
 

  

Abstract—An adaptive multi-objective optimization artificial 

immune algorithm (AMOAIA) is presented in this paper. An 

innovating sorting mechanism based on its Pareto ratio is used 

to sort individuals in the antibody population. The selection and 

cloning scheme is improved by using a neighborhood-based 

fitness assessment. An adaptive clone selection mechanism is 

introduced to preserve the diversity of the antibody. A new 

hybrid mutation operator using chaos random series for globally 

optimization solution has been proposed to maintain the 

diversity of the antibody population. A multi-objective 

optimization clustering algorithm based on the distribution of 

distributed Pareto frontiers is proposed. In addition, the 

effectiveness of the proposed algorithm is verified under many 

difficult conditions such as local optimality, non-uniformity, 

discontinuity, non-convexity, high-dimension, and constraints. 

The comparative study shows the effectiveness of the proposed 

algorithm, which produces solution sets that are highly 

superiority in terms of global convergence, diversity and 

distribution. 

 
Index Terms—Multi-objective optimization, artificial 

immune algorithm, Pareto sort, adaptive clone selection, chaos 

mutation 

I. INTRODUCTION 

OPTIMAZTION problem is one of the hot topics in 

engineering practice and scientific research [1, 2]. Only one 

objective function of the optimization problem is a single 

objective optimization problem. The objective function is 

more than one and has to be handled at the same time is called 

the multi-objective optimization problem [3-5]. For 

multi-objective optimization problems, a solution to a certain 

goal may be good, but other goals may be poor, so there is a 

compromise solution set, known as the Pareto-optimal set [6, 

7]. 

Artificial immune system (AIS) is an adaptive system which 

is inspired by immunology. AIS simulates the immune 

function, principle and model to solve the complex problems 

[8, 9]. In the multi-objective optimization artificial immune 

algorithm (MOAIA), the feasible solution of the optimization 

problem corresponds to the antibody, and the Pareto optimal 
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individual corresponds to the antigen [10]. This antigen is 

kept in the antigen group. The new clustering algorithm is 

used to update the antigen in the antigen group constantly, and 

then a large number of Pareto optimal sets are obtained. 

According to the experimental results of Coello in his 

literature
 
[11], it is known that MOAIA can obtain the 

satisfactory solution, even better when solving the non 

constrained multi-objective optimization problem. In recent 

years, the application of artificial immune algorithm in 

multi-objective optimization has been widely studied. The 

research shows that the artificial immune algorithm has some 

advantages in maintaining the diversity of the solutions 

[12-16]. Artificial immune algorithm and its improved 

algorithms showed many advantages on many optimization 

problems, such as having a good individual diversity 

maintaining mechanism, strength of multi-modal function 

optimization ability, strong get rid of local extreme value, and 

global search ability. But it also reflects some deficiencies of 

the artificial immune algorithm, such as the existence of 

premature convergence, local search ability is not strong [17, 

18], etc. Therefore, it is necessary to improve the artificial 

immune algorithm to make up the deficiency of the algorithm, 

to enhance the ability of optimization, to make it better 

applied in multi-objective optimization problems.  

In view of the mentioned shortcomings, this paper proposes 

an improved adaptive multi-objective artificial immune 

algorithm, called adaptive multi-objective optimization 

artificial immune algorithm (AMOAIA). In the AMOAIA, a 

kind of improved Pareto individual ranking mechanism is 

introduced. It makes the ranking is carried out in the current 

population, but do not need to compare the many existing 

ranking methods. It only needs to solve the maximum and 

minimum values, and simplify the comparison process. At the 

same time, the fitness evaluation function is improved. 

Meanwhile, the adaptive clone selection is introduced. These 

two improvements can make the algorithm to keep good 

diversity. The chaos mutation mechanism can ensure the 

convergence of the algorithm, and enhance the optimization 

capability of the algorithm. Simulation results on some typical 

test functions show the effectiveness of the proposed 

algorithm. 

