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Abstract—In this paper, we study a stage-structured
predator-prey model incorporating time delay with prey growth
subject to a strong Allee effect. By analyzing the characteristic
equation of the corresponding linearized system, we investigate
the local asymptotic stability of the system according to the
change of birth rate in prey. Using the delay as a bifurcation
parameter, the model undergoes a Hopf bifurcation at the
positive equilibrium when the delay crosses some critical values.
On the other hand, we show that both predators and prey will
go extinct if the birth rate is small or the Allee effect is large.

Index Terms—predator-prey, Allee effect, stage structure,
stability, time delay.

I. INTRODUCTION

THE Predator-prey model is one of the basic models
in the theoretical studies of ecology. As we all know,

predator-prey model has been studied extensively [1]-[8]. In
order to explain the phenomena of predator species and prey
species, many scholars investigated functional responses. For
example, Chen, Xie, et al[9] and Chen, Wang, et al[10] stud-
ied the dynamic behaviors incorporating functional response
for predator-prey model.

In modeling the predator-prey systems, a key factor in
consideration is the Allee effect. The Allee effect named
after Allee[11], has significant contribution to population
dynamics. The Allee effect is a biological phenomenon,
wherein positive correlation between population density and
the average degree of individual fitness of the population
or species [12], [13]. The Allee effects occur as a result of
mate limitation, evading natural enemies, inbreeding depres-
sion, raising their young, and environmental conditioning
[12], [14], [15]. In addition, the Allee effect has recently being
studied by many scholars, see [16]-[21] and the references
cited therein.

The Allee effect was shown that the low density population
can affect the birth rate of the species [22], but the coefficients
of the growth rate are irrelevant to the Allee-type function.
Hence, let F (x) be the fertility rate of a species x [23]:

F (x) =
ax

A+ x
,
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where a is the per capita maximum fertility rate of species
x; A is the Allee effect constant of the species. If A > 0, the
fertility rate of the species is zero if x = 0 and approaches
to a if x is large enough. The value of the parameter A
determines the growth rate of F (x). When A = 0, the
fertility rate F (x) = a is density independent. Therefore
when considering the Allee effect, the logistic equation can
be rewritten in the following form

ẋ = x

(
ax

A+ x
− d− bx

)
, (1)

where d denotes the death rate of the species; the intra-
specific competition intensity of the species is represented by
b; ax/(A+x) is a Michaelis-Menten type function. Clearly,
when A = 0, system (1) is reduced to the traditional logistic
equation.

Zu[24] researched the following predator-prey system with
Allee effect

ẋ = x

(
ax

A+ x
− d− bx

)
−mxy,

ẏ = nmxy − δy.
(2)

The authors investigated the existence and local stability of
the equilibria of system (2). Also they studied the unstable or
stable periodic fluctuations with the influence of Allee effect.

In most of ecosystems, maturation, pregnancy and hunting
occur all the time. Hence, time delay due to gestation has
been greatly researched as a focus issue in predator-prey
system [25]-[31], since the current birth rate of the predator is
related to its consumption of prey throughout the past history.
For example, Chen, Xie, et al[32] discussed the partial
survival and extinction of a delayed predator-prey model
with stage structure. By applying the standard comparison
theorem, some novel results concern with the extinction of
the system and partial survival of the predator and prey
species, respectively, are obtained.

As we all know, there are always many species going
through two stages, immature and mature, which reflected the
different characteristics of species at each stage. Therefore,
stage structure population models are more reasonable than
other models and exhibits real world phenomenon. In recent
years, numerous papers have been considered the predator-
prey system with stage structure, see [33]-[39] and the
references cited therein. For example, Li, Han, et al[40]
proposed a predator-prey system with stage structure and
mutual interference. The authors study the global stability of
the interior equilibrium of the system. Chen, Xie, et al[41]
investigated a two-species May type cooperation model with
stage structure. They obtained the global extinction, partial
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survival and global attractivity of the positive equilibri-
um. Wei and Fu[42] considered the dynamic behaviors of
a predator-prey systems with Beddington-DeAngelis type
functional response and stage structure for prey incorporating
refuge.

