
On Maximal Incidence Energy of Graphs with
Given Connectivity

Qun Liu a,b

Abstract—Let G be a graph of order n. The incidence energy
IE(G) of graph G, IE for short, is defined as the sum of
all singular values of its incidence matrix. In this paper, we
determine the maximal incidence energy IE(G) among all
connected graphs with the connectivity κ and edge connectivity
κ′ and Kκ′∨(K1∪Kn−κ′−1) has the maximal incidence energy.

Index Terms—Signless Laplacian matrix, Incidence energy,
Connectivity, Edge connectivity

I. INTRODUCTION

LET G = (V (G), E(G)) be a graph with vertex
set V (G) = {v1, v2, ..., vn} and edge set E(G) =

{e1, e2, ..., em}, the adjacency matrix A(G) = (aij) of G
is an n × n(vertex-vertex) symmetric matrix with aij = 1
if vi and vj are adjacent, and aij = 0 otherwise. Denote
the degree of vertex vi by d(vi), the signless Laplacian
matrix Q(G) of G is defined as Q(G) = D(G) + A(G),
where D(G) = diag(d(v1)), d(v2), ..., d(vn)) is the diagnoal
matrix of degree of G. Since Q(G) are symmetric matrix,
their eigenvalues are real numbers. So, we can assume that
q1(G) ≥ q2(G) ≥ ... ≥ qn(G) are the signless Laplacian
eigenvalues of G. Let I(G) be the (vertex-edge) incidence
matrix of the graph G, the (i, j)-entry of I(G) is 0 if vi is not
incident with ej and 1 if vi is incident with ej . Jooyandeh
et al. [1] introduced the incidence energy IE of G, which
is defined as the sum of the singular values of the incidence
matrix of G. Gutman et al. [2] showed that

IE = IE(G) =
n∑
i=1

√
qi(G).

Some basic properties of IE may be found in [1− 3].

Let G be a connected graph with n vertices and m edges.
Let S(G) be the subdivision graph of G, that is, S(G) is
obtained from G by inserting a new vertex in each edge.
Clearly, S(G) is a bipartite graph with n + m vertices and
2m edges. We denote σ(G, x) the characteristic polynomial
det(xI − A(G)) of G. It is well known [4] that if G is a
bipartite graph, then

σ(G, x) = det(xIn −A(G)) =

bn/2c∑
t=0

(−1)tb(G, t)xn−2t,

(1)
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where b(G, 0) = 1 and b(G, t) ≥ 0 for all t = 1, 2, ..., bn/2c.
This expression for σ(G, x) induce a quasi-order relation (i.e.
reflexive and transitive relation) on the set of all bipartite
graphs with n vertices: If G1 and G2 are bipartite graphs
with characteristic polynomials in the form

G1 � G2 ⇔ b(G1, t) ≥ b(G2, t)

for all t = 0, 1, 2, ..., bn/2c. If G1 � G2 and there exist t
such that b(G1, t) > b(G2, t), then we write G1 � G2.

Gutman [5] introduced this quasi-order relation in order
to compare the energies of a pair of graphs. It is known
[5, 6] that for the bipartite graph S(G), E(S(G)) can be also
expressed as the Coulson integral formula

E(S(G)) =
2

π

∫ +∝

0

1

x2
In[1 +

b(n+m)/2c∑
i=1

b2i(S(G))x2i]dx.

(2)
Thus for m ≥ n, we have [7]

IE(G) =
1

π

∫ +∝

0

1

x2
In[1 +

n∑
i=1

(−1)ipi(G)x2i]dx, (3)

where pi(G) = (−1)ib2i(S(G)).

From Eq.(2) and Eq.(3) we know that for two bipartite
graphs S(G1) and S(G2),

S(G1) � S(G2)⇒ IE(G1) ≤ IE(G2),

S(G1) ≺ S(G2)⇒ IE(G1) < IE(G2).

