
 

1 

Abstract—This work employs the Homotopy Perturbation 

Method (HPM) to develop an approximate analytical solution 

for a Fuzzy Partial Differential Equations (FPDE). The method 

is applied to calculate the solution of fuzzy reaction-diffusion 

equation (FRDE) by using the properties of fuzzy set theory. 

Examples are given to verify results compared with the exact 

solution of the linear equation and with residual error of the 

nonlinear equation of the given problems and to illustrate the 

efficiency and the capability of the proposed method. 

 
Index Terms— Fuzzy Partial Differential Equations, Fuzzy 

Reaction-Diffusion equation, Approximate Analytical Solution, 

Homotopy Perturbation Method 

 

I. INTRODUCTION 

uzzy differential equations (FDEs) are a significant part 

of the fuzzy analytic theory, and a valuable instrument 

to describe a dynamical phenomenon when the information 

about it is vague and its nature is under uncertainty [1,2]. 

They arise in the modeling of the real-life problems [3,4] 

when there is impreciseness, for example, population 

models [5,6], medicine [7] and physics [8] and control 

design [9].  

The fuzzy partial differential equations (FPDEs) attracted 

a great deal of attention among scientists and engineers, 

because of its frequent involvement in the modeling of 

numerous industrialized applications, such as heat and mass 

transfer, electromagnetic fields, static and dynamic of 

structures, meteorology, biomechanics and many others. The 

numerical, and approximate analytical solution of FPDEs 

have been tackled by numerous authors like [10,11,12,13]. 

Yet the field still lacking for further accurate and capable 

solutions, since the exact solutions are rarely available 

especially for the nonlinear equations.  

He [14] developed the homotopy perturbation method 

(HPM) and used the homotopy in topology for non-linear 

problems [15]. In HPM the approximate solution is obtained  
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in the form of a series which converges rapidly to the 

exact solution. The main advantage of HPM is the flexibility 

to give approximate and exact solution to both linear and 

nonlinear problems without any need for discretization and 

linearization as in numerical methods [16]. In this work, we 

developed a method based on HPM for acquiring an 

approximate-analytical solution of the FRDE. As far as we 

know, obtaining a solution to a FRDE by means of HPM 

based method is the first to be developed. 

II. DEVELOPMENT OF HPM FOR SOLVING FPDE 

The HPM was applied to derive an approximate-

analytical solution of linear and nonlinear time dependent 

partial differential equations [17,18], and these works 

motivated us to develop our proposed method. The 

methodology for the development of HPM for solving PDEs 

in fuzzy environment is given as follows.  Let the 

succeeding FPDE, 

 

ℒ(�̃�(𝑠; 𝑟)) +𝒩(�̃�(𝑠; 𝑟)) + Λ̃(𝑠; 𝑟) = 0 ,𝑠 ∈ Ω                (1)                                                         

ℬ (�̃�(𝑠; 𝑟),
𝜕𝑢(𝑠;𝑟)

𝜕𝑠
) = 0  𝑠 ∈ Γ 

 

where ℒ is a linear operator, 𝒩 is a nonlinear operator, 

Λ̃(𝑠; 𝑟) is a known fuzzy function, �̃�(𝑠; 𝑟) is an unknown 

fuzzy function, and ℬ is a boundary operator and Γ is the 

boundary of the domain Ω. 

Now, a homotopy �̃�(𝑠; 𝑟; 𝑝): Ω × [0,1] → ℝ can be 

constructed using the homotopy technique, for an 

embedding parameter 𝑝 ∈ [0,1] that satisfies, 

 

ℋ(�̃�, 𝑝) = (1 − 𝑝)[ℒ(�̃�) − ℒ(�̃�𝑎)] + 𝑝[ℒ(�̃�) +𝒩(�̃�) +

Λ̃(𝑠)] = 0    (2) 

or  

ℋ(�̃�, 𝑝) = ℒ(�̃�) − ℒ(�̃�𝑎) + 𝑝ℒ(�̃�𝑎) + 𝑝[𝒩(�̃�) − Λ̃(𝑠)] =

0    (3) 

 

where �̃�𝑎 is an initial approximation of (1), which complies 

with the boundary conditions. Clearly, (2) and (3) will give, 

 

ℋ(�̃�, 0) = ℒ(�̃�) − ℒ(�̃�𝑎) = 0                    (4) 

ℋ(�̃�, 1) = ℒ(�̃�) +𝒩(�̃�) − Λ̃(𝑠) = 0    (5) 

 

In topology, the altering procedure of 𝑝 from 0 to 1, is 

only the deformation of �̃� from the initial �̃�𝑎 to the 

solution �̃�.  Furthermore, ℒ(�̃�) − ℒ(�̃�𝑎), ℒ(�̃�) +𝒩(�̃�) −

Λ̃(𝑠) are called homotopic. Hence, the fundamental 

hypothesis is a solution for (2) and (3) can be expressed in 
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power series of 𝑝, 

 

�̃� = ∑ 𝑝𝑖�̃�𝑖
∞
𝑖=0     (6) 

 

Therefore, the approximate solution of (1) is obtained as, 

 

�̃� = lim
𝑝→1

�̃� = ∑ �̃�𝑖
∞
𝑖=0       (7) 

III. FUZZY REACTION-DIFFUSION EQUATION ANALYSIS 

According to [19,20], a general model for the FRDE will 

be specified using the properties of the fuzzy set theory. 

