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Abstract—This paper studies the problem of finite-time sta-
bilizing control design for nonholonomic mobile robots subject
to spatial constraint. A nonlinear mapping is first introduced to
transform the constrained system into a new unconstrained one.
Then, by employing the adding a power integrator technique
and switching control strategy, a state feedback controller is
successfully constructed to guarantee that the states of closed-
loop system are regulated to zero in a finite time without
violation of the constraint.

Index Terms—nonholonomic mobile robots, spatial constrain-
t, adding a power integrator, finite-time stabilization.

I. INTRODUCTION

THE nonholonomic systems, that is Lagrange systems
with linear nonintegrable constraints, have attracted a

great deal of attention during the past decades because they
can model many practical systems, such as mobile robots,
car-like vehicle, under-actuated satellites and so on [1-4].
Nonholonomic have good flexibility, since they could realize
autonomous movement in the case of nobody involving.
However, from a famous theorem due to Brockett [1], it
is well known that no smooth (or even continuous) time-
invariant static state feedback exists for the stabilization of
nonholonomic (mobile robots) systems. There are currently
several effective control methodologies that overcome the
topological obstruction. The idea of using time-varying s-
mooth controllers was first proposed in [6], in order to
stabilize a mobile robot. For driftless systems in chained
form, several novel approaches have been proposed for
the design of periodic, smooth, or continuous stabilizing
controllers [7, 8]. Most of the time-varying control scheme
suffer from a slow convergence rate and oscillation. However,
it has been observed that a discontinuous feedback control
scheme usually results in a fast convergence rate. An elegant
approach to constructing discontinuous feedback controller
was developed in [9]. The drawback is that there is a
restriction on the initial conditions of the controlled system.
This limitation has been overcome by a switching state or
output control scheme [10]. Subsequently, [11-17] further
developed the discontinuous feedback control strategy based
on different control targets, respectively.

In practical applications, the closed-loop system is desired
to possess the property that trajectories converge to the
equilibrium in finite time rather than merely asymptotically
since system with finite-time convergence may retain not
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only faster convergence, but also better robustness and distur-
bance rejection properties [18]. Motivated by this, the finite-
time control of nonlinear systems has attained significant
amount of interests and efforts over the last years [19-21].
Particularly, by using state feedback, the authors in [22]
first addressed the finite-time stabilization of nonholonomic
systems with weak drifts, and then the adaptive finite-time
stabilization problems were considered for nonholonomic
systems with linear parameterization in [23] and nonlinear
parameterization [24], respectively. By relaxed the restriction
on system growth, [25] studied the finite-time control for a
class of nonholonomic systems with low-order nonlinearities.
An output feedback controller was developed in [26] to
finite-time stabilize a class of nonholonomic systems in
feedforward-like form. However, the effect of the constraints
is omitted in the above-mentioned results.

As a matter that the constraints which can represent not
only physical limitations but also performance requirements
are common in practical systems. Violation of the constraints
may cause performance degradation or system damage. In
recent years, driven by practical needs and theoretical chal-
lenges, the control design for constrained nonlinear systems
has become an important research topic [27-29]. However,
less attention has been paid to the space-constrained non-
holonomic mobile robots.

Motivated by the above discussion, this paper focus on
solving the finite-time stabilization problem for nonholonom-
ic mobile robots subject to spatial constraint. The contri-
butions can be highlighted as follows. (i) The finite-time
stabilization problem of nonholonomic systems with spatial
constraint is studied for the first time. (ii) A nonlinear
mapping is introduced, under which the constrained interval
is mapped to the whole real number field. (iii) Based on a
switching strategy to eliminate the phenomenon of uncon-
trollability of u0 = 0, and by skillfully using the adding
a power integrator technique, a systematic state feedback
control design procedure is proposed to render the states
of closed-loop system to zero in a finite time while the
constraint is not violated in a domain.