For two nonadjacent vertices vi and vj , we use G+ e to
denote the graph obtained by inserting a new edge e = vivj
in G. For two vertex disjoint graph G1 and G2, we denote
by G1 ∪ G2 the graph which consists of two connected
components G1 and G2. The join of G1 and G2, denoted
by G1 ∨ G2, is the graph with vertex set V (G1) ∪ V (G2)
and edge set E(G1) ∪ E(G2) ∪ {uiuj : ui ∈ V (G1), uj ∈
V (G2)}. The connectivity κ(G) of a graph G is the min-
imum number of vertices whose removal from G yields a
disconnected graph or a trivial graph. The edge-connectivity
κ′ is defined analogously.

It is both interesting and significant to determine the
graph with extremal energies among a given class of graphs.
Numerous results on this subject have been put forward, for
details see [8-13]. Zhou and Trinajstić [9] determined the
extremal Kirchhoff index of graphs with respect to given
matching number. In [10], Xu characterized the extremal
Laplacian-energy-like with given matching number. Rojo
[8] obtained the extremal incidence energy with respect to
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the connectivity. In [14], Hu et al. determined the maximal
energy among all subdivisions of graphs with n vertices
and chromatic number k. Zhang [18] characterize the graphs
with the maximum incidence energies among all graphs with
given chromatic number and given pendent vertex number.
Inspired by those works, in this paper, we determine the
maximal incidence energy among all graphs with n vertices
and the connectivity κ and edge-connectivity κ

′
.

II. THE SIGNLESS LAPLACIAN CHARACTERISTIC
POLYNOMIAL OF G1 ∨ (G2 ∪G3) FOR REGULAR GRAPH

In this section, we determine the signless Laplacian char-
acteristic polynomials of G = G1∨(G2∪G3) with the help of
the coronal of a matrix. The M -coronal TM (x) of an n×n
matrix M is defined [15, 16] to be the sum of the entries of
the matrix (xIn−M)−1, that is TM (x) = jTn (xIn−M)−1jn,
where jn denotes the column vector of dimension n with all
the entries equal one.

It is well known [15, P roposition2] that, if M is an n×n
matrix with each row sum equal to a constant t, then

TM (x) =
n

x− t
. (4)

Theorem 2.1 Let Gi(i = 1, 2, 3) be three graphs on ni
vertices. Also let TQi

(λ)(i = 1, 2, 3) be the Qi-coronal of
Gi. Then the signless Laplacian characteristic polynomial of
the matrix Q(G1 ∨ (G2 ∪G3)) is

PQ(G1 ∨ (G2 ∪G3))

= PQ(G1, x− n2 − n3)PQ(G2, x− n1)PQ(G3, x− n1)
(1− TQ(G3)(x− n1)TQ(G1)(x− n2 − n3)
−TQ(G2)(x− n1)TQ(G1)(x− n2 − n3)).

Proof With a proper labeling of vertices, the signless Lapla-
cian characteristic polynomial of Q(G) = Q(G1∨(G2∪G3))
is given by

Let M = xIn1
−Q(G1)−(n2+n3)In1

, N = xIn2
−Q(G2)−

n1In2
, T = xIn3

−Q(G3)− n1In3
, then

PQ(G)

= det

(
M −jn1×n2 −jn1×n3

−jn2×n1
N 0n2×n3

−jn3×n1
0n3×n2

T

)
= det(xIn3

−Q(G3)− n1In3
)det(B)

= PQ(G3)(x− n1)det(B),

where

B =

(
M −jn1×n2

−jn2×n1
N

)
−
(
−jn1×n3

0n2×n3

)
((x− n1)In3

−Q(G3))−1
(
−jn3×n1 0n3×n2

)
is the Schur complement of λIn3

− Q(G3) − n1In3
. Thus

the result follows.

Corollary 2.2 Let G = Ks ∨ (Kn1
∪ Kn2

), where Ks,
Kni

(i = 1, 2) denote the complete graph on s and ni
vertices, respectively. Then the characteristic polynomial of
the signless Laplacian matrix of G is

PQ(G, x)

= (x− n+ 2)s−1
2∏
i=1

(x− s− ni + 2)ni−1[(n+ s− 2− x)

2∏
i=1

(2ni − 2 + s− x)− (
2∑
j=1

snj

2∏
i=1,i6=j

(2ni − 2 + s− x))].