  The main contents of this paper are as follows. Section 2 

introduces the preliminaries of multi-objective optimization 

problem and artificial immune algorithm. Section 3 proposes 

AMOAIA algorithm. The simulation results are presented in 

Section 4. The summary and prospects of the paper are 

summarized in Section 5. 
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II. THE PRELIMINARIES 

A. Multi-objective optimization problem 

  The general multi-objective optimization problem consists 

of a set of objective functions, some related equations and 

inequality constraints, which can be described as the 

following
 
[19]. 

1 2
min ( ) ( ( ), ( ),..., ( ))

. . ( ) 0, 1, 2, ,

     ( ) 0, 1, 2, ,

k

i

j

F f x f x f x

s t g i p

h j q

=

≤ =

= =

x

x

x

⋯

⋯

                                (1) 

where, 
T

1 2[ , ,..., ]nx x x=x  is a n-dimensional vector in 

vector space 
n
ℝ . ( ), ( 1,2,..., )if x i k=  is the i-th sub 

objective function. 1 2( ), ( ),..., ( )kf x f x f x  with 

k-dimensional vector is called target spatial of the problem, 

( )
i

g x  is the i-th inequality constraint, ( )
j

h x  is the j-th 

equality constraint. 

Different from the single objective optimization problems 

which have the only optimum solution, the optimum solutions 

of multi-objective optimization problems are a group of 

trade-off solutions, namely Pareto optimum solutions set, 

non-dominated solutions or non-inferior solutions. Optimal 

solutions set means there is at least one goal solution better 

than all the other solutions. 

Let Dx∗ ∈  is Pareto optimal solutions, if x D∀ ∈ , then 

meets the conditions are as the following. 

( ( ) ( ))i i

i I

f x f x∗

∈

≥∩                                                           (2) 

where, {1,2, , }I k= ⋯ , k  as the number of the objective 

function. And there is at least one j I∈  that makes 

( ) ( )j jf x f x∗>                                                               (3) 

In general, the optimal solution is not only one, but also an 

optimal solution set. The goal of the multi-objective 

optimization algorithm is to construct the non-dominated set, 

and make the non-dominated set approach to the Pareto 

optimal solution set. 

B. Artificial immune algorithm 

The standard artificial immune algorithm can be described 

as follows. 

Step 1: Antigen recognition, the algorithm firstly carries on 

the antigen recognition. Algorithm needs to understand the 

problem to be optimized, and to extract a priori knowledge; 

Step 2: Initial antibody production, random generate the 

initial populations with size N ; 

Step 3: The fitness evaluation, calculate the affinity of 

antibody to antigen, the affinity between the antibody and the 

antibody. The fitness evaluation of every feasible solution in 

the population is carried out; 

Step 4: Calculate the antibody concentration. The 

concentration of the antibody is mainly used to maintain the 

diversity of the population; 

Step 5: Immune process. It mainly includes immune 

selection, cloning, mutation and clone suppression; 

Step 6: Population updating. The new antibody produces 

random antibodies with low affinity in the population, which 

will produce new antibodies; 

Step 7: Judge whether the optimization algorithm satisfies 

the termination condition. If the condition is satisfied, then the 

algorithm terminates and outputs the optimal results; 

otherwise, go to Step 3 to continue.  

III. AMOAIA ALGORITHM 

Although artificial immune algorithm has better 

performance than genetic algorithm, particle swarm 

optimization algorithm and other optimization algorithms in 

the multi-objective optimization problems, and achieve a 

better accuracy and success rate [20]. But artificial immune 

algorithm also has premature convergence; local search 

capability is not strong and other problems. It is necessary to 

improve the performance of artificial immune algorithm. This 

paper will improve artificial immune algorithm in the next 5 

aspects.  

