
 

 

   Abstract— A new hybrid Conjugate Gradient (CG) method 

that generates weighted search directions is proposed in this 

paper. The weighting matrix is a two-step quasi-Newton 

update matrix that approximates the inverse Hessian matrix 

using data from the two most recent iterates. Multi-step 

methods have demonstrated substantial gains over the 

standard methods that utilize updates satisfying the classical 

Secant equation. The actual matrix for the method developed 

in this paper need not be explicitly retained. Instead, our 

implementation requires a few additional vectors that need to 

be updated at each iteration. The numerical performance of 

the new algorithm is then assessed by comparing it to the other 

methods developed in a similar context. A set of 1941 

unconstrained optimization problems were used to test the 

algorithm. Our results reveal substantial improvements over 

the other two methods at a reasonable computational and 

storage costs.  Those gains are particularly observed as the 

dimension of the problem increases. 

Index Terms— Weighted Conjugate Gradient methods, quasi-

Newton methods, multi-step methods, unconstrained 

optimization. 

I. INTRODUCTION 

ONJUGATE  gradient (CG) methods were originally 

devised for the solution of linear systems of equations. 

In addition to using the methods to to find the minimum 

point of a quadratic function, they can be used to minimize 

any unconstrained nonlinear continuous function of the form  

 

𝑚𝑖𝑛𝑚𝑖𝑧𝑒 𝑓(𝑥), where 𝑓: 𝑅𝑛 → 𝑅, 
 

for which the gradient can be computed. CG methods can be 

applied to a variety of optimization problems, such as 

nonlinear regression, neural net training and engineering 

design.  
To minimize f, starting from an initial starting point 𝑥0, 

the sequence of iterates {𝑥𝑖}generated is given as   

 

𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑑𝑖 ,                       (1) 

 

where 𝛼𝑖 is a positive scalar that defines a step size on the 

CG search direction 𝑑𝑖. In nonlinear CG, the residual vector 

is taken as the negative of the gradient vector of the 

objective function. As with the linear CG, a value of 𝛼𝑖 in 

(1) is computed such that the gradient is orthogonal to the  
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search direction. Thus, the search direction 𝑑𝑖 is computed 

using 

 

𝑑𝑖 = {
−𝑔𝑖 ,                    for 𝑖 = 0,
−𝑔𝑖 + 𝛽𝑖𝑑𝑖−1,   for 𝑖 ≥ 1,

          (2) 

 

for some scalar 𝛽
𝑖
 that is chosen to guarantee orthogonality 

and where 𝑔
𝑖
 denotes the gradient of the function f evaluated 

at the point xi. Normally, whenever 𝛽
𝑖
 becomes negative, the 

method is restarted by setting 𝛽
𝑖

= 0 (see [29]), although 

other options have also been considered in the literature 

[2,515,17,21,29]. Some of those are adopted in our 

implementation and are mentioned later in this paper. The 

vector 𝑑𝑖 is usually required to satisfy the condition 

 

𝑑𝑖
𝑇𝑔𝑖 < 0, 

 

to ensure it is downhill at 𝑥𝑖. It has been shown in several 

papers [5,21,23,28] that in order to guarantee global 

convergence, 𝑑𝑖 may be required to satisfy the sufficient 

descent condition 

 

𝑑𝑖
𝑇𝑔𝑖 ≤ −ƺ‖𝑔𝑖‖

2, 
 

for some constant ƺ. 
Different choices of 𝛽𝑖  in (2) lead to different CG 

algorithms. Some well-known choices are 

 

𝛽𝑖
𝐹𝑅 =

‖𝑔𝑖‖2

‖𝑔𝑖−1‖2,    𝛽𝑖
𝑃𝑅𝑃 =

𝑔𝑖
𝑇(𝑔𝑖−𝑔𝑖−1)

‖𝑔𝑖−1‖2 , 

𝛽𝑖
𝐻𝑆 =

𝑔𝑖
𝑇(𝑔𝑖−𝑔𝑖−1)

𝑑𝑖−1
𝑇 (𝑔𝑖−𝑔𝑖−1)

,     𝛽𝑖
𝐿𝑆 =

𝑔𝑖
𝑇(𝑔𝑖−𝑔𝑖−1)

𝑑𝑖−1
𝑇 𝑔𝑖−1

, 

𝛽𝑖
𝐷𝑌 =

𝑔𝑖
𝑇𝑔𝑖

𝑑𝑖−1
𝑇 (𝑔𝑖 − 𝑔𝑖−1)

. 