Proof Since the sum of all entries on every row of signless
Laplacian matrix of Kn is 2(n−1), (4) implies that TQ(x) =

n
x−2(n−1) , using Theorem 2.1, we can get it immediately.

III. RESULTS

First, we define the relation � (≺,�,�) as follows.

Definition 3.1. ([13]) We say p is partial larger than q if
|p| > |q|, denoted by p � q. Similarly, we have p ≺ q, p � q,
p � q.

Definition 3.2. ([13]) Let p(x) =
∑n
i=0 pix

i and q(x) =∑n
i=0 qix

i. If |pi| ≥ |qi|(resp. |pi| ≤ |qi|)for each 0 ≤ i ≤ n,
then we call p(x) � q(x) (resp. p(x) � q(x)). If p(x) �
q(x)(resp. p(x) � q(x)), and there exist a j ∈ {0, 1, 2, ..., n}
such that pi � qi(resp. pj ≺ qj), we call p(x) � q(x)(resp.
p(x) ≺ q(x)).

By the definition above, the following result is immediate.

Lemma 3.3 ([14]) Suppose ai ≥ bi ≥ 0 for i = 1, 2, ..., n.
Then

n∏
i=1

(x− ai) �
n∏
i=1

(x− bi),

furthermore, if there exist a j ∈ {1, 2, ..., n} such that aj >
bj , then

n∏
i=1

(x− ai) �
n∏
i=1

(x− bi).

Theorem 3.4 Let n, a and k be three positive integers and
2 ≤ a ≤ bn−k2 c. Then

(x−n+3)n−k−2 � (x−k−a+2)a−1(x−n+a+2)n−k−a−1.

Proof Note that 2 ≤ a ≤ bn−k2 c and n−1 > n−a ≥ a+k.
By Lemma 3.3,

(x−n+3)n−k−2 � (x−k−a+2)a−1(x−n+a+2)n−k−a−1.

The result follows.

Theorem 3.5 Let n, ai and bi be positive integers and a1−
a2 ≥ 2, where n− s = a1 +a2. If b1 = a1− 2, b2 = a2 + 2,
then

(n+s−2−x)
2∏
i=1

(2bi+s−x−2)−(
2∑
j=1

sbj(
t∏

i=1,i6=j

(2bi+s−x−2)))

� (n+s−2−x)
2∏
i=1

(2ai+s−x−2)−(
2∑
j=1

saj(
2∏

i=1,i6=j

(2ai+s−x−2))).

Proof Note that

(2a1 + s− 2− x)(2a2 + s− 2− x)

= x2 − 2(a1 + a2 + s− 2)x+ 4a1a2 + 2s(a1 + a2)
−4(a1 + a2) + (s− 2)2.
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and
(2b1 + s− 2− x)(2b2 + s− 2− x) =

= x2 − 2(b1 + b2 + s− 2)x+ 4b1b2 + 2s(b1 + b2)
−4(b1 + b2) + (s− 2)2.

So

(2b1+s−2−x)(2b2+s−2−x)−(2a1+s−2−x)(2a2+s−2−x)

= −8s(a1 − a2 − 2). (5)

Again,

(−sa1)(2a2 + s− x− 2) + (−sa2)(2a1 + s− x− 2)

= s(a1 + a2)x− 4sa1a2 + 2s(a1 + a2)− s2(a1 + a2)

and

(−sb1)(2b2 + s− x− 2) + (−sb2)(2b1 + s− x− 2)

= s(b1 + b2)x− 4sb1b2 + 2s(b1 + b2)− s2(b1 + b2).