However, still seldom scholars consider the stability of
a stage-structured predator-prey model incorporating time
delay with a strong Allee effect in prey. Hence, the main
purpose of this paper is to study the stability and Hopf
bifurcation of system (2) with stage structure. More precisely,
we study the following model

ẋ = x

(
ax

A+ x
− d− bx

)
−mxy2,

ẏ1 = nmx(t− τ)y2(t− τ)− δy1 − βy1,
ẏ2 = βy1 − ey2,

(3)

where x, y1 and y2 denote the densities of prey species,
immature predator species and mature predator species at
time t, respectively; A, a, b, d, n, m, β, δ, e are positive
constants; τ demonstrates the time delay because of the
gestation of the predator; m is the capture rate and n is
the food conversion rate of predator; η is the conversion rate
of nutrients into the production of predator species; δ and
e are the death rates of the immature and mature predator
species.

The initial conditions for system (3) take the form

x(θ) = ϕ(θ), y1(θ) = ψ1(θ), y2(θ) = ψ2(θ),
ϕ(θ) ≥ 0, ψ1(θ) ≥ 0, ψ2(θ) ≥ 0, θ ∈ [−τ, 0),
ϕ(0) > 0, ψ1(0) > 0, ψ2(0) > 0,

(4)

where
(
ϕ(θ), ψ1(θ), ψ2(θ)

)
∈C([−τ, 0],R3

+), the Banach s-
pace of continuous functions mapping the interval [−τ, 0]
into R3

+, where R3
+ = {(x1, x2, x3) : xi ≥ 0, i = 1, 2, 3}.

The rest of this paper is organized as follows: The bound-
edness and the existence of equilibriums of system (3) are
derived in the next section. In Section 3, we study the local
asymptotic stability and Hopf bifurcation of system (3). We
end this paper with examples and a brief discussion.

II. BOUNDEDNESS, AND EXISTENCE OF EQUILIBRIA

In this section, we study the boundedness and the
existence of equilibriums of system (3).

Define
a1 = Ab+ d+ 2

√
Abd.

Theorem 2.1. [43] Let x(t) be a positive solution of system
(1) with the initial value x(0) > 0.

(1) If a < a1, then lim
t→+∞

x(t) = 0.

(2) If a ≥ a1, then we obtain the following results:

(i) For 0 < x(0) < x2, lim
t→+∞

x(t) = 0;

(ii) For x2 < x(0), lim
t→+∞

x(t) = x1,

where

x1 =
k +

√
Q1

2b
and x2 =

k −
√
Q1

2b

with k = a − (Ab+ d), Q1 = a2 − 2 (Ab+ d) a +
(Ab− d)

2.
In the following, we show that the positivity and bound-

edness of solution of system (3).

Lemma 2.1. Every solution of system (3) with the initial
condition (4) are positive and ultimately bounded for all t ≥
0.

Proof. It is obviously that every solution of model (3) with
initial conditions (4) are positive for all t ≥ 0. The result is
a direct consequence of Nagumos theorem [44]. Let V (t) =
nx(t− τ) + y1(t) + y2(t), calculating the derivative of V (t)
with respect to t along the positive solution of system (3),
we have

V̇ (t) = nẋ(t− τ) + ẏ1(t) + ẏ2(t)

= nx(t− τ)

(
ax(t− τ)

A+ x(t− τ)
− d− bx(t− τ)

)
−nmx(t− τ)y2(t− τ) + nmx(t− τ)y2(t− τ)

−δy1(t)− βy1(t) + βy1(t)− ey2(t)

= nx(t− τ)

(
ax(t− τ)

A+ x(t− τ)
− d− bx(t− τ)

)
−δy1(t)− ey2(t).