A. Artificial immune algorithm 

In multi-objective optimization algorithm, since the 

ranking method reflects the preference relationship of 

individual sets, this paper introduces a Pareto frontier 

selection strategy based on non-dominant individual ranking. 

At present, it is difficult and inefficient to sort multiple targets 

and high dimensional variables based on the non-dominated 

sorting method of Pareto. In this paper, a non-dominated 

sorting method based on Pareto coefficients is proposed. This 

method does not need to distinguish the effective area, 

determine and select the individual directly, reduce the 

complexity of the algorithm, so that the convergence rate and 

the degree of approximation are improved. 

Definition 1: Pareto coefficient. 

 For the multi-objective optimization problem in Equation 

(1), if 
m kf ×∈ℝ , its Pareto sort can be expressed as next. 

1 1 2 2

1

( ) 1 max{min{ , , , }}
m

k k

i i p i p i p
p

p i

x fw fw fw fw fw fwµ
=
≠

= − − − −⋯      (4) 

where, 
min max min

( ) / ( )
j j j j j

i i
fw f f f f= − − , 1, 2, ,i m= ⋯  

1, 2, ,j k= ⋯ ，

min
min{ , 1, 2, , }

j j

i
f f i m= = ⋯ ，

max
max{ , 1, 2, , }

j j

i
f f i m= = ⋯ . 

Theorem 1. Let inf ( )
i

x X

f x
∈

≠ −∞ , sup ( )
i

x X

f x
∈

≠ +∞ , 

( 1, 2, , )i k= ⋯ . And ( )f X φ≠ , if ( ) 1
j

xµ ≥ , then jx  is a 

weak feasible solution. 

Proof. Denote 
j j

x V∈ , 
j

V  is an envelope set of X . If 

( ) 1
j

xµ ≥ , according to the Theorem in [21], jx  is the weak 

feasible solution of  
j

V . According to the Theorem in [22], 

jx  is a weak feasible solution of X  if inf ( )
i

x X

f x
∈

≠ −∞ , 

sup ( )
i

x X

f x
∈

≠ +∞ , and jx  is the weak feasible solution of  jV  

are satisfied. 

Theorem 1 shows that the solutions satisfy the condition of 

( ) 1jxµ ≥  have better alternative solutions than other 

solutions. At the same time, each solution satisfies the 

mentioned conditions can be seen as non-dominated 

individuals. For each given solution jx X∈ , if ( ) 1jxµ ≥  
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and 
*

jx  is better than jx , then there is 
*( ) ( )i j i jf x f x< , 

{1, 2, , }i k∈ ⋯ . It can know as * 0i i

j jfw fw− > . 

1 1 2 2
min{ , , , } 0

N N

i k i k i k
fw fw fw fw fw fw− − − >⋯                   (5) 

1 1 2 2
max{min{ , , , }} 0

N N

i k i k i k
k i

fw fw fw fw fw fw
≠

− − − >⋯                 (6) 

Equation (5) and (6) has conflict. Therefore, the 

individuals satisfy the conditions of non-dominated 

individuals.. 

B. The design of fitness function 

  For the optimization problem with multiple fitness functions, 

the high dimensional search space will be difficult to compare 

the advantages of each individual in the group [23, 24]. In this 

paper, the design of fitness function should be taking into 

account the evolving group of integrated and individual 

information. Considering the above reasons, the fitness 

function of individuals in this paper is defined as 

( ) ( ) 1 / (deg( ) 1)fitness x strength x x= + +                      (7) 

where, ( ) ( )
y

y P

strength x d x
∈

= ∑ , it is the degree of 

enhancement of antibody x , deg( )x  is isolation degree of 

individuals. 