The rest of this paper is organized as follows. In Section
II, the problem formulation and preliminaries are given.
Section III presents the input-state-scaling transformation
the backstepping design procedure, the switching control
strategy and the main result. Finally, concluding remarks are
proposed in Section VI.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a tricycle-type mobile robot shown in Fig. 1. The
kinematic equations of this robot are represented by

ẋc = v cos θ
ẏc = v sin θ

θ̇ = ω
(1)
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Fig. 1. The planar graph of a mobile robot.

where (xc, yc) denotes the position of the center of mass of
the robot, θ is the heading angle of the robot, v is the forward
velocity while ω is the angular velocity of the robot.

Introducing the following change of coordinates

x0 = xc, x1 = yc, x2 = tan θ,
u0 = v cos θ, u1 = w sec2 θ,

(2)

system (1) is transformed into the chained form as

ẋ0 = u0

ẋ1 = u0x2

ẋ2 = u1

(3)

Note that the state (x0, x1) can be see as the displacement
from the parking position. As we all know, when the robots
initial position is far away from the parking position, it
usually can move directly to the parking position. The robots
body angle can be aligned without difficulties and no more
maneuvers are needed. However, when the robots initial
position is close to the parking position, it might not be
feasible to get to the parking position while aligning the
robots body angle at the same time. Therefore it is very
necessary to develop finite-time control techniques for state-
constrained nonholonomic systems for giving this difficulty
a straightforward solution.

Due to physical limitations, in this paper we assume that
the states x0 and x1 are constrained in the compact sets

Ωxi = {−ki < xi < ki}, i = 0, 1 (4)

where ki’s are positive constants.
The objective of this paper is to present a state feedback

control design strategy which stabilizes the system (3) in a
finite time with the constraint being not violated.

Remark 1. Although great progress on constrained control
design has been made, for the constrained nonholonomic
system (3), how to construct a finite-time stabilizer is still
very difficult problem. The crucial obstacle is that the time-
varying coefficient u0 makes the x-subsystem uncontrollable
in the case of u0 = 0, and thus the existing constrained
control methods mainly based on barrier Lyapunov function
are highly difficult to the control problem of the system (3)
or even inapplicable. Thereby, how to overcome this obstacle
and design a finite-time stabilizer for the output-constrained
system (3) is main work of this paper.

The following definitions and lemmas will serve as the
basis of the coming control design and performance analysis.

Fig. 2. Schematic illustration of the nonlinear mapping H0.

Definition 1. Consider the nonlinear system

ẋ = f(t, x) with f(t, 0) = 0, x ∈ Rn (5)

where f : R+ × U0 → Rn is continuous with respect to
x on an open neighborhood U0 of the origin x = 0. The
equilibrium x = 0 of the system is (locally) uniformly finite-
time stable if it is uniformly Lyapunov stable and finite-
time convergent in a neighborhood U ⊆ U0 of the origin.
By “finite-time convergence,” we mean: If, for any initial
condition x(t0) ∈ U at any given initial time t0 ≥ 0, there
is a settling time T > 0 , such that every x(t, t0, x(t0))
of system (5) is defined with x(t, t0, x(t0)) ∈ U/{0} for
t ∈ [t0, T ) and satisfies limt→T x(t, t0, x(t0)) = 0 and
x(t, t0, x(t0)) = 0 for any t ≥ T . If U = U0 = Rn, the
origin is a globally uniformly finite-time stable equilibrium.

Lemma 1[25]. Consider the nonlinear system described in
(5). Suppose there is a C1 function V (t, x) defined on Û ⊆
U0 × R, where Û is a neighborhood of the origin, class K
functions π1 and π2, real numbers c > 0 and 0 < α < 1,
for t ∈ [t0, T ) and x ∈ Û such that (i) π1(|x|) ≤ V (t, x) ≤
π2(|x|), ∀t ≥ t0, ∀x ∈ Û ; (ii)V̇ (t, x) + cV α(t, x) ≤ 0,
∀t ≥ t0, ∀x ∈ Û . Then, the origin of (5) is uniformly finite-
time stable with T ≤ V 1−α(t0,x(t0))

c(1−α) for initial condition x(t0)

in some open neighborhood Û of the origin at initial time t0.
If Û = U0 = Rn and π1 and π2 are class K∞ functions, the
origin of system (5) is globally uniformly finite-time stable.