For a small positive constant s ≤ min{δ, e},

V̇ + sV = (s− δ)y1 + (s− e)y2 + nx(t− τ)

×
(
s+

ax(t− τ)

A+ x(t− τ)
− d− bx(t− τ)

)
≤ nx(t− τ)

(
s+

ax(t− τ)

A+ x(t− τ)
− d

−bx(t− τ)

)
.

By Theorem 2.1, there exist some positive constants B and
T , such that V̇ (t) ≤ B − sV (t) for all t ≥ T . Thus V̇ (t) +

sV (t) ≤ B, that is V (t) ≤
(
V (0)− B

s

)
e−st+ B

s . Therefore,
V (t) is ultimately bounded, that is, each solution z(t) =
(x(t), y1(t), y2(t)) of system (3) is ultimately bounded. The
proof is complete.

Obviously, system (3) always has a trivial equilibrium
E0(0, 0, 0). If a > a1, then system (3) has two boundary
equilibria E1(x1, 0, 0) and E2(x2, 0, 0).

Further, if a > a2, then model (3) has a coexistence
equilibrium E∗(x∗, y∗1 , y

∗
2), where

x∗ =
e(β + δ)

nmβ
, y∗1 =

ey∗2
β
, y∗2 =

ax∗ − (A+ x∗)(d+ bx∗)

m(A+ x∗)

with a2 = Ab+ d+ Ad
x∗ + bx∗.

Obviously,

a2 = Ab+ d+
Ad

x∗
+ bx∗ ≥ Ab+ d+ 2

√
Abd = a1,

(5)
where a2 = a1 if and only if A = b(x∗)2

d .
The above analysis can be summarized in Table I.

TABLE I
EQUILIBRIA OF SYSTEM (3).

0 < a < a1 E0 exists

a > a1 E0, E1, E2 exist

A ̸= b(x∗)2

d

a1 < a ≤ a2 E0, E1, E2 exist

a > a2 E0, E1, E2, E
∗ exist

A = b(x∗)2

d a > a1 E0, E1, E2, E
∗ exist
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Define A1 =
a+ d− 2

√
ad

b
, A2 =

(a− d− bx∗)x∗

bx∗ + d
and x∗0 =

√
d(
√
a−

√
d)

b
. By simple

computation, we have

A1 −A2 =
[bx∗ −

√
d(
√
a−

√
d)]2

b(bx∗ + d)

≥ 0, for all 0 < x∗ <
a− d

b
,

particularly A1 = A2 if and only if x∗ = x∗0. According
to the Table I and simple analysis, we get the existence of
equilibria of system (3) with the change of the Allee effect
(see Table II).

TABLE II
EQUILIBRIA OF SYSTEM (3).

a ≤ d A > 0 E0 exists

a > d

x∗ ≥ a−d
b

0 < A < A1 E0, E1, E2 exist

x∗
0 ̸= x∗ < a−d

b

A2 ≤ A < A1 E0, E1, E2 exist
0 < A < A2 E0, E1, E2, E∗ exist

x∗ = x∗
0 < a−d

b
0 < A < A1 E0, E1, E2, E∗ exist

Tables I and II show that if the birth rate a is relatively
small or the Allee effect A is relatively large, then system
(3) only has one trivial equilibrium E0, that is the predators
and prey will be extinct. If the birth rate a is relatively large
or the Allee effect A is relatively small, then system (3) has
a positive equilibrium E∗, which guarantees the coexistence
of system (3).

III. LOCAL STABILITY AND HOPF BIFURCATION

A. E0 = (0, 0, 0)

Theorem 3.1. The equilibrium point E0 of system (3) is
locally asymptotically stable.

Proof. The variational matrix of system (3) at the equilib-
rium point E0 is

V (E0) =

 λ+ d 0 0
0 λ+ (β + δ) 0
0 −β λ+ e

 .
Clearly, the characteristic equation of the equilibrium point
E0 always has three negative real roots: λ = −d, λ = −(β+
δ), λ = −e. The proof is complete.