C. The design of adaptive clone operator 

  Standard clone selection method uses the proportional 

selection method or roulette selection method. It will lead 

clone selection method has very strong randomness. The 

adaptive clone factor is introduced in this paper. The clone 

number of i-th antibody is 

1 1
( )

1 1

T TT N N

i

T T

N m m m m
m round i

N N

⋅ − −
= + ⋅

− −
                    (8)                   

where, 
T

N  is antibody number of clone selection population, 

1m  is clone number of the first antibody, 
TNm is clone 

number of the 
T

N -th antibody. This clone operator makes the 

antibodies with high fitness have more clones. At the same 

time, antibodies with low fitness also have the opportunity to 

be reproduced. The new antibody is cloned after mutation. 

Because the antibody with high fitness has more cloned 

offspring, the new antibody can be carried out more detailed 

search in near range of higher fitness antibody. Antibodies, 

meanwhile, with low fitness also have the opportunity to be 

evolved. 

D. The design of chaos mutation operator 

  In the standard artificial immune algorithm, the encoding 

method uses the real number encoding; the mutation operator 

generally uses the random mutation of Guassian distribution 

[25, 26]. The chaos mutation operator is introduced in this 

paper. The shortcomings of artificial immune algorithm are 

overcome through the ergodic of chaotic. The convergence of 

the artificial immune algorithm is improved through chaos 

mutation operator replace the standard mutation operator. 

The most common chaotic system model in chaos theory is 

Logistic mapping equation. 

1 (1 ),0 1q q q qx x x xµ+ = − < <                                         (9) 

  With sensitivity to initial value characteristic of chaos 

system, the n  initial values with small differences are 

assigned to Equation (9), then n  chaotic variables can be 

obtained. 

, 1 , ,(1 ), 1, 2, ,i q i q i qx x x i nµ+ = − = ⋯                              (10) 

where, n  is the size of the population. n  chaotic variables 

are mapped into interval ( 2, 2)− , then chaotic sequence 

function (0,1)C  can be obtained. The improved mutation 

operator can be expressed as 
' '

(0,1) exp( )
i i i

ab ab C affλ= + × −                                   (11) 

where, 
1

1

k
m

m
λ

−
= − , m  is the number of iterations, k  is 

an integer. 
'

iaff  is 0 - 1 standardization of iaff , that is 

[1, ]'

[1, ] [1, ]

min( )

max( ) min( )

i j

j n

i

j j

j n j n

aff aff

aff
aff aff

∈

∈ ∈

−

=
−

. (0,1)C  change range is 

( 2, 2)− , it is similar with scale of standard Gauss or Cauchy 

mutation.  

Equation (11) shows that evolutionary mutation control 

parameters are larger in the initial stage. The great influence 

of chaotic motion makes the algorithm have strong global 

search ability; find a neighborhood of global optimal solution 

of the problem. With the increase of evolutionary algebra, the 

variability of control parameters decreases, which is 

beneficial to the local search algorithm and improves the 

convergence speed and accuracy of the algorithm. 

E. The design of clustering algorithm 

  With the increase of the iterations, the numbers of antigen 

groups are increasing. Antigen competes with each other, so it 

is not destructive to the equilibrium characteristic of the 

antigenic group to fight against the original cluster. The steps 

of the algorithm are as the following. 

  Step 1: The initial antigen group is C . Each individual can 

be seen as a cluster group; 

  Step 2: If the number of clusters is less than or equal to T , 

go to Step 5, otherwise go to the next step; 

  Step 3: Calculating each Euclidean distance of two antigenic 

clusters, that is || ||
i j

pareto pareto− ; 

  Step 4: Find out the least distance between two cluster 

groups in the antigen group. Merge it into a cluster group. If 

the number of clusters is larger than T , go to Step 3; 

  Step 5: For each cluster, large isolated individuals are 

derived from the cluster group based on the degree of 

isolation; 

  Step 6: The individual groups in each cluster will be 

assembled together to generate a new antigen group; 

In the antigen group, the Pareto solution can be updated 

and evenly distributed by antigen clustering algorithm. 