Lemma 2[30]. For x ∈ R, y ∈ R, p ≥ 1 and c > 0
are constants, the following inequalities hold: (i) |x+ y|p ≤
2p−1|xp + yp|, (ii) (|x| + |y|)1/p ≤ |x|1/p + |y|1/p ≤
2(p−1)/p(|x| + |y|)1/p, (iii) ||x| − |y||p ≤ ||x|p − |y|p|, (iv)
|x|p + |y|p ≤ (|x|+ |y|)p, (v) |[x]1/p − [y]1/p| ≤ 21−1/p|x−
y|1/p, (vi) |[x]p − [y]p| ≤ c|x− y|||x− y|p−1 + |y|p−1|.

Lemma 3[31]. For any positive real numbers c, d
and any real-valued function π(x, y) > 0, |x|c|y|d ≤
c

c+dπ(x, y)|x|
c+d + d

c+dπ
−c/d(x, y)|y|c+d.

Lemma 4[30]. f(s) = sgn(s)|s|a is continuously differen-
tiable, and ḟ(s) = a|s|a−1ṡ, where a ≥ 1, x ∈ R. Moreover,
if s = x(t), t ≥ 0, then df(x(t))

dt = a|x|a−1ẋ(t).

III. NONLINEAR MAPPING

To prevent the states x0 and x1 from violating the con-
straints, we define a nonlinear mapping that will be used to
develop the control design and the main results.
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Define a one-to-one nonlinear mapping H : (x0, x) →
(η0, η) as follows:

η0 = H0(x0) = ln
(k0 + x0

k0 − x0

)
η1 = H1(x1) = ln

(k1 + x1

k1 − x1

)
η2 = H2(x2) = x2

(6)

where H0 is shown in Fig. 2. It is clear that function H0 is
a continuous elementary function. From (6), we get

x0 = H −1
0 = k0

(
1− 2

eη0 + 1

)
(7)

then the derivative of x0 is given by

ẋ0 =
2k0e

η0

(eη0 + 1)2
η̇0 (8)

Substituting (8) into the first equation of (3), we have

η̇0 =
1

2k0
(eη0 + e−η0 + 2)u0 (9)

Similarly, we can obtain

η̇1 =
1

2k1
(eη1 + e−η1 + 2)x2 (10)

By noting that η̇2 = ẋ2, we can rewrite the system (3) as

η̇0 = d0(η0)u0

η̇1 = d1(η1)u0η2
η̇2 = u1

(11)

where
d0(η0) =

1

2k0
(eη0 + e−η0 + 2)

d1(η1) =
1

2k1
(eη1 + e−η1 + 2)

(12)

IV. FINITE-TIME CONTROL DESIGN

In this section, we focus on designing finite-time controller
for system (11) provided that η0(0) ̸= 0, while the case
where the initial condition η0(0) = 0 will be treated in
Section 5. The inherently triangular structure of system (11)
suggests that we should design the control inputs u0 and u1

in two separate stages.

A. Design u0 for η0-subsystem

For η0-subsystem, we take the following control law

u0 = − 1

d0
(λ0 + φ̄0)[η0]

1+ω (13)

where k0 is a positive design parameter.
Consequently, the following lemma can be established.
Lemma 5. Under the control law (13), the η0-subsystem is

globally uniformly finite-time stable within any given settling
time T .