It follows from Theorem 2.1 that we have

Theorem 3.2. Assume that a < a1, then E0(0, 0, 0) of
system (3) is globally asymptotically stable.

When a < a1, E0 is globally asymptotically stable, which
implies that both predators and prey will become extinct
when their population densities lie in the attraction region of
E0. In particular, if the population density of prey becomes
low, then both prey and predators will extinct.

B. E1 = (x1, 0, 0)

Theorem 3.3.
(1) Assume that A ̸= b(x∗)2

d hold.
(i) If a1 < a < a2, then E1 of system (3) is a locally

asymptotically stable equilibrium point.

(ii) If a > a2, then the equilibrium point E1 of system (3)
is unstable.

(2) If A = b(x∗)2

d and a > a1, then E1 of system (3) is
unstable.

Proof. The characteristic equation of the equilibrium point
E1 is(

λ− 2Aax1 + ax21

(A+ x1)
2 + d+ 2bx1

)
× [λ2 + P1λ

+P0 +Q0e
−λτ ] = 0,

(6)

where P1 = β + δ + e, P0 = e(β + δ), Q0 = −nmβx1.
First, let

F1(λ) = λ− 2Aax1 + ax21

(A+ x1)
2 + d+ 2bx1 = 0. (7)

Solving the equation (7), we have

λ1 =
2Aax1 + ax21

(A+ x1)
2 − d− 2bx1

= − 2

(Ab+
√
Q1 + a− d)2

[
(a− d)Q1

+
(
a2 − (Ab+ 2d)a−Abd+ d2

)√
Q1

]
.

(8)

Obviously, (a− d)Q1 > 0. Further, we consider the follow-
ing equation

f1(a) = a2 − (Ab+ 2d) a−Abd+ d2. (9)

Since

f1(a1) = f1(Ab+ d+ 2
√
Abd) = 2Abd+ 2Ab

√
Abd > 0,

and the symmetry axis of f1(a) is a = Ab
2 + d < a1, the

inequality f1(a) > 0 holds for all a > a1. Therefore, we
have λ1 < 0, then Eq.(7) has only one negative real root.
Next, we consider the following equation

F2(λ) = λ2 + P1λ+ P0 +Q0e
−λτ . (10)

By calculation, e(β + δ) < nmβx1 is equivalent to a > a2.
Thus, if a > a2, it is easy to show that, for λ real,
F2(0) = e(β + δ) − nmβx1 < 0, lim

λ→+∞
F2(λ) = +∞.

Hence, F2(λ) = 0 has at least one positive real root.
Therefore, if a > a2, the equilibrium E1 is unstable.

When τ = 0, Eq.(10) turns to

λ2 + P1λ+ P0 +Q0 = 0. (11)

If a1 < a < a2, then P0 + Q0 > 0. By the Routh-Hurwitz
criterion, this implies that the boundary equilibrium E1 is
locally asymptotically stable.

For τ > 0, we investigate the existence of purely imag-
inary roots of (10). If iω1(ω1 > 0) is a solution of (10) if
and only if ω1 satisfies

−ω2
1 + P1ω1i+ P0 +Q0

(
cos(τω1)− i sin(τω1)

)
= 0.

Separating the real and imaginary parts, we obtain

P1ω1 = Q0 sin(τω1),
ω2
1 − P0 = Q0 cos(τω1),

(12)

which implies

ω4
1 + (P 2

1 − 2P0)ω
2
1 + P 2

0 −Q2
0 = 0. (13)
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Note that if a < a2, which yields

P 2
1 − 2P0 = (β + δ + e)2 − 2e(β + δ)

= e2 + (β + δ)2 > 0,
P 2
0 −Q2

0 = [e(β + δ) + nmβx1]
×[e(β + δ)− nmβx1] > 0.

By Theorem 3.4.1 in [45], if a1 < a < a2, then all the roots
of (10) have negative real parts for all τ ≥ 0, this implies that
the boundary equilibrium E1 locally asymptotically stable for
all τ ≥ 0. The proof is complete.

