and selects the best
and the worst fitness values.

During the update phase, a new solution is produced
for each candidate solution, as defined in the following
equation 2:

Xnew
i,j = Xi,j+r1(bestj−|Xi,j |)−r2(worstj−|Xi,j |) (2)

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m, Xnew
i,j is the

updated value of Xi,j , and r1 and r2 are the two random
numbers in the range [0,1]. The term r1(bestj − |Xi,j |)
indicates the tendency to move closer to the best solution,
and −r2(worstj − |Xi,j |) represents the tendency to avoid
the worst solution [6], [11]. At the end of the updating phase,
the algorithm examines whether the solution corresponding
to Xnew

i,j gives a better fitness function value than that
corresponding to Xi,j . Depending on the outcome, it then
either accepts and replaces the previous solution or retains
the previous solution. All accepted solutions at the end of the
current iteration are maintained, and these solutions become
the input for the next iteration.

The two steps previously mentioned continue to execute
until the number of iterations or generations reaches its
defined maximum value.

The fitness and objective functions are minimized in the
Jaya algorithm to the residual sum of squares (RSS) (i.e.,
the difference between the real and calculated values with
the estimated models). No constraint exists, resulting in an
unconstrained optimisation problem.

III. EXPERIMENTAL RESULTS

In this section, we analyse the performance of the proposed
application of the Jaya optimisation method for estimat-
ing nonlinear regression. For our performance analysis of
the Jaya optimisation algorithm for parameter estimation
in NRMs, we considered some test problems taken from
a National Institute of Standards and Technology (NIST)
collection of data sets with optimal parameters values [12].
The NRMs of the test problems and their descriptions
(including the level of difficulty, model classification, number
of parameters and observations) are presented in Table I.
Each test problem represented different characteristics based
on its functional structure and its corresponding data set. Test
problems 1 - 6, 7 - 10 and 11 - 14 had low, medium and
high levels of difficulty, respectively.

The proposed Jaya application for estimating nonlinear
regression was implemented in the C programming language.
The algorithm was compiled using the GNU CC compiler
with the “-O3“ optimisation flag. The experiments were
executed on a Dual Opteron 6128 CPU with a 2-GHz clock
speed and 16 GB of memory in an Ubuntu Linux 10.04
LTS environment. The main parameters of the Jaya algorithm
were the population size and number of iterations. The
experiments were evaluated based on a population size of
64 and a maximum of 2000 iterations.

Our performance evaluation of the Jaya optimisation al-
gorithm was conducted in two phases. First, we evaluated
the performance of Jaya using the RSS as an optimisation
criterion for each of the regression models. A minimum of 60
runs were performed for each model. We next compared the
performance of Jaya with a known optimisation method such
as PSO using the following performance measures based
on the observations of 60 runs per test problem: success
rate, average number of iterations, average search time and
accuracy. For each test problem run, we recorded the best
RSS value, and an optimisation was deemed successful when
the following relation held [13]:

|RSSalg −RSSanal| < εrel|RSSmean|+ εabs (3)

where RSSalg is the best RSS value obtained by the al-
gorithm, RSSanal is the known optimal RSS value, εrel =
10−4 is the relative error, εabs = 10−6 is the absolute error
and RSSmean is the empirical average value of the best
RSS values calculated from 60 runs. The success rate was
calculated as the ratio between the number of successful
optimisations and the number of runs. The average number
of iterations was evaluated in relation to only successful
optimisations. The average search time was the time spent
during the optimisation process to complete 60 runs and was
measured in seconds. Accuracy was defined as the deviation
between the known optimal RSS and the best RSS value
identified by the algorithm.
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TABLE I
NONLINEAR REGRESSION TEST PROBLEMS

Test Data Regression Difficulty Model No of Par.
Problem Set Model Level Classification No of Obs.

1 Misra1a b0(1− exp(−b1x)) Lower Exponential 2/14
2 Chwirut2 exp(−b0x)

b1+b2x
Lower Exponential 3/54

3 Chwirut1 exp(−b0x)
b1+b2x

Lower Exponential 3/214

4 Gauss1 b0exp(−b1x) + b2exp(
−(x−b3)2

b24
) + b5exp(

−(x−b6)2

b27
) Lower Exponential 8/250

5 DanWood b0xb1 Lower Miscellaneous 2/6
6 Misra1b b0(1− 1

(1+b1x/2)2
) Lower Miscellaneous 2/14

7 Misra1c b0(1− 1√
1+2b1x)

Medium Miscellaneous 2/14

8 Misra1d b0b1x
1+b1x

Medium Miscellaneous 2/14

9 Roszman1 b0 − b1x−
arctan(

b2
x−b3

)

π
Medium Miscellaneous 4/25

10 ENSO b0 + b1cos(2πx/12) + b2sin(2πx/12) + b4cos(2πx/b3) Medium Miscellaneous 9/168
+b5sin(2πx/b3) + b7cos(2πx/b6) + b8sin(2πx/b6)