Suppose that 0 < 𝑥 < 𝑙 , 0 < 𝑡 ≤ 𝑇, then 

 
𝜕

𝜕𝑡
�̃�(𝑥, 𝑡) = D̃(𝑥)

𝜕2

𝜕𝑥2
�̃�(𝑥, 𝑡) + R̃(�̃�(𝑥, 𝑡)) + Λ̃(𝑥, 𝑡)     (8) 

�̃�(𝑥, 0) = �̃�(𝑥) 
 

In (8), �̃�(𝑥, 𝑡) represents the concentration variables, 

which is a crisp variables fuzzy function [21]. 

Furthermore,
𝜕

𝜕𝑡
�̃�(𝑥, 𝑡), 

𝜕2

𝜕𝑥2
�̃�(𝑥, 𝑡) are fuzzy partial 

derivatives in the Hukuhara sense [1,22]. Also, �̃�(𝑥) =
�̃�1𝐷(𝑥) is a fuzzy function of crisp variables represent the 

diffusion coefficient [21], R̃(�̃�(𝑥, 𝑡)) a nonlinear source 

term describes a local reaction kinetics, Λ̃(𝑥, 𝑡) = �̃�2Λ(𝑥, 𝑡) 
is a fuzzy function of crisp variables as a nonhomogeneous 

term. Moreover, �̃�(𝑥, 0) is a fuzzy environment initial 

condition equals to a crisp variables fuzzy function �̃�(𝑥) =
�̃�3𝜑(𝑥).  

Finally, �̃�1, �̃�2, �̃�3 are convex fuzzy numbers [23,24], and 

𝐷(𝑥),  Λ(𝑥, 𝑡), 𝜑(𝑥) are crisp functions. The defuzzification 

of this model for all the values of r between 0 and 1, is 

acquired as the following, 

 

[�̃�(𝑥, 𝑡)]𝑟 = [𝑢(𝑥, 𝑡; 𝑟), 𝑢(𝑥, 𝑡; 𝑟)],  

[
𝜕

𝜕𝑡
�̃�(𝑥, 𝑡)]

𝑟
= [

𝜕

𝜕𝑡
𝑢(𝑥, 𝑡; 𝑟),

𝜕

𝜕𝑡
𝑢(𝑥, 𝑡; 𝑟)], 

[
𝜕2

𝜕𝑥2
�̃�(𝑥, 𝑡)]

𝑟
= [

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡; 𝑟),

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡; 𝑟)], 

[�̃�(𝑥)]
𝑟
= [𝐷(𝑥; 𝑟), 𝐷(𝑥; 𝑟)], �̃�1 = [𝛾1(𝑟), 𝛾1(𝛼)],  

[R̃(�̃�(𝑥, 𝑡))]
𝑟
= [𝑅 (𝑢(𝑥, 𝑡; 𝑟)) , 𝑅(𝑢(𝑥, 𝑡; 𝑟))], 

[�̃�(𝑥, 𝑡)]
𝑟
= [𝛬(𝑥, 𝑡; 𝑟), 𝛬(𝑥, 𝑡; 𝑟)], �̃�2 = [𝛾2(𝑟), 𝛾2(𝑟)], 

[�̃�(𝑥, 0)]𝑟 = [𝑢(𝑥, 0; 𝑟), 𝑢(𝑥, 0; 𝑟)], 

[�̃�(𝑥)]𝑟 = [𝜑(𝑥; 𝑟), �̅�(𝑥; 𝑟)], �̃�3 = [𝛾3(𝑟), 𝛾3(𝑟)] 

 

Now, by using the extension principle [25,26], the 

membership function of (8)  is defined as follows, 

 

𝑢(𝑥, 𝑡; 𝑟) = 𝑚𝑖𝑛{�̃�(𝑡, �̃�(𝑟))|�̃�(𝑟) ∈ �̃�(𝑥, 𝑡; 𝑟)} 

𝑢(𝑥, 𝑡; 𝑟) = 𝑚𝑎𝑥{�̃�(𝑡, �̃�(𝑟))|�̃�(𝑟) ∈ �̃�(𝑥, 𝑡; 𝑟)} 
 

Hence, for 0 < 𝑥 < 𝑙, 0 < 𝑡 < 𝑇 and all the values of r 

between 0 and 1, (8) can be rewritten as, 

 
𝜕

𝜕𝑡
𝑢(𝑥, 𝑡; 𝑟) − 𝐷(𝑥; 𝑟)