C. E2 = (x2, 0, 0)

Theorem 3.4. Let a > a1, then E2 of system (3) is unstable.

Proof. The characteristic equation of the equilibrium point
E2 is(

λ− 2Aax2 + ax22

(A+ x2)
2 + d+ 2bx2

)
[λ2

+(β + δ + e)λ+ e(β + δ)− nmβx2e
−λτ ] = 0.

(14)

Solving the following equation

G1(λ) = λ− 2Aax2 + ax22

(A+ x2)
2 + d+ 2bx2 = 0, (15)

we have

λ =
2Aax2 + ax22

(A+ x2)
2 − d− 2bx2

= − 2

(Ab+
√
Q1 + a− d)2

[
(a− d)Q1

+
(
−a2 +Aba+ 2da+Abd− d2

)√
Q1

]
= −G2(Q1)×

2

(Ab+
√
Q1 + a− d)2

,

(16)

where

G2(Q1) = (a− d)Q1 + (−a2 +Aba+ 2da

+Abd− d2)×
√
Q1.

(17)

Let
√
Q1 = t > 0. It follows from Eq.(17) that

g(t) = (a− d) t2 +
(
−a2 +Aba+ 2da+Abd− d2

)
t.
(18)

Let g(t) = 0, then

t1 = 0 and t2 =
a2 − (Ab+ 2d) a−Abd+ d2

a− d
=
f1(a)

a− d
,

(19)
where f1(a) is defined by (9). Similar to the analysis of
Theorem 3.3, we obtain f1(a) > 0, thus t2 = f1(a)/(a −
d) > 0.

Hence, if 0 < t < t2, then g(t) < 0; if t2 ≤ t, then
g(t) ≥ 0. That is, if 0 < Q1 < t22, then G2(Q1) < 0; if
t22 ≤ Q1, then G2(Q1) ≥ 0. Clearly, the inequality t22 ≤ Q1

does not hold, due to Q1 − t22 = −4A2b2ad
(a−d)2 < 0, which is

a contradiction. Thus λ > 0, which implies Eq.(14) has at
least one positive root and E2 is unstable. The proof of the
theorem is complete.

We summarize the results of Theorems 3.3 and 3.4 in
Table III. On the other hand, by the analysis of section 2 and
Theorems 3.3 and 3.4, we also obtain the local asymptotic
stability of equilibria Ei, i = 0, 1, 2 (see Table IV).

TABLE III
EQUILIBRIA Ei, i = 0, 1, 2 OF SYSTEM (3).

0 < a < a1 E0 GAS; E1 and E2 do not exist

A =
b(x∗)2

d
a > a1 E0 LAS; E1 unstable; E2 unstable

A ̸= b(x∗)2

d

a1 < a < a2 E0 LAS; E1 LAS; E2 unstable
a > a2 E0 LAS; E1 unstable; E2 unstable

TABLE IV
EQUILIBRIA Ei, i = 0, 1, 2 OF SYSTEM (3) WITH a > d.

x∗ ≥ a−d
b

A ̸= b(x∗)2

d
0 < A < A1 E0,1 LAS; E2 unstable

A =
b(x∗)2

d
0 < A < A1 E0 LAS; E1,2 unstable

x∗ < a−d
b A ̸= b(x∗)2

d

0 < A < A2 E0 LAS; E1,2 unstable

x∗ ̸= x∗
0

A2 < A < A1 E0,1 LAS; E2 unstable

A =
b(x∗)2

d
0 < A < A1 E0 LAS; E1,2 unstable

x∗ = x∗
0 0 < A < A1 E0 LAS; E1,2 unstable

A > A1 E0 GAS; E1,2 inexistent

D. E∗ = (x∗, y∗1 , y
∗
2)

The characteristic equation at E∗ is

λ3 + p2λ
2 + p1λ+ p0 + (q1λ+ q0)e

−λτ = 0, (20)

where

p2 = β + δ + e+ bx∗ − Aax∗

(A+ x∗)2
,

p1 = (β + δ)