Proof. Choosing the Lyapunov function V0 = η20/2, a
simple computation gives

−(λ0 + 2φ̄0)|η0|2+ω ≤ V̇0 ≤ −λ0|η0|2+ω ≤ 0 (14)

which implies |η0(t)| ≤ |η0(0)|. Setting K =
max|η0(t)|≤|η0(0)|{λ0 + 2φ̄0}, from (11), it follows that

−K|(η0|2+ω ≤ V̇0 ≤ −λ0|η0|2+ω (15)

Furthermore

−2KV
2+ω
2

0 ≤ V̇0 ≤ −λ0V
2+ω
2

0
(16)

Thus by Lemma 1, η0 tends to 0 within a settling time
denoted by T0. Moreover,

V0(0)
−ω
2

−ωK
≤ T0 ≤ 2V0(0)

−ω
2

−ωλ0

(17)

Hence by taking design parameter λ0 as λ0 ≥
2V0(0)

−ω
2 /(−Tω), the lemma follows.

Remark 2. From (17), it can be see that if we take
T∗ < V0(0)

(−ω)/2/(−2Kω), then we can obtain |η0(0)| ≥
|λ0(t)| ≥ 21/ω|η0(0)| during [0, T∗] without changing the
sign of η0(t) provided that x0(0) ̸= 0 [25,26]. Furthermore,
from (13), we know that u0 is bounded and its sign remains
unchanged during [0, T∗].

B. Input-state-scaling transformation

Since it has already proven that η0 can be globally
regulated to zero as t → T0. Next, we only need to stabilize
the η-subsystem

η̇1 = d1(η1)u0η2
η̇2 = u1

(18)

within the given settling time T∗. To facilitate the design of
controller u1, the following discontinuous input-state-scaling
transformation is utilized for system (18).

zi =
ηi

un−i
0

, i = 1, 2 (19)

under which, the η-subsystem is transformed into

ż1 = d̃1(z1)u0z2 + f̃1(t, η0, z1, u0)
ż2 = u1

(20)

where

d̃1(z1) = d1(η1)

f̃1(t, η0, z̄i, u0) =
f̄1
u0

− zi
u0

∂u0

∂η0
(d0u0 + f̄0)

(21)

The following lemmas gives the estimations of nonlinear
function d̃1 and f̄i.

Lemma 6. For t ∈ [0, T∗], there are nonnegative η0(0)-
dependent smooth functions c11, c12 and φ̃i such that

0 < c11(z1) ≤ d̃1(z1) ≤ c12(z1)

|f̃1(t, η0, z̄2, u0)| ≤ φ̃2(z̄2)
2∑

j=1

|zj |
ri+τ

rj
(22)

where τ ∈ (−1/n, 0) and ri = 1 + (i− 1)τ > 0, i = 1, 2, 3
are constants.

Proof. Noting that the boundedness of η0 and u0, the
estimations can be easily obtained from (12), (20) and the
transformation (19). The detailed proof is omitted here.
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C. Recursive design for u1

In this subsection, we shall construct a continuous state
feedback controller u1 which is addressed in a step-by-step
manner. for For the consistency of the following inductive
steps, we denote d̃2 = 1.

Step 1. Let ξ1 = [z1] and choose a Lyapunov function
candidate

V1 = W1 =

∫ z1

z∗
1

[[s]− z∗1 ]
2−r2ds (23)

with z∗1 = 0. From (20) and (22), it follows that

V̇1 = d̃1[ξ1]
2−r2z2 + [ξ1]

2−r2 f̃1 ≤ d̃1[ξ1]
2−r2z2 + ξ21φ̃1

(24)
Obviously, the C0 virtual controller

z∗2 = − 1

c11
(M + n− 1 + φ̄1)[ξ1]

r2 := −βr2
1 [ξ1]

r2 (25)

where M > 0 is a constant to be determined later, and β1 > 0
is smooth function, results in

V̇1 ≤ −(M + n− 1)ξ21 + d̃1[ξ1]
2−r2(z2 − z∗2) (26)

Step 2. Let ξ2 = [z2]
1
r2 − [z∗2 ]

1
r2 and consider the

Lyapunov function candidate

V2 = V1 +W2 = V1

∫ z2

z∗
2

[
[s]