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡; 𝑟) − 𝑅 (𝑢(𝑥, 𝑡; 𝑟)) −

𝛬(𝑥, 𝑡; 𝑟) = 0  

𝑢(𝑥, 0; 𝑟) = 𝜑(𝑥; 𝑟) 

𝜕

𝜕𝑡
𝑢(𝑥, 𝑡; 𝑟) − 𝐷(𝑥; 𝑟)

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡; 𝑟) − 𝑅(𝑢(𝑥, 𝑡; 𝑟)) −

𝛬(𝑥, 𝑡; 𝑟) = 0  

𝑢(𝑥, 0; 𝑟) = �̅�(𝑥; 𝑟)  
 

hence, 

 
𝜕

𝜕𝑡
𝑢(𝑥, 𝑡; 𝑟) − 𝛾1(𝑟)𝐷(𝑥)

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡; 𝑟) − 𝑅 (𝑢(𝑥, 𝑡; 𝑟)) −

𝛾2(𝑟)𝛬(𝑥, 𝑡) = 0  (9) 

𝑢(𝑥, 0; 𝑟) = 𝛾3(𝑟)𝜑(𝑥) 

𝜕

𝜕𝑡
𝑢(𝑥, 𝑡; 𝑟) − 𝛾

1
(𝑟)𝐷(𝑥)

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡; 𝑟) − 𝑅(𝑢(𝑥, 𝑡; 𝑟)) −

𝛾
2
(𝑟)𝛬(𝑥, 𝑡) = 0 (10) 

𝑢(𝑥, 0; 𝑟) = 𝛾
3
(𝑟)𝜑(𝑥) 

IV. APPLICATION OF DEVELOPED HPM TO FRDE 

Following the similar approaches as given in [17,18], we 

will discuss the application of the developed HPM in section 

2 to FRDE. We use (9) and (10) from the analysis in section 

3 similar to the work in [11] by constructing the family of 

equations, 

 

(1 − 𝑝) [
𝜕

𝜕𝑡
𝜔(𝑥, 𝑡; 𝑟) −

𝜕

𝜕𝑡
𝑢𝑟(𝑥, 𝑡; 𝑟)] + 𝑝 [

𝜕

𝜕𝑡
𝜔(𝑥, 𝑡; 𝑟) −

𝛾1(𝑟)𝐷(𝑥)
𝜕2

𝜕𝑥2
𝜔(𝑥, 𝑡; 𝑟) − 𝑅 (𝜔(𝑥, 𝑡; 𝑟)) − 𝛾2(𝑟)𝛬(𝑥, 𝑡)] = 0(11) 

(1 − 𝑝) [
𝜕

𝜕𝑡
�̅�(𝑥, 𝑡; 𝑟) −

𝜕

𝜕𝑡
�̅�𝑟(𝑥, 𝑡; 𝑟)] + 𝑝 [

𝜕

𝜕𝑡
�̅�(𝑥, 𝑡; 𝑟) −

𝛾
1
(𝑟)𝐷(𝑥)

𝜕2

𝜕𝑥2
�̅�(𝑥, 𝑡; 𝑟) − 𝑅(�̅�(𝑥, 𝑡; 𝑟)) − 𝛾

2
(𝑟)𝛬(𝑥, 𝑡)] = 0 (12) 

 

The solution of (11) and (12) can be expressed as a power 

series in 𝑝, like the following, 

 

𝜔(𝑥, 𝑡; 𝑟) = ∑ 𝑝𝑖𝜔𝑖(𝑥, 𝑡; 𝑟)
∞
𝑖=0  (13) 

�̅�(𝑥, 𝑡; 𝑟) = ∑ 𝑝𝑖�̅�𝑖(𝑥, 𝑡; 𝑟)
∞
𝑖=0  (14) 

 

The substitution of (13) and (14) into (11) and (12) yields, 

 
𝜕

𝜕𝑡
∑ 𝑝𝑖𝜔𝑖(𝑥, 𝑡; 𝑟)
∞
𝑖=0 −

𝜕

𝜕𝑡
𝑢𝑟(𝑥, 𝑡; 𝑟) = 𝑝 [−

𝜕

𝜕𝑡
𝑢𝑟(𝑥, 𝑡; 𝑟) +

𝛾1(𝑟)𝐷(𝑥)
𝜕2

𝜕𝑥2
∑ 𝑝𝑖𝜔𝑖(𝑥, 𝑡; 𝑟)
∞
𝑖=0 + 𝑅(∑ 𝑝𝑖𝜔𝑖(𝑥, 𝑡; 𝑟)

∞
𝑖=0 ) +

𝛾2(𝑟)𝛬(𝑥, 𝑡)]  (15) 

𝜕

𝜕𝑡
∑ 𝑝𝑖�̅�𝑖(𝑥, 𝑡; 𝑟)
∞
𝑖=0 −

𝜕

𝜕𝑡
�̅�𝑎(𝑥, 𝑡; 𝑟) = 𝑝 [−

𝜕

𝜕𝑡
�̅�𝑟(𝑥, 𝑡; 𝑟) +

𝛾
1
(𝑟)𝐷(𝑥)