IV. SIMULATION 

  In order to verify the effectiveness and advancement of the 

proposed AMOAIA, this paper selects some typical test 

functions. The algorithm is compared with 2 classical 

algorithms as NSGA-II [27, 28] and MOAIA [11]. The same 

parameter setting is adopted in the simulation process. 

Population size is 200, the iteration number is 100, and the 

threshold of the non-dominated solution set is 200. The 
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crossover probability of NSGA-II algorithm is 0.9, and the 

mutation probability is 0.1, mu is 20, mum is 20. For MOAIA 

and AMOAIA in this paper, crossover probability is 0.9, 

clone selection probability α  is 0.4, number of cloned 

antibodies 1m  is 10, 
TNm  is 5, coefficient of mutation λ  is 

0.1, refresh rate β  is 0.2. The results are verified by the 

results of 10 independent operations. In this paper, the 

following evaluation indicator is introduced. 

  GD (generational distance), it is introduced in the literature 

[29]. GD is used to estimate the approach degree of final 

solution set and global Pareto optimal regional of algorithm, 

which is calculated as follows. 

2

1

n

ii
GD d n

=
= ∑                                                           (12) 

where, n  is the individual number of solution set, id  is the 

minimum Euclidean distance of each individual to the 

theoretical global non-Inferior Pareto optimal solution set. 

The smaller the value of GD is, the more close to the 

theoretical global non-inferior Pareto optimal solution set. If 

GD is 0, it shows that the solution of the algorithm is in the 

global non-Inferior optimal region, which is the ideal result of 

the algorithm. 

  SP (Spacing), it was proposed by Schott [30]. In this method, 

SP is used to evaluate the solution set distribution in the target 

space through calculating the distance changes of each 

individual and the solution concentration of the individual 

neighbors. Its function is defined as follows. 

2

1
( ) ( 1)

n

ii
SP d d n

=
= − −∑                                       (13) 

where, ( )
1

min
k i j

i m mm
d f f

=
= −∑ , , 1, 2, ,i j n= ⋯ , i j≠ . 

n  is the number of individuals in the solution set. k  is the 

number of the objective function. d  is the average value of 

all id . The smaller value of SP, the more uniform distribution 

of the solution set is. If SP is 0, it shows that the distance 

between all individuals is equal, and the distribution is 

uniform. 

  MS (maximum spread), it was proposed by Zitzler [31]. MS 

is used to show that the optimal solution set is good or bad 

through the distribution range of the optimal solution set of 

the theoretical optimal solution. Its definition can be 

expressed as: 

max min 2

1 1

1

1
[(max min ) / ( )]

K
n i n i

i k i k k k

k

MS f f F F
K

= =

=

= − −∑                (14) 

where n  is the number of non-dominated solutions, K  

represents the dimension of the target space, 
i

mf  is -k th  

dimension objective function value of antibody i  in non 

dominated solution, 
max

kF  is maximum value of -k th  

dimension objective function in theoretical optimal solution 

set, 
min

kF  is minimum value of -k th  dimension objective 

function in theoretical optimal solution set. The greater the 

value of MS, the wider range of the solution of the non 

dominated solutions. When MS is 1, the best effect can be 

achieved. 

A. Non constrained function optimization test 

(1) Test function ZDT-1 

1 1

2 1

2

min ( )

min ( ) ( ) (1 / ( ) )

( ) 1 9( ) / ( 1)

[0,1], 1, 2, ,

n

ii

i

f x x

f x g x x g x

g x x n

subject to x i n

=

=

= ⋅ −

= + −

∈ =

∑
⋯

                         (15) 

  ZDT-1 is a test function with continuous concave 

optimization [32]. Its theoretical optimal solution is 

1
[0,1]x ∈ , 0

i
x = , 1, 2, ,i n= ⋯ , that is ( ) 1g x = . Let n  

is 30, the Pareto front of these three algorithms are shown in 

Fig. 1, 2, and 3, the evaluation indicators as shown in Table I. 
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Fig. 1. Pareto front of ZDT-1 with NSGA-II  
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Fig. 2. Pareto front of ZDT-1 with MOAIA  
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Fig. 3. Pareto front of ZDT-1 with AMOAIA 