Thus

[(−sb1)(2b2 + s− x− 2) + (−sb2)(2b1 + s− x− 2)]

−[(−sa1)(2a2 + s− x− 2) + (−sa2)(2a1 + s− x− 2)]

= −8s(a1 − a2 − 2). (6)

Hence by (5) and (6)

(n+ s− 2− x)
2∏
i=1

(2bi + s− x− 2)

−(n+ s− 2− x)
2∏
i=1

(2ai + s− x− 2)

= (n+ s− 2− x)[−8s(a1 − a2 − 2)] (7)

−
2∑
j=1

(sbj

2∏
i=1,i6=j

(2bi − 2 + s− x))

+
2∑
j=1

(saj

2∏
i=1,i6=j

(2ai − 2 + s− x))

= [−8s(a1 − a2 − 2)]. (8)

Hence, by (7) and (8),

[(n+ s− 2− x)
2∏
i=1

(2bi + s− x− 2)

−(

2∑
j=1

sbj(

2∏
i=1,i6=j

(2bi + s− x− 2)))]

−[(n+ s− 2− x)
2∏
i=1

(2ai + s− x− 2)

−(

2∑
j=1

saj(

t∏
i=1,i6=j

(2ai + s− x− 2)))]

= (n+ s− 1− x+ ai)[−8s(a1 − a2 − 2)].

Thus by Definition 3.2

(n+ s− 2− x)
2∏
i=1

(2bi + s− x− 2)

−(
2∑
j=1

sbj(
2∏

i=1,i6=j

(2bi + s− x− 2)))

� (n+ s− 2− x)
2∏
i=1

(2ai + s− x− 2)

−(
2∑
j=1

saj(
2∏

i=1,i6=j

(2ai + s− x− 2))).

Hence we have finished the proof of the Theorem.

Lemma 3.6([16]) Let G be a non-complete connected graph
of order n and e ∈ E(G). Then

σ(Q(G+ e), x) = det(xIn −Q(G+ e))
� det(xIn −Q(G)) = σ(Q(G), x),

where G denote the complement of a graph G.

Lemma 3.7([17]) Let G be a graph with n vertices and m
edges. Then

σ(S(G), x) = xm−nσ(Q(G), x2) = xm−ndet(x2In−Q(G)).

Now we present our main result.

Theorem 3.8 Let G be a connected graph with n vertices
and connectivity κ. Then

σ(Q(G), x) � (x− n+ 2)κ−1(x− n+ 3)n−κ−2

[(n+ κ− 2− x)(κ− x)(2n− 4− κ− x)

−κ(2n− κ− 4− x)− κ(n− κ− 1)(κ− x)].

The equality holds if and only if G = Kκ∨ (K1∪Kn−κ−1).

Proof Let G0 be a graph having the maximal coefficients
of the signless Laplacian characteristic polynomial among
all connected graphs of order n with connectivity κ. Then
there is a vertex subset X0 ⊂ V (G0) and |V0| = κ such that
G0−V0 = G1 ∪G2 ∪ ...∪Gt, where G1, G2, ..., Gt (t ≥ 2)
connected components of G0 − V0. By Lemma 3.6, t = 2,
G1 and G2 and G[U ] are complete, and each vertex of G1

and G2 is adjacent to each vertex x in V0. Let ni = |Gi| for
i = 1, 2. Then G0 = Kκ∨(Kn1

∪Kn2
) and n1+n2 = n−κ.

Assume that n1 ≤ n2. By Corollary 2.2,

PQ(G0, x) = (x− n+ 2)κ−1
2∏
i=1

(x− κ− ni + 2)ni−1

[(n+ κ− 2− x)
2∏
i=1

(2ni − 2 + κ− x)

−(
2∑
j=1

κnj

2∏
i=1,i6=j

(2ni − 2 + κ− x))].

If 2 ≤ n1 ≤ bn−κ2 c, then by Lemma 3.4,

(x−n+3)n−κ−2 � (x−κ−a+2)a−1(x−n+a+2)n−κ−a−1.
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By Theorem 3.5

(n+ κ− 2− x)(κ− x)(2n− 4− κ− x)

−κ(2n− κ− 4− x)− κ(n− κ− 1)(κ− x)]

� (n+ κ− 2− x)
2∏
i=1

(2ai + κ− x− 2)

−(
2∑
j=1

κaj(
2∏

i=1,i6=j

(2ai + κ− x− 2))),

where b1 = 1, b2 = n1 + n2 − 1 = n− κ− 1.