𝜕2

𝜕𝑥2
∑ 𝑝𝑖�̅�𝑖(𝑥, 𝑡; 𝑟)
∞
𝑖=0 + 𝑅(∑ 𝑝𝑖�̅�𝑖(𝑥, 𝑡; 𝑟)

∞
𝑖=0 ) +

𝛾
2
(𝑟)𝛬(𝑥, 𝑡)]  (16) 

 

The initial approximation of (15) and (16) that satisfies 

the initial conditions is given as, 

 

𝑢𝑎(𝑥, 𝑡; 𝑟) = 𝛾3(𝑟)𝜑(𝑥) (17) 

𝑢𝑎(𝑥, 𝑡; 𝑟) = 𝛾3(𝑟)𝜑(𝑥) (18) 

 

Now, both sides with similar powers of 𝑝 are compared to 

obtain the following for the lower band solution, 

 

𝜕

𝜕𝑡
𝜔0(𝑥, 𝑡; 𝑟) =

𝜕

𝜕𝑡
𝑢𝑎(𝑥, 𝑡; 𝑟) 

𝜕

𝜕𝑡
𝜔1(𝑥, 𝑡; 𝑟) = −

𝜕

𝜕𝑡
𝑢0(𝑥, 𝑡; 𝑟) +

𝛾1(𝑟)𝐷(𝑥)
𝜕2

𝜕𝑥2
𝜔0(𝑥, 𝑡; 𝑟) + 𝑅 (𝜔0(𝑥, 𝑡; 𝑟)) + 𝛾2(𝛼)𝛬(𝑥, 𝑡)   

𝜕

𝜕𝑡
𝜔2(𝑥, 𝑡; 𝑟) = 𝛾1(𝑟)𝐷(𝑥)

𝜕2

𝜕𝑥2
𝜔1(𝑥, 𝑡; 𝑟) + 𝑅 (𝜔1(𝑥, 𝑡; 𝑟))  
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𝜕

𝜕𝑡
𝜔3(𝑥, 𝑡; 𝑟) = 𝛾1(𝑟)𝐷(𝑥)

𝜕2

𝜕𝑥2
𝜔2(𝑥, 𝑡; 𝑟) + 𝑅 (𝜔2(𝑥, 𝑡; 𝑟))  

 

and so on, and so forth. Similarly, for the upper bound 

solution,  

 
𝜕

𝜕𝑡
�̅�0(𝑥, 𝑡; 𝑟) =

𝜕

𝜕𝑡
�̅�𝑟(𝑥, 𝑡; 𝑟) 

𝜕

𝜕𝑡
�̅�1(𝑥, 𝑡; 𝑟) = −

𝜕

𝜕𝑡
�̅�𝑟(𝑥, 𝑡; 𝑟) +

𝛾
1
(𝑟)𝐷(𝑥)

𝜕2

𝜕𝑥2
�̅�0(𝑥, 𝑡; 𝑟) + 𝑅(�̅�0(𝑥, 𝑡; 𝑟)) + 𝛾2(𝛼)𝛬(𝑥, 𝑡)  

𝜕

𝜕𝑡
�̅�2(𝑥, 𝑡; 𝑟) = 𝛾

1
(𝑟)𝐷(𝑥)

𝜕2

𝜕𝑥2
�̅�1(𝑥, 𝑡; 𝑟) + 𝑅(�̅�1(𝑥, 𝑡; 𝑟))  

𝜕

𝜕𝑡
�̅�3(𝑥, 𝑡; 𝑟) = 𝛾

1
(𝑟)𝐷(𝑥)

𝜕2

𝜕𝑥2
�̅�2(𝑥, 𝑡; 𝛼) + 𝑅(�̅�2(𝑥, 𝑡; 𝑟))  

 

and so on, and so forth. For simplicity,  �̃�0(𝑥, 𝑡; 𝑟) =
�̃�0(𝑥, 𝑡; 𝑟) = �̃�0(𝑥, 0; 𝑟). thus, the following recurrent 

relation is obtained, 

 