(
bx∗ − Aax∗

(A+ x∗)2

)
+e

(
β + δ + bx∗ − Aax∗

(A+ x∗)2

)
,

p0 = e(β + δ)

(
bx∗ − Aax∗

(A+x∗)2

)
,

q1 = −e(β + δ),

q0 = −e(β + δ)

(
d+ 2bx∗ − 2Aax∗+ax∗2

(A+x∗)2

)
.

When τ = 0, Eq.(20) turns to

λ3 + p2λ
2 + (p1 + q1)λ+ p0 + q0 = 0. (21)

If a < a3 = b(A+x∗)2

A , we can obtain

p2 = β + δ + e+ bx∗ − Aax∗

(A+ x∗)2
> 0,

p1 + q1 = (β + δ + e)(bx∗ − Aax∗

(A+ x∗)2
) > 0,

p0 + q0 = e(β + δ)my∗2 > 0.

Note that a3 − a2 = b(A+x∗)2

A − (Ab+ d+ Ad
x∗ + bx∗) =

(A+x∗)(b(x∗)2−Ad)
Ax∗ . Let A < b(x∗)2

d , then a3 > a2. Ac-
cordingly, we see that if A < b(x∗)2

d , a2 < a < a3 and
p2(p1+q1) > (p0+q0) hold, by the Routh-Hurwitz criterion,
the positive equilibrium E∗ is locally asymptotically stable.

For τ > 0. If iω(ω > 0) is a solution of (20) if and only if
ω satisfies −ω3i−p2ω2+p1ωi+p0+(q1ωi+q0)

(
cos(τω)−

i sin(τω)
)
= 0. Separating the real and imaginary parts, we

have

ω3 − p1ω = q1ω cos(τω)− q0 sin(τω),
p2ω

2 − p0 = q1ω sin(τω) + q0 cos(τω),
(22)
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which implies

ω6 + (p22 − 2p1)ω
4 + (p21 − 2p0p2 − q21)ω

2 + p20 − q20 = 0,
(23)

where

p22 − 2p1 = (β + δ)2 + e2 +

(
bx∗ − Aax∗

(A+ x∗)2

)2

> 0,

p21 − 2p0p2 − q21 = [(β + δ)2 + e2]

×
(
bx∗ − Aax∗

(A+ x∗)2

)2

> 0,

p20 − q20 = emy∗2(β + δ)(p0 − q0).

Denote a4 =
(3bx∗ + d)(A+ x∗)2

x∗(3A+ x∗)
.

Then we have

p0 − q0 =
e(β + δ)x∗(3A+ x∗)2

(A+ x∗)2
(a4 − a).

Note that, let A < b(x∗)2

d , we derive that

a3 − a4 =
b(A+ x∗)2

A
− (3bx∗ + d)(A+ x∗)2

x∗(3A+ x∗)

=
(A+ x∗)2(bx∗2 −Ad)

x∗(3A+ x∗)
> 0,

(24)
and

a4 − a2 =
(3bx∗ + d)(A+ x∗)2

x∗(3A+ x∗)

−(Ab+ d+
Ad

x∗
+ bx∗)

=
2(A+ x∗)(bx∗2 −Ad)

x∗(3A+ x∗)
> 0.