11 MGH09 b0(x
2+xb1)

x2+xb2+b3
High Rational 4/11

12 Thurber b0+b1x+b2x
2+b3x

3

1+b4x+b5x2+b6x3
High Rational 7/37

13 BoxBod b0(1− exp(−b1x)) High Exponential 2/6
14 Rat42 b0

1+exp(b1−b2x)
High Exponential 3/9

The experimental results of our Jaya algorithm corre-
sponding to each benchmark regression model are presented
in Table II for optimal RSS, best RSS, worst RSS, mean
RSS and standard deviation. We can be see that the best
RSS results obtained by the Jaya algorithm are very close
to the optimal RSS values obtained by most regression
models. For the test problems, we also observed that the Jaya
algorithm was reliable (i.e. had a high success rate) because
the standard deviation of RSS was minimum except for five
test problems namely, 4, 9, 10, 12 and 14. The stability of
the Jaya algorithm for these test problems could be improved
by increasing the number of iterations or the population to
a reasonable size.

The optimal and estimated parameters of the NRMs ob-
tained by the Jaya algorithm are displayed in Table III. These
parameters correspond to the best RSS results. These results
clearly show that the estimated parameters obtained by the
Jaya algorithm are very close to the optimal values of the
parameters.

The performance results for each benchmark regression
model through various approaches, including PSO and Jaya,
and when using four performance metrics are listed in
Table IV. In this table, the best results in terms of success
rate, average number of iterations, average time and accuracy
are shown in bold face. We should note that the PSO method
was performed for the control parameters of inertia weight
w and acceleration parameters c1 and c2 as 0.4, 2 and 2,
respectively. Jaya clearly had a better success rate than PSO
in most cases. As a summary, optimisation methods PSO
and Jaya achieved success rates of 49.97% and 73.45%,
respectively, for all the benchmark regression models. How-
ever, these figures, do not consider the required number of
iterations. From Table IV, we can observe that the Jaya
optimisation method achieved a high success rate for test
problems 2, 3, 5, 6, 7, 11 and 13 with fewer iterations than
the conventional PSO. Although the Jaya algorithm required
a greater number of iterations than PSO for test problems
1, 4 and 8, the success rate with Jaya was far better than
that of PSO. However, the PSO method has a high success
rate for test problems 9, 10 and 14 with fewer iterations

than Jaya. Table IV also reveals that Jaya had a better
computational time in most cases except for test problems 10
and 11, in which there was a small difference between PSO
and Jaya. This result was due to the simplicity of the Jaya
algorithm. Finally, the Jaya algorithm also produced better
computational accuracy in most cases. Although the Jaya and
PSO algorithms had low success rates for test problem 12,
the computational accuracy with Jaya was better than with
PSO.

The advantage by using of the Jaya algorithm to estimation
of nonlinear regression parameters is that it produces reliable
and high quality results for the RSS values and parameter
estimates of the regression models with less computational
effort (or time) and high accuracy. Furthermore, the Jaya
algorithm requires minimal effort for parameter tuning (such
as for population size and several iterations) as compared
to other algorithms such as PSO which requires extensive
computational experiments to achieve a good performance.
However, the major concern of the Jaya algorithm is its slow
rate of convergence on some test problems (i.e. 1, 4, 8, 9,
10, 12 and 14) because a sufficient number of iterations were
required to reach the optimal value.

It can also be interesting to examine the convergence
behavior of two algorithms, PSO and Jaya, against the
number of iterations. For this reason, we selected to test the
ENSO nonlinear model as a representative case. Figure 1
and Figure 2 show the RSS values of the PSO and Jaya
algorithms during the process of optimisation against the
first 100 iterations, respectively. From these results show that
both algorithms have a similar convergence behavior, i.e.,
they converge after at most 9-10 iterations to their minimum
RSS value. Similar findings are valid for the most nonlinear
models.

IV. CONCLUSIONS

In this study, we presented and implemented an application
of the Jaya optimisation algorithm for estimating nonlinear
regression parameters. We tested the algorithm experimen-
tally on a set of NRMs using the RSS as an optimisation
criterion. Furthermore, we compared the Jaya algorithm with
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TABLE II
RESULTS OBTAINED BY THE JAYA ALGORITHM FOR 14 NRMS