�̃�1(𝑥, 𝑡; 𝑟) = ∫ [−
𝜕

𝜕𝑡
�̃�0(𝑥, 𝑡; 𝑟) +

𝑇

0

�̃�1(𝑟)𝐷(𝑥)
𝜕2

𝜕𝑥2
�̃�0(𝑥, 𝑡; 𝑟) + 𝑅(�̃�0(𝑥, 𝑡; 𝑟)) +

�̃�2(𝑟)𝛬(𝑥, 𝑡)] 𝑑𝑡  

�̃�2(𝑥, 𝑡; 𝑟) = ∫ [−
𝜕

𝜕𝑡
�̃�1(𝑥, 𝑡; 𝑟) +

𝑇

0

�̃�1(𝑟)𝐷(𝑥)
𝜕2

𝜕𝑥2
�̃�1(𝑥, 𝑡; 𝑟) + 𝑅(�̃�1(𝑥, 𝑡; 𝑟))] 𝑑𝑡   

�̃�3(𝑥, 𝑡; 𝑟) = ∫ [−
𝜕

𝜕𝑡
�̃�2(𝑥, 𝑡; 𝑟) +

𝑇

0

�̃�1(𝑟)𝐷(𝑥)
𝜕2

𝜕𝑥2
�̃�2(𝑥, 𝑡; 𝑟) + 𝑅(�̃�2(𝑥, 𝑡; 𝑟))] 𝑑𝑡   

�̃�𝑛(𝑥, 𝑡; 𝑟) = ∫ [−
𝜕

𝜕𝑡
�̃�𝑛−1(𝑥, 𝑡; 𝑟) +

𝑇

0

�̃�1(𝑟)𝐷(𝑥)
𝜕2

𝜕𝑥2
�̃�𝑛−1(𝑥, 𝑡; 𝑟) + 𝑅(�̃�𝑛−1(𝑥, 𝑡; 𝑟))] 𝑑𝑡,   

 

where 𝑛 ≥ 2. The approximate solution of (8) can be 

obtained as, 

 

�̃� = lim
𝑛→∞

�̃�𝑛(𝑥, 𝑡; 𝑟)  (19) 

V. ILLUSTRATION 

Case 1. Consider the linear Cauchy FRDE, where 0 <
𝑥 < 0.4,0 < 𝑡 < 0.6, 

 

 
𝜕𝑢(𝑡,𝑥)

𝜕𝑡
= 

𝜕2𝑢(𝑡,𝑥)

𝜕𝑥2
+ �̃�(𝑡, 𝑥) (20) 

�̃�(0, 𝑥) = [𝑟 − 1,1 − 𝑟]𝑥3.    

 

The exact solution of (20) has been obtained by help of 

Wolfram Mathematica 10 as,  

 

�̃�(𝑡, 𝑥; 𝑟) = ⅇ𝑡[𝑟 − 1,1 − 𝑟]𝑥(6𝑡 + 𝑥2)  (21)  

 

The initial approximation of (20) are specified by  

 

{
𝑈0(𝑡, 𝑥; 𝑟) = (𝑟 − 1)𝑥

3

𝑈0(𝑡, 𝑥; 𝑟) = (1 − 𝑟)𝑥
3
 (22)  

 

According to HPM as in section 4 we have 

{
  
 

  
 𝑈1(𝑥, 𝑡; 𝑟) = ∫ [ 

𝜕2𝑈0(𝑡,𝑥;𝑟)

𝜕𝑥2
+ 𝑈0(𝑡, 𝑥; 𝑟)]

𝑡

0
       

𝑈2(𝑥, 𝑡; 𝑟) = ∫ [ 
𝜕2𝑈1(𝑡,𝑥;𝑟)

𝜕𝑥2
+ 𝑈1(𝑡, 𝑥; 𝑟)]

𝑡

0
        

.

.

𝑈𝑘(𝑥, 𝑡; 𝑟) = ∫ [ 
𝜕2𝑈𝑘−1(𝑡,𝑥;𝑟)

𝜕𝑥2
+ 𝑈𝑘−1(𝑡, 𝑥; 𝑟)]

𝑡

0

 (23)  

 

{
  
 

  
 𝑈1(𝑥, 𝑡; 𝑟) = ∫ [ 

𝜕2𝑈0(𝑡,𝑥;𝑟)

𝜕𝑥2
+ 𝑈0(𝑡, 𝑥; 𝑟)]

𝑡

0

𝑈2(𝑥, 𝑡; 𝑟) = ∫ [ 
𝜕2𝑈1(𝑡,𝑥;𝑟)

𝜕𝑥2
+ 𝑈1(𝑡, 𝑥; 𝑟)]

𝑡

0
.
.

𝑈𝑘(𝑥, 𝑡; 𝑟) = ∫ [ 
𝜕2𝑈𝑘−1(𝑡,𝑥;𝑟)

𝜕𝑥2
+ 𝑈𝑘−1(𝑡, 𝑥; 𝑟)]

𝑡

0

 (24)  

 

Additionally, absolute error of the approximate-analytical 

solution of (20) is given by, 

 

[�̃�]𝑟 = |𝑈(𝑡, 𝑥; 𝑟) − �̃�(𝑡, 𝑥; 𝑟)| (25) 

 
TABLE I 

EQUATION (20) 10TH-ORDER HPM LOWER SOLUTION FOR 0 ≤ 𝑟 ≤ 1, 𝑥 =
0.4, AND 𝑡 = 0.6 

r 𝑼 HPM 𝒖 Exact 𝑬 

0 2.74046667 2.74046668 2.54331 × 10−9 
0.2 2.19237334 2.19237334 2.03464 × 10−9 
0.4 1.644280003 1.644280005 1.52598 × 10−9 
0.6 1.09618667 1.09618667 1.01732 × 10−9 
0.8 0.54809333 0.54809334 5.08662 × 10−10 
1 2.7767 × 10−16 0 2.77664 × 10−16 