 

 

 

IAENG International Journal of Applied Mathematics, 49:1, IJAM_49_1_03

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 



 

TABLE I  

THE EVALUATION INDICATORS OF ZDT-1 

GD SP MS 
Algorithms 

Best Mean Best Mean Best Mean 

    NSGA-II 0.0072 0.0046 0.0062 0.0083 1.0000 0.9268 

MOAIA 2.300e-003 4.300e-003 0.0019 0.0034 1.0000 0.9673 

AMOAIA 1.3793e-005 2.4800e-005 1.9417e-004 3.4680e-003 1.0000 1.0000 

(2) Test function ZDT-3 

1 1

2 1 1 1

2

min ( )

min ( ) ( ) (1 / ( ) sin(10 ) / ( ))

( ) 1 9( )/( 1)

[0,1], 1,2, ,

n

ii

i

f x x

f x g x x g x x x g x

g x x n

subject to x i n

π

=

=

= ⋅ − − ⋅

= + −

∈ =

∑
⋯

         (16) 

ZDT-3 is a test function with discontinuous optimization 

[33]. The Pareto front of ZDT-3 includes five discontinuous 

regions. Its theoretical optimal solution is 
1

[0,1]x ∈ , 

0ix = , 1, 2, ,i n= ⋯ , that is ( ) 1g x = . Let n  is 10, the 

Pareto front of the three algorithms is shown in Fig. 4, 5, and 6, 

the evaluation indicators are as shown in Table II. 
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Fig. 4. Pareto front of ZDT-3 with NSGA-II  
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Fig. 5. Pareto front of ZDT-3 with MOAIA 
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Fig. 6. Pareto front of ZDT-3 with AMOAIA 

TABLE II 

THE EVALUATION INDICATORS OF ZDT-3 

GD SP MS 
Algorithms 

Best Mean Best Mean Best Mean 

NSGA-II 0.0034 0.0036 0.0040 0.0047 0.9276 0.8367 

MOAIA 1.9495e-004 4.5354e-003 0.0030 0.0033 1.0000 0.9448 

AMOAIA 4.2117e-005 4.6079e-005 0.0014 0.0016 1.0000 1.0000 

(3) Test function DTLZ-2 

1 1 2

2 1 2

3 1

2

3

min ( ) cos( / 2) cos( / 2)(1 ( ))

min ( ) cos( / 2)sin( / 2)(1 ( ))

min ( ) sin( / 2)(1 ( ))

( ) ( 0.5)

[0,1], 1, 2, ,

n

i

i

i

f x x x g x

f x x x g x

f x x g x

g x x

subject to x i n

π π

π π

π

=

= +

= +

= +

= −

∈ =

∑

⋯

                    (17) 

  DTLZ-2 is a typical three objective problem. Its Pareto front 

is 1/4 spherical surface of 
2 2 2

1 2 3
1f f f+ + = . Let n is 12 , the 

Pareto front of the three algorithms is shown in Fig. 7, 8, and 9, 

the evaluation indicators as shown in Table III. 
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Fig. 7. Pareto front of DTLZ-2 with NSGA-II 
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Fig. 8. Pareto front of DTLZ-2 with MOAIA 
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Fig. 9. Pareto front of DTLZ-2 with AMOAIA 

TABLE III 

THE EVALUATION INDICATORS OF DTLZ-2 

GD SP MS 
Algorithms 

Best Mean Best Mean Best Mean 

 NSGA-II 0.5329 0.2187 0.04171 0.06761 0.8367 0.6634 

MOAIA 1.5654e-003 4.8026e-003 0.03399 0.04710 0.9287 0.8642 

AMOAIA 2.6321e-005 1.5065e-005 0.01249 0.01582 1.0000 0.9468 

  From the above experimental results, it can be found that the 

adaptive multi-objective artificial immune algorithm in this 

paper is better than the other two algorithms in 

multi-objective optimization. 