Test Problem Optimal Best Worst Mean Std. Dev.
1 0.124550 0.124551 0.124551 0.124551 0.000000
2 513.048000 513.048029 513.048029 513.048029 0.000000
3 2384.477100 2384.477139 2384.477139 2384.477139 0.000000
4 1315.822243 1315.822243 197566.709165 70262.718043 47959.503464
5 0.004317 0.004317 0.004317 0.004317 0.000000
6 0.075465 0.075465 0.075465 0.075465 0.000000
7 0.040967 0.040967 0.040967 0.040967 0.000000
8 0.056419 0.056419 0.056419 0.056419 0.000000
9 0.000495 0.000496 0.051525 0.011367 0.016920
10 788.539787 788.554655 1151.362195 877.937102 97.793790
11 0.000308 0.000308 0.000308 0.000308 0.000000
12 5642.708240 5644.81766 15040.582619 8462.562326 2825.174219
13 1168.008877 1168.008877 1168.008877 1168.008877 0.000000
14 8.056523 8.056523 1033.305133 383.980950 498.230860

TABLE III
ESTIMATED PARAMETERS OF 14 NRMS OBTAINED BY THE JAYA

ALGORITHM

Test Problem Parameters Optimal Estimated
1 b0 238.942129 238.942130

b1 0.0005501 0.000550
2 b0 0.16657 0.166577

b1 0.0051653 0.005165
b2 0.012150 0.012150

3 b0 0.19027 0.190278
b1 0.0061314 0.006131
b2 0.010530 0.010531

4 b0 98.778211 98.778211
b1 0.010497 0.010497
b2 100.489906 100.489907
b3 67.481111 67.481111
b4 23.129773 23.129773
b5 71.994503 71.994503
b6 178.998050 178.99805
b7 18.389389 18.389389

5 b0 0.768862 0.768862
b1 3.860405 3.860406

6 b0 337.997461 337.99746
b1 0.0003903 0.00039

7 b0 636.4273 636.427258
b1 0.000208 0.000208

8 b0 437.3737 437.369706
b1 0.0003022 0.000302

9 b0 0.2020 0.20477
b1 -6.195e-6 -0.000006
b2 1204.4556 1184.833335
b3 -181.3427 -182.547197
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Fig. 1. The RSS behavior of the PSO algorithm for ENSO model

TABLE III
ESTIMATED PARAMETERS OF 14 NRMS OBTAINED BY THE JAYA

ALGORITHM (CONTINUED)

Test Problem Parameters Optimal Estimated
10 b0 10.5107 10.510004

b1 3.0762 3.073296
b2 0.5328 0.533395
b3 44.3111 44.299963
b4 -1.6231 -1.633337
b5 0.5255 0.51916
b6 26.8876 26.896185
b7 0.2123 0.222564
b8 1.4967 1.502261

11 b0 0.1928 0.192807
b1 0.1913 0.191282
b2 0.1231 0.123057
b3 0.1361 0.136062

12 b0 1288.1397 1288.092709
b1 1491.0793 1492.26984
b2 583.2384 583.97267
b3 75.4166 75.55428
b4 0.9663 0.966956
b5 0.3980 0.398355
b6 0.0497 0.050114

13 b0 213.8094 213.809409
b1 0.5472 0.547237

14 b0 72.462238 72.462238
b1 2.618077 2.618077
b2 0.067359 0.067359
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Fig. 2. The RSS behavior of the Jaya algorithm for ENSO model
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TABLE IV
RESULTS OF PSO AND JAYA ALGORITHMS FOR 14 NRMS

Success rate (%) Average number of iterations Average time (in secs) Accuracy
Test Problem PSO Jaya PSO Jaya PSO Jaya PSO Jaya

1 98.33 100 845 1097 0.7070 0.6295 0.000001 0.000001
2 100.00 100.00 928 551 2.8255 1.9471 0.000029 0.000029
3 3.33 100.00 1469 602 10.8258 10.1816 0.510953 0.000039
4 0.00 33.33 380 1294 62.3886 44.8105 98668.688468 0.000000
5 100.00 100.00 697 303 0.3847 0.3763 0.000000 0.000000
6 1.66 100.00 1872 989 0.1480 0.1158 0.000234 0.000000
7 3.33 100.00 1469 959 0.2331 0.1799 0.000000 0.000000
8 20.00 100.00 243 930 0.1314 0.1233 0.000000 0.000000
9 100.00 1.66 975 1718 1.9938 1.1489 0.000000 0.000001

10 66.33 26.67 1520 1601 41.6046 42.9278 0.000013 0.015917
11 100.00 100.00 1183 501 0.1151 0.1152 0.000000 0.000000
12 0.00 0.00 152 1162 3.96 3.8811 318.825760 2.109424
13 6.66 100.00 430 221 0.2318 0.2143 0.006043 0.000000
14 100.00 66.67 1038 1340 0.3586 0.3219 0.000000 0.000000

Average 49.97 73.45

the PSO using several performance measures. We concluded
that the Jaya algorithm represents a good candidate algo-
rithm for effective parameter estimation with most NRMs
because it provides stable and reliable results within less
computational time. Furthermore, this proposed method can
be applied to regression models that manage big data. Finally,
this algorithm could be used to solve complex problems such
as time-series analysis, social network analysis, and shape
optimisation [14].
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