 

TABLE II 

EQUATION (20) 10TH-ORDER HPM UPPER SOLUTION FOR 0 ≤ 𝑟 ≤ 1, 𝑥 =
0.4, AND 𝑡 = 0.6 

r 𝑼 HPM 𝒖 Exact 𝑬 

0 -2.74046667 -2.74046667 2.54331 × 10−9 
0.2 -2.19237334 -2.19237334 2.03465 × 10−9 
0.4 -1.64428 -1.64428 1.52599 × 10−9 
0.6 -1.09618667 -1.09618667 1.01732 × 10−9 
0.8 -0.54809333 -0.54809333 5.08662 × 10−10 
1 2.77665 × 10−16 0 2.77665 × 10−16 

 

 
Fig.  1. Equation (20) 10th-order HPM solution at 𝑥 = 0.4, 𝑡 = 0.6, and 

0 ≤ 𝑟 ≤ 1 
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Fig.  2. 10th-order HPM solution of (20) with lower bound accuracy at 𝑡 =
0.6, 0 ≤ 𝑥 ≤ 0.4, and 0 ≤ 𝑟 ≤ 1 

 

 
Fig.  3. 10th-order HPM solution of (20) with upper bound accuracy at 𝑡 =
0.6, 0 ≤ 𝑥 ≤ 0.4, and 0 ≤ 𝑟 ≤ 1 
 

 
Fig.  4. 10-order HPM solution of (20) at 𝑡 = 0.6, 0 ≤ 𝑥 ≤ 0.4, and 0 ≤
𝑟 ≤ 1 
 

From tables I, II and Fig. 1 to 3 one can conclude that the 

10-order HPM solution of (20) satisfies the convex 

triangular fuzzy number properties [24,27] for the values of 

0 ≤ t ≤ 1 and 0 ≤ r ≤ 1. 

 

Case 2. Consider the nonlinear Cauchy FRDE, where 𝑥 >
0, 𝑡 > 0,  
 

 
𝜕𝑢(𝑡,𝑥)

𝜕𝑡
= 

𝜕2𝑢(𝑡,𝑥)

𝜕𝑥2
+ �̃�(𝑡, 𝑥)(1 − �̃�(𝑡, 𝑥)) (26) 

�̃�(0, 𝑥) = [𝑟 − 1,1 − 𝑟]𝑥2. 
 

The initial approximation of (26) are specified by 
 

{
𝑈0(𝑡, 𝑥; 𝑟) = (𝑟 − 1)𝑥

2

𝑈0(𝑡, 𝑥; 𝑟) = (1 − 𝑟)𝑥
2
 (27) 

 

According to HPM section IV we have 

 

{
 
 
 
 

 
 
 
 𝑈1(𝑥, 𝑡; 𝑟) = ∫ [

 
𝜕2𝑈0(𝑡,𝑥;𝑟)

𝜕𝑥2
+ 𝑈0(𝑡, 𝑥; 𝑟)

−𝑈0(𝑡, 𝑥; 𝑟)
2

]
𝑡

0
                                 

𝑈2(𝑥, 𝑡; 𝑟) = ∫ [
 
𝜕2𝑈1(𝑡,𝑥;𝑟)

𝜕𝑥2
+ 𝑈1(𝑡, 𝑥; 𝑟)

−2𝑈1(𝑡, 𝑥; 𝑟)𝑈0(𝑡, 𝑥; 𝑟)
]

𝑡

0
                     (28) 

.

.

𝑈𝑘(𝑥, 𝑡; 𝑟) = ∫ [
 
𝜕2𝑈𝑘−1(𝑡,𝑥;𝑟)

𝜕𝑥2
+ 𝑈𝑘−1(𝑡, 𝑥; 𝑟)

−∑ 𝑈𝑘−1(𝑡, 𝑥; 𝑟)
𝑛−1
𝑘−1=0 𝑈𝑛−𝑘−2(𝑡, 𝑥; 𝑟)

]     
𝑡

0

  

 

{
 
 
 
 
 

 
 
 
 
 𝑈1(𝑥, 𝑡; 𝑟) = ∫ [

 
𝜕2𝑈0(𝑡,𝑥;𝑟)

𝜕𝑥2
+ 𝑈0(𝑡, 𝑥; 𝑟)

−𝑈0(𝑡, 𝑥; 𝑟)
2

]
𝑡

0
                                

𝑈2(𝑥, 𝑡; 𝑟) = ∫ [
 
𝜕2𝑈1(𝑡,𝑥;𝑟)

𝜕𝑥2
+ 𝑈1(𝑡, 𝑥; 𝑟)

−2𝑈1(𝑡, 𝑥; 𝑟)𝑈0(𝑡, 𝑥; 𝑟)
]

𝑡

0
                    (29)

.

.