(25)

Therefore, let A < b(x∗)2

d , if a2 < a ≤ a4, then
p20−q20 > 0. Thus if a2 < a ≤ a4 and p2(p1+q1) > (p0+q0),
this implies that (20) has no positive real roots. Therefore,
by Theorem 3.4.1 in [45], if A < b(x∗)2

d , a2 < a ≤ a4 and
p2(p1 + q1) > (p0 + q0) are satisfied, then all the roots of
(20) have negative real parts for all τ ≥ 0. Hence the positive
equilibrium E∗ = (x∗, y∗1 , y

∗
2) is locally asymptotically

stable for all τ ≥ 0.
If a4 < a < a3 holds, this implies that p20 − q20 < 0, then

there exists a unique positive root ω0 satisfying (23). From
(22), we have

cos(τω0) =
q1ω

4
0 + (p2q0 − p1q1)ω

2
0 − p0q0

q21ω
2
0 + q20

. (26)

Denote

τ0n =
1

ω0
arccos

q1ω
4
0 + (p2q0 − p1q1)ω

2
0 − p0q0

q21ω
2
0 + q20

+
2nπ

ω0
, n = 0, 1, 2, · · · .

(27)
By Theorem 3.4.1 in Kuang [45], we see that if p20− q20 < 0
hold, then E∗ remains stable for τ < τ0 := τ00.

We now claim that{
d(Reλ)

dτ

}
τ=τ0

> 0.

This will show that there exists at least one eigenvalue with
a positive real part for τ > τ0. Moreover, the conditions for
the existence of a Hopf bifurcation are then satisfied yielding
a periodic solution. To this end, differentiating Eq.(20) with
respect to τ , it follows that(
dλ

dτ

)−1

= − 3λ2 + 2p2λ+ p1
λ(λ3 + p2λ2 + p1λ+ p0)

+
q1

λ(q1λ+ q0)
− τ
λ
.

Hence, a direct calculation shows that

sgn

{
d(Reλ)

dτ

}
λ=iω0

= sgn

{
Re

(
dλ

dτ

)−1
}

λ=iω0

= sgn{− (p1 − 3ω2
0)(ω

2
0 − p1) + 2p2(p0 − p2ω

2
0)

(ω3
0 − p1ω0)2 + (p0 − p2ω2

0)
2

− q21
q21ω

2
0 + q20

}.

We derive from (22) that

(ω3
0 − p1ω0)

2 + (p0 − p2ω
2
0)

2 = q21ω
2
0 + q20 .

Therefore, we have sgn

{
d(Reλ)

dτ

}
λ=iω0

=

sgn

{
3ω4

0 + 2(p22 − 2p1)ω
2
0 + p21 − 2p0p2 − q21

q21ω
2
0 + q20

}
> 0.

Thus, the transversal condition holds and a Hopf bifurcation
occurs at ω = ω0, τ = τ0. Now, let us summarize our
results as follows:

Theorem 3.5. (1) If A ≥ b(x∗)2

d , E∗ of system (3) is
unstable.

(2) Let A < b(x∗)2

d and p2(p1 + q1) > (p0 + q0) hold.
(i) If a2 < a ≤ a4, then the positive equilibrium E∗ of

system (3) is locally asymptotically stable for all τ ≥ 0.
(ii) If a4 < a < a3, then there exists a τ0 > 0 such

that E∗ is locally asymptotically stable when τ ∈ [0, τ0).
Furthermore, system (3) undergoes a Hopf bifurcation at E∗

when τ = τ0.

IV. NUMERIC EXAMPLES

In system (3), let A = 0.1, b = 2, β = 0.5, and
d = m = n = δ = e = 1, then b(x∗)2

d = 18, a1 = Ab+ d+

2
√
Abd = 2.0944, a2 = Ab+ d+ Ad

x∗ + bx∗ = 7.2333, a3 =
b(A+x∗)2

A = 192.2 and a4 = (3bx∗+d)(A+x∗)2

x∗(3A+x∗) = 18.4434.
(i) If a = 2, τ = 10. It is easy to show that a < a1. By

Theorem 3.2, E0(0, 0, 0) is globally asymptotically stable. A
numerical simulation illustrates this fact (Fig. 1).

(ii) If a = 6, τ = 10. It is easy to show that a1 <

a < a2, A ̸= b(x∗)2

d , and the predator-extinction equilibrium
E1 = (2.3683, 0, 0). By Theorem 3.3, E1 is locally asymp-
totically stable. A numerical simulation illustrates this fact
(Figs. 2, 3).