Hence, we find the coefficients of PQ(G0, x) with n1+n2 =
n−κ and n1 ≤ n2 is maximum if and only if n1 = 1, n2 =
n− κ− 1. It follows that G0 = Kκ ∨ (K1 ∪Kn−κ−1), then

σ(Q(G0), x) � (x− n+ 2)κ−1(x− n+ 3)n−κ−2[(n+ κ−
2− x)(κ− x)(2n− 4− κ− x)− κ(2n− κ− 4− x)

−κ(n− κ− 1)(κ− x)].

This completes the proof of Theorem.

Lemma 3.9([14]) Let G1 and G2 be two bipartite graphs
with n1 and n2 vertices, respectively. For any two positive
integers p1 and p2 satisfying n1 + p1 = n2 + p2, then

xp1σ(G1, x) � xp2σ(G2, x)⇒ E(G1) � E(G2);

xp1σ(G1, x) � xp2σ(G2, x)⇒ E(G1) � E(G2).

By Lemma 3.7 and Theorem 3.8 and Lemma3.9, the
following result is obvious.

Theorem 3.10 Let G be a simple graph of order n whose
connectivity is κ. Then

IE(G) ≤ IE(Kκ ∨ (K1 ∪Kn−κ−1)),

with equality holds if and only if G = Kκ∨(K1∪Kn−κ−1).

Theorem 3.11 Let G be a connected graph with n vertices
and edge connectivity κ′. Then

σ(Q(G), x) � (x− n+ 2)κ
′−1(x− n+ 3)n−κ

′−2

[(n+ κ′ − 2− x)(κ′ − x)(2n− 4− κ′ − x)

−κ′(2n− κ′ − 4− x)− κ′(n− κ′ − 1)(κ′ − x)].

The equality holds if and only if G = Kκ′∨(K1∪Kn−κ′−1).

Proof Let G be a connected graph of order n with con-
nectivity κ and edge-connectivity κ′, then κ ≤ κ′. Note that
(x− n+ 2)κ−κ

′ � (x− n+ 3)κ−κ
′

and

[(n+κ−2−x)(κ−x)(2n−4−κ−x)−κ(2n−κ−4−x)

−κ(n− κ− 1)(κ− x)] �

[(n+ κ′ − 2− x)(κ′ − x)(2n− 4− κ′ − x)

−κ′(2n− κ′ − 4− x)− κ′(n− κ′ − 1)(κ′ − x)].

By Theorem 3.8,

σ(Q(G), x) � (x−n+2)κ−1(x−n+3)n−κ−2[(n+κ−2−x)

(κ− x)(2n− 4− κ− x)

−κ(2n− κ− 4− x)− κ(n− κ− 1)(κ− x)]

� (x−n+2)κ
′−1(x−n+3)n−κ

′−2[(n+κ′−2−x)(κ′−x)

(2n− 4− κ′ − x)− κ′(2n− κ′ − 4− x)

−κ′(n− κ′ − 1)(κ′ − x)].

And the equality holds if and only if G = Kκ ∨ (K1 ∪
Kn−κ−1) and κ = κ′, that is G = Kκ′ ∨ (K1 ∪Kn−κ′−1).
The result follows.

Similarly Theorem 3.10, we get the following result.

Theorem 3.12 Let G be a simple graph of order n whose
edge connectivity is κ′. Then

IE(G) ≤ IE(Kκ′ ∨ (K1 ∪Kn−κ′−1),

with equality holds if and only if G = Kκ′∨(K1∪Kn−κ′−1).

IV. CONCLUSION

In this paper, we use quasi-order relation to compare
the incidence energy of two graphs with respect to the
connectivity and edge connectivity and further obtain the
maximal incidence energy among all connected graphs with
given connectivity and edge connectivity.
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