𝑈𝑘(𝑥, 𝑡; 𝑟) = ∫ [
 
𝜕2𝑈𝑘−1(𝑡,𝑥;𝑟)

𝜕𝑥2
+ 𝑈𝑘−1(𝑡, 𝑥; 𝑟)

−∑ 𝑈𝑘−1(𝑡, 𝑥; 𝑟)
𝑛−1
𝑘−1=0 𝑈𝑛−𝑘−2(𝑡, 𝑥; 𝑟)

]    
𝑡

0

  

 

Since the exact solution cannot be found from (26) [28], we 

define the residual error [29,30] to analyze the accuracy of 

the approximate solution approximate-analytical such that 

 

�̃�(𝑥, 𝑡; 𝑟) = 

= |
𝜕�̃�𝑘(𝑡,𝑥;𝑟)

𝜕𝑡
−

𝜕2𝑈𝑘(𝑡,𝑥;𝑟)

𝜕𝑥2
−𝑈𝑘(𝑡, 𝑥; 𝑟) + [𝑈𝑘(𝑡, 𝑥; 𝑟)]

2
| (30) 

 
TABLE III 

EQUATION (20) 15TH-ORDER HPM OF (26) WITH LOWER SOLUTION FOR 0 ≤
𝑟 ≤ 1, 𝑥 = 0.1, AND 𝑡 = 0.1  

r 𝑼 HPM 𝑬 

0 −0.2411520 6.514161121629058 × 10−8 
0.2 −0.1914090 1.077814432148827 × 10−8 
0.4 −0.1424460 1.084306144871760 × 10−9 
0.6 −0.0942395 4.46025438805000 × 10−11 
0.8 −0.0467649 2.20198859146592 × 10−13 
1 −7.56609 × 10−19 1.11093988383018 × 10−19 

 
TABLE IV 

15TH-ORDER HPM OF (26) WITH LOWER SOLUTION FOR 0 ≤ 𝑟 ≤ 1, 𝑥 = 0.1, 

AND 𝑡 = 0.1   

r 𝑼 HPM 𝑬 

0 0.22388700 2.686822725417315 × 10−8 
0.2 0.18037200 4.694926836190660 × 10−9 
0.4 0.13624300 4.738556769190438 × 10−10 
0.6 0.09148440 1.726832565829283 × 10−11 
0.8 −0.0467649 4.450606549966096 × 10−14 
1 −7.56609 × 10−16 1.110939883830187 × 10−19 
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Fig.  5.  15th-order HPM solution of (26) at 0 ≤ 𝑟 ≤ 1, 𝑡 = 0.1, and 𝑥 =
0.1 
 

 
Fig.  6.  15th-order HPM solution of (26) with Lower bound accuracy 

∀ 𝑡, 𝑥 ∈ [0,0.1] and 𝑟 = 0.4 

 

 
Fig.  7.  15th-order HPM solution of (26) with Upper bound accuracy 

∀ 𝑡, 𝑥 ∈ [0,0.1] and 𝑟 = 0.4 

 

 
Fig.  8.  15th-order HPM solution of (26) at 0 ≤ 𝑟 ≤ 1, 𝑥 ∈ [0,0.1] and 𝑡 =
0.1. 

 

from Tables III, IV and Fig. 5 to 8 one can conclude that the 

15-order HPM solution of (26) satisfies the convex 

triangular fuzzy number [24,27] for the values of 0 ≤ r ≤ 1. 

 

Case 3. Consider the nonlinear nonhomogeneous Cauchy 

FRDE, where 𝑥 ≥ 0, 𝑡 ≥ 0, �̃� = [0.9 + 0.1𝑟, 1.1 − 0.1𝑟] 
 

 
𝜕𝑢(𝑡,𝑥)

𝜕𝑡
= 

𝜕2𝑢(𝑡,𝑥)

𝜕𝑥2
− [�̃�(𝑡, 𝑥)]2 + �̃�𝑥2𝑡2 (31) 

�̃�(0, 𝑥) = 0, 
𝜕

𝜕𝑥
�̃�(0, 𝑥) = �̃�𝑥, 

 

The initial approximation of (31) are specified by 

 

{
𝑈0(𝑡, 𝑥; 𝑟) = (0.9 + 0.1𝑟)𝑥

𝑈0(𝑡, 𝑥; 𝑟) = (1.1 − 0.1𝑟)𝑥
 (32) 

 

According to HPM section 4 we have 

 

{
 
 
 
 

 
 
 
 𝑈1(𝑥, 𝑡; 𝑟) = ∫ [

 
𝜕2𝑈0(𝑡,𝑥;𝑟)

𝜕𝑥2

−𝑈0(𝑡, 𝑥; 𝑟)
2 + 𝛼𝑥2𝑡2

]
𝑡

0
                                 

𝑈2(𝑥, 𝑡; 𝑟) = ∫ [
 
𝜕2𝑈1(𝑡,𝑥;𝑟)

𝜕𝑥2

−2𝑈1(𝑡, 𝑥; 𝑟)𝑈0(𝑡, 𝑥; 𝑟)
]

𝑡

0
                     (33)

.

.