(iii) If a = 18, τ = 10, then A < b(x∗)2

d , p2(p1 +
q1) = 107.9200 > 15.6290 = (p0 + q0), a2 < a < a4,
and the positive equilibrium E∗ = (3, 20.8387, 10.4194).
By Theorem 3.5, E∗ is locally asymptotically stable. A
numerical simulation illustrates this fact (Fig. 4).

(iv) If a = 21, then A < b(x∗)2

d , p2(p1 + q1) =
104.8101 > 19.9839 = (p0 + q0), a4 < a < a3, and the

IAENG International Journal of Applied Mathematics, 49:1, IJAM_49_1_02

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 



positive equilibrium E∗ = (3, 26.6452, 13.3226). Further, by
calculation, we have τ0 = 2.0387. By Theorem 3.5, when
τ < τ0, then E∗ is locally asymptotically stable (Fig. 5);
When τ > τ0, then the positive equilibrium E∗ of model (3)
is unstable, it yields a periodic solution (Fig. 6).
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Fig. 1. a = 2, τ = 10, E0 of System (3) is Globally
Asymptotically Stable.
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Fig. 2. a = 6, τ = 10, E∗ = (3, 20.8387, 10.4194)
of System (3) is Locally Asymptotically Stable.
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Fig. 3. a = 6, τ = 10, E∗ = (3, 20.8387, 10.4194)
of System (3) with Different Initial Values is Locally
Asymptotically Stable.

V. CONCLUSION

In this paper, we investigate the stability and Hopf
bifurcation of a stage-structured predator-prey model incor-
porating time delay with prey growth subject to a strong
Allee effect. According to the change of the birth rate a, we
investigate the stability of the equilibria of system (3), and
find birth rate plays an important role in the dynamic behav-
iors of system (3). Theorem 3.5 shows that the system (3)
undergoes a Hopf bifurcation at the coexistence equilibrium.
That is, if τ < τ0, the positive equilibrium E∗ is stable, but
it can lose its stability and a Hopf bifurcation occurs at the
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Fig. 4. a = 18, τ = 10, E∗ = (3, 20.8387, 10.4194)
of System (3) is Locally Asymptotically Stable.
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Fig. 5. τ = 1.8 < 2.0387 = τ0, a = 21,
E∗ = (3, 26.6452, 13.3226) of System (3) is Locally
Asymptotically Stable, System (3) Undergoes a Hopf
Bifurcation at E∗ When τ0.

positive equilibrium of system (3) when the delay crosses the
critical value τ0, further we show periodic solutions. When
τ = 0, then system (3) is reduced to nondelay system, and
we give the stability of nondelay system in the Table V.

TABLE V
EQUILIBRIA Ei, i = 0, 1, 2 AND E∗ OF SYSTEM (3) WITH τ = 0.

0 < a < a1 E0 GAS; E1,2, E∗ inexistent

A >
b(x∗)2

d

a1 < a < a2 E0,1 LAS; E2 unstable; E∗ inexistent
a > a2 E0 LAS; E1,2, E∗ unstable

A =
b(x∗)2

d
a > a1 E0 LAS; E1,2, E∗ unstable

A <
b(x∗)2

d
,

a1 < a < a2 E0,1 LAS; E2 unstable; E∗ inexistent

p2(p1 + q1)
a2 < a < a3 E0 LAS; E1,2 unstable; E∗ LAS

> p0 + q0
a > a3 E0 LAS; E1,2, E∗ unstable

Table VI presents that the results of Theorems 3.1-3.5.
When the initial density of prey and predators are not low,
we show the results of Table VI in Fig. 7, Fig. 8 and Fig. 9.
with the same initial values. With the increasing of birth rate,
the stability of equilibriums of system (3) will be changed.
For example, if the birth rate is large enough, the stability of
prey and predators will be destroyed, and the system becomes
oscillation.
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