B. Constrained function optimization test 

  The typical constraint function CTP-7 is selected to test [34]. 

The Pareto optimal solution set of CTP-7 consists of 6 non 

continuous regions. 

1 1

2 1

2

2

2 1

2 1

min ( )

min ( ) ( ) [1 ( ) / ( )]

( ) 1 10( 1) [ 10cos(2 )]

( ) cos( ) [ ( ) ] sin( ) ( )
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where, 10n = , [0,1]
i

x ∈ , 1, 2, ,i n= ⋯ . The nonlinear 

constraint parameters ( , , , , ) ( 0.05 , 40, 5,1, 6)a b c dθ π= − . 

The Pareto front of the three algorithms is shown in Fig. 10, 

11, and 12, the evaluation indicators as shown in Table IV. 
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Fig. 10. Pareto front of CTP-7 with NSGA-II 
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Fig. 11. Pareto front of CTP-7 with MOAIA 
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Fig.12. Pareto front of CTP-7 with AMOAIA 

C. Simulation results analysis 

  The simulation results from Fig. 1 to Fig. 12 show that the 

Pareto optimal solution numbers of the proposed AMOAIA 

algorithm is more than NSGA-II and MOAIA algorithm. At 

the same time, the optimal solution distribution in the Pareto 

front has more uniform with a wider range. The evaluation 

indicators including GD, SP, and MS of the optimization 

results from the Table I to Table IV can be seen the Pareto 

optimal solution front of proposed algorithm in this
TABLE IV  

THE EVUALTION INDICATORS OF CTP-7 

GD SP MS 
Algorithms 

Best Mean Best Mean Best Mean 

NSGA-II 0.0127 0.0537 0.0140 0.5635 1.0000 0.9247 

MOAIA 3.2390e-004 3.4200e-004 0.0076 0.0648 1.0000 0.9647 

AMOAIA 2.1965e-004 2.2522e-004 3.2170e-003 3.4404e-003 1.0000 1.0000 
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paper is more close to the true optimal solution. And the 

proposed algorithm has a very good uniform distribution. The 

AMOAIA in this paper shows the distribution of the 

non-dominated solutions of the Pareto optimal surface is 

wider. From the data in the tables, it also shows the maximum 

spread of the proposed AMOAIA is better than other two 

algorithms. At the same time, the adaptive multi-objective 

artificial immune algorithm also shows a good optimization 

performance for the multi-objective optimization problem 

with constraints. The test results for non convex, 

discontinuous, high dimensional and constrained simulation 

functions of the Pareto frontier show that the proposed 

algorithm has a strong ability in global convergence, diversity 

and optimal solution set distribution. 

V.  CONCLUSION 

An adaptive multi-objective artificial immune algorithm 

(AMOAIA) is proposed in this paper. The clone selection 

operator of this algorithm is adapted to adaptive clone the 

number of antibodies. At the same time, the chaos sequence is 

added to the Gauss mutation operator. The mutation 

performance of the algorithm is improved. The application of 

neighbor clustering algorithm guarantees that the Pareto 

optimal solution has better uniform distribution. Simulation 

results show that AMOAIA can obtain more solutions with 

uniform distribution. The results of AMOAIA are more close 

to the true Pareto optimal solutions. Meanwhile, the 

convergence speed of the algorithm is rapidly, and the 

premature convergence is avoided effectively.  

Although proposed AMOAIA in this paper has shown a 

good performance, but there are still a lot of work to do. In the 

future, the influence of the algorithm parameters on the 

optimization process will be further studied, and the 

efficiency of the algorithm will be improved. 
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