𝑈𝑘(𝑥, 𝑡; 𝑟) = ∫ [
 
𝜕2𝑈𝑘−1(𝑡,𝑥;𝑟)

𝜕𝑥2

−∑ 𝑈𝑘−1(𝑡, 𝑥; 𝑟)
𝑛−1
𝑘−1=0 𝑈𝑛−𝑘−2(𝑡, 𝑥; 𝑟)

]     
𝑡

0

  

 

{
 
 
 
 
 

 
 
 
 
 𝑈1(𝑥, 𝑡; 𝑟) = ∫ [

 
𝜕2𝑈0(𝑡,𝑥;𝑟)

𝜕𝑥2
+

−𝑈0(𝑡, 𝑥; 𝑟)
2 + 𝛼𝑥2𝑡2

]
𝑡

0
                                

𝑈2(𝑥, 𝑡; 𝑟) = ∫ [
 
𝜕2𝑈1(𝑡,𝑥;𝑟)

𝜕𝑥2

−2𝑈1(𝑡, 𝑥; 𝑟)𝑈0(𝑡, 𝑥; 𝑟)
]

𝑡

0
                    (34)

.

.

𝑈𝑘(𝑥, 𝑡; 𝑟) = ∫ [
 
𝜕2𝑈𝑘−1(𝑡,𝑥;𝑟)

𝜕𝑥2

−∑ 𝑈𝑘−1(𝑡, 𝑥; 𝑟)
𝑛−1
𝑘−1=0 𝑈𝑛−𝑘−2(𝑡, 𝑥; 𝑟)

]    
𝑡

0

  

 

Since the exact solution cannot be found from (31) [28], we 

define the residual error as in case 2 to analyze the accuracy 

of the approximate solution approximate-analytical such that 
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�̃�(𝑥, 𝑡; 𝑟) = 

= |
𝜕�̃�𝑘(𝑡,𝑥;𝑟)

𝜕𝑡
−

𝜕2𝑈𝑘(𝑡,𝑥;𝑟)

𝜕𝑥2
+ [𝑈𝑘(𝑡, 𝑥; 𝑟)]

2
− �̃�𝑥2𝑡2| (35) 

 
TABLE V 

12TH-ORDER HPM OF (31) WITH LOWER SOLUTION FOR 0 ≤ 𝑟 ≤ 1, 𝑥 = 0.3, 

AND 𝑡 = 0.3  

r 𝑼 HPM 𝑬 

0 0.18977833277389260 0.00017066078329187884 
0.2 0.19233109735968892 0.00017066078329187884 
0.4 0.19481676927664257 0.00017066078329187884 
0.6 0.19723547686377807 0.00017066078329187884 
0.8 0.19958733383886260 0.00017066078329187884 
1 0.20187243969820795 0.00017066078329187884 

 

TABLE VI 

12TH-ORDER HPM OF (31) WITH LOWER SOLUTION FOR 0 ≤ 𝑟 ≤ 1, 𝑥 = 03, 

AND 𝑡 = 0.3   

r 𝑼 HPM 𝑬 

0 0.21229924682509757 0.0008404323866298136 
0.2 0.21034686942973005 0.0008404323866298136 
0.4 0.20832804156767476 0.0008404323866298136 
0.6 0.20624272758025700 0.0008404323866298136 
0.8 0.20409088014939222 0.0008404323866298136 
1 0.20187243969820792 0.0008404323866298136 

 

 
Fig.  9. 12th-order HPM solution of (31) at 0 ≤ 𝑟 ≤ 1, 𝑡 = 0.3, and 𝑥 = 0.3 
 

 
Fig.  10. 12th-order HPM solution of equation (31) with Lower bound 

accuracy ∀ 𝑡, 𝑥 ∈ [0,0.3] and 𝑟 = 0.2 
 

 

Fig.  11. 12th-order HPM solution of (31) with Upper bound accuracy 

∀ 𝑡, 𝑥 ∈ [0,0.3] and 𝑟 = 0.2 

 

 
Fig.  12. 12th-order HPM solution of (31) at 0 ≤ 𝑟 ≤ 1, 𝑥 ∈ [0,0.3] and 𝑡 =
0.3. 
 

from Tables V, VI and Fig. 9 to 12 one can conclude that the 

12th-order HPM solution of (31) satisfies the convex 

triangular fuzzy number [24,27] for the values of 0 ≤ r ≤ 1. 

VI. CONCLUSION 

The main objective of this research with regard to 

approximate-analytical solution for the FRDE has been 

presented. We have achieved this aim by formulating and 

applying HPM befitting from fuzzy set theory properties. 

The solution provided by this method has useful feature of 

fast converging power series with the elegantly computable 

convergence of for the nonlinear problem without need to 

compare with exact solution. As far as we know, this is the 

earliest attempt to solve FRDE with HPM. Three test cases 

shows that the HPM is a capable and accurate method for 

obtaining approximate-analytical solution of FPDEs. In 

addition, the acquired solution demonstrates that HPM 

results are satisfying the properties of triangular shape fuzzy 

numbers.  
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