1
r2 − [z∗2 ]

1
r2

]2−r3
ds (27)

From Lemma 4, it is clear that

V̇2 ≤ −(M + 1)ξ21 + d̃1[ξ1]
2−r2(z2 − z∗2)

+[ξ2]
2−r3u1 +

∂W2

∂z1
ż1 +

∂W2

∂η0
η̇0

(28)

Now we estimate each term on the right-hand side of (28).
To begin with,

Note that 0 > τ > − 1
n and r2 = r1 + τ , we have 0 <

rk < 1.It follows from Lemma 2 that

|z2 − z∗2 | ≤ 21−r2
∣∣∣[z2] 1

r2 − [z∗2 ]
1
r2

∣∣∣r2 = 21−r2 |ξ2|r2
(29)

By (29) and Lemma 3, it can be obtained that

d̃1|ξ1|2−r1 |z1 − z∗1 | ≤
1

2
ξ21 + ξ22 l21 (30)

where l21 ≥ 0 is a smooth function.
Second, by using Lemmas 2 and 3, after tedious calcula-

tions, there holds

∂W2

∂z1
ż1 +

∂W2

∂η0
η̇0 ≤ 1

2
z21 + l21ξ

2
2 (31)

where l21 > 0 is a constant.
Substituting (30)and (31) into (28) yields

V̇2 ≤ −z21 + [ξ2]
2−r3u1 + ξ2(l21 + l22 + l23) (32)

Now, it easy to see that the smooth actual controller

u1 = −(M + l21 + l22 + l23)ξ
r3
2

:= −βr3
2 [ξ2]

r2 (33)

renders
V̇2 ≤ −M(z21 + ξ22) (34)

Lemma 7. If control laws (13) and (33) are applied with an
appropriate choice of the design parameters, then the system
(20) is finite-time regulated at the origin for η0(0) ̸= 0.

Proof. Since we have already proven that η0 can be
globally finite-time regulated to zero above, we just need
to show that η(t) converges to zero within settling time
T1 ≤ T∗. From Step 2, we easily see that V2 is positive
definite and radially unbounded. Then, by Lemma 4.3 in [32],
we know that there exist K∞ functions π1 and π2 such that

π1(|ξ(t)|) ≤ V2(ξ(t)) ≤ π2(|ξ(t)|) (35)

On the other hand, by using Lemma 2, it is easy to see
that

W2 =

∫ z2

z∗
2

[
[s]

1
r2 − [z∗2 ]

1
r2

]2−r3
ds

≤
∣∣∣[z2] 1

r2 − [z∗2 ]
1
r2

∣∣∣2−r3
|zk − z∗k|

≤ 21−r2 |ξ2|2−τ

(36)

So we have the following estimation

V2 =
n∑

k=1

Wk ≤ 2
2∑

k=1

|ξk|2−τ (37)

Letting α = 2/(2 − τ), with (37) and (34) in mind, by
Lemma 2, we can obtain that

V̇2 ≤ −1

2
MV α

2 (38)

By Lemma 1, system (20) under control law (33) is finite
time stable with settling time

T1 ≤ 2V
(1−α)
n (0)

M(1− α)
(39)

Hence, by choosing a large enough M as

M ≥ 2V
(1−α)
n (0)

T∗(1− α)
(40)

the settling time T1 < T∗ is guaranteed. This together with
transformation (19) implies that the η-subsystem is finite-
time regulated at the origin. Thus, the proof is completed.

V. SWITCHING CONTROL DESIGN AND MAIN RESULT

In the preceding section, we have given controller design
for η0(0) ̸= 0. Now, we discuss how to select the control laws
u0 and u1 when η0(0) = 0. In the absence of disturbances,
the most commonly used control strategy is using constant
control u0 = u∗

0 ̸= 0 in time interval [0, ts). However,
for system (11) with non-Lipschitz nonlinearities, the choice
of constant feedbacks may lead to the solution of the η0-
subsystem blow up before the given switching time ts.
In order to prevent this finite escape phenomenon from
happening, we give the switching control strategy for control
input u0 by the use of state measurement of the η0-subsystem
in (11) instead of frequently-used time measurement.

When η0(0) = 0, we choose u0 as follow:

u0 = u∗
0, u∗

0 > 0

At η0(0) = 0, we know that η̇0(0) = d0(0)u0(0) =
d0(0)u

∗
0 > 0. Thus for a small positive constant δ, there

exists a small neighborhood Ω of η0(0) = 0 such that
|d0η0| ≤ δ. Suppose that η∗0 satisfies |η∗0 | = δ. In Ω, η0
is increasing until |η0| > δ.

Now, we define the switching control law u0 as

u0 = u∗
0, u∗

0 > 0, |η0| ≤ |η∗0 | < δ (41)
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During the time period satisfying |η0| ≤ |η∗0 |, using u0

defined in (41) and new u1 = u∗
1(η0, z) obtained by the

similar control design method as (33), it is concluded that
the η-state of (11) cannot blow up for |η0| ≤ |η∗0 |. At this
time, η0(ts) is not zero (|η0(ts)| > |η∗0 |), then, we switch to
the control inputs u0 and u1 into (13) and (33), respectively.
Thus, the following results are obtained.

Lemma 8. If the proposed control design procedure to-
gether with the above switching control strategy is applied
to system (11), then, for any initial conditions in the state
space (η0, η)

T ∈ Rn+1 , uncertain system (9) is regulated at
origin within a finite settling time.

Proof. According to the above analysis, it suffices to
prove the statement in the case where η0(0) ̸= 0. Therefore,
following the same line of the proof of Lemma 7, one can
completed the proof.

With the help of Lemma 8, we are ready to state the main
results of this paper.

Theorem 1. If the proposed control design procedure
together with the above switching control strategy is applied
to system (3), then, for any initial conditions (x0(0), x(0)) ∈
Θ = {(x0, x)

T ∈ Rn+1| − ki < xi < ki, i = 0, 1}, the
following properties hold.

(i) The states x0 and x1 stay in the compact sets Ωxi =
{−ki < xi < ki}, i = 0, 1.

(ii) All the states of closed-loop system are regulated to
zero within a finite settling time.

Proof. From Lemma 8, we can easily see that the states
ηi(t), i = 0, 1, 2 are bounded, and moreover there exists
a finite settling time T such that limt→T ηi(t) = 0. The
bounded states ηi(t), i = 0, 1 together with the nonlinear
mapping (6) lead to

|x0(t)| = k0

∣∣∣1− 2

eη0(t) + 1

∣∣∣ < k0 (42)

and
|x1(t)| = k1

∣∣∣1− 2

eη1(t) + 1

∣∣∣ < k1 (43)

that is, the states xi will remain in the sets Ωxi , i = 0, 1 and
never violate the constraints. Furthermore, limt→T ηi(t) =
0, i = 0, 1, · · · , n and (6) imply that implies that
limt→T x2(t) = 0 and

lim
t→T

x0 = lim
t→T

k0

(
1− 2

eη0(t) + 1

)
= 0 (44)

lim
t→T

x1 = lim
t→T

k1

(
1− 2

eη1(t) + 1

)
= 0 (45)

Thus, the proof is completed.

VI. CONCLUSION

This paper has studied the problem of finite-time stabi-
lization by state feedback for nonholonomic mobile robots
subject to spatial constraint. Based on the nonlinear mapping,
and by skillfully using the method of adding a power integra-
tor, a constructive design procedure for state feedback control
is given. Together with a novel switching control strategy, the
designed controller can guarantee that the closed-loop system
states are finite-time regulated to zero while the constraint
is not violated in a domain. In this direction, there are
still remaining problems to be investigated. For example, an
interesting research problem is how to design a finite-time
output feedback stabilizing controller for such constrained
systems studied in the paper.
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