 

The above methods are, respectively, due to Fletcher-Reeves 

[9], Polak–Ribiére–Polyak [22,23], Hestenes-Stiefel [16], 

Liu-Storey [17] and Dai–Yuan [5]. Many other choices have 

been considered in the literature (see, for example, 

[13,17,22,23,24]).  

This paper derives a new CG algorithm that uses a 

weighted two-step update matrix in the computation of the 

search direction without having to explicitly retain the 

matrix in storage nor update it. The new method is inspired 

by the works of Anderi [2] and Ford et al. [13]. Anderi [2] 

applies updates to the identity matrix in order to build the 

conditioning matrix.  Ford et al. [13] developed a multi-step 

CG method that does not directly involve any weighting 

matrix. Our derivation follows a hybrid approach that 

combines quasi-Newton and CG search directions. The 

conditioning matrix employed in our method exploits two-
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step iteration information and the result is a descent CG 

method which utilizes multi-step quasi-Newton updates. 
The next section summarizes the multi-step methods idea. 

Section 3 presents the derivation of the new method. Finally, 

the numerical results are summarized and conclusions 

presented. 

II. MULTI-STEP QUASI-NEWTON METHODS 

Quasi-Newton methods retain an approximation to the 

Hessian matrix that is updated at each iteration to reflect the 

most recent changes in the data [3,25]. Given Bi, the current 

approximation to the Hessian ∇2f(xi+1), the new Hessian 

approximation, Bi+1 is updated to satisfy the standard Secant 

equation: 

𝐵𝑖+1𝑠𝑖 = 𝑦𝑖 ,                  (3) 
where 

𝑠𝑖 = 𝑥𝑖+1 − 𝑥𝑖 , 
and 

𝑦𝑖 = 𝑔𝑖+1 − 𝑔𝑖 . 
 

A family of secant methods is the Broyden family [3,6] in 

which the updates are defined by 

 

𝐵𝑖+1 = 𝐵𝑖 −
𝐵𝑖𝑠𝑖𝑠𝑖

𝑇𝐵𝑖

𝑠𝑖
𝑇𝐵𝑖𝑠𝑖

+
𝑦𝑖𝑦𝑖

𝑇

𝑠𝑖
𝑇𝑦𝑖

+ 𝜃𝑢𝑖𝑢𝑖
𝑇 , 

  
where 𝜃 is a scalar and 

 

𝑢𝑖 = √𝑠𝑖
𝑇𝐵𝑖𝑠𝑖 [

𝑦𝑖

𝑠𝑖
𝑇𝑦𝑖

−
𝐵𝑖𝑠𝑖

𝑠𝑖
𝑇𝐵𝑖𝑠𝑖

].  

 

The BFGS, DFP and SR1 updates are obtained by setting 

𝜃 = 0,  𝜃 = 1 and = (1 − 𝑠𝑖
𝑇𝐵𝑖𝑠𝑖/𝑠𝑖

𝑇𝑦𝑖)−1 , respectively. 

The BFGS formula [3,10,11] is the most popular rank-

two update formula that satisfies equation (3), especially 

that, as much of published research [3,13,15] have reported, 

it works well with inexact line search. The BFGS update to 

the Hessian matrix approximation is given by 

 

𝐵𝑖+1 = 𝐵𝑖 −
𝐵𝑖𝑠𝑖𝑠𝑖

𝑇𝐵𝑖

𝑠𝑖
𝑇𝐵𝑖𝑠𝑖

+
𝑦𝑖𝑦𝑖

𝑇

𝑠𝑖
𝑇𝑦𝑖

. 

 

In the standard Secant equation (3), a straight line L is 

used to find a new iterate xi+1, given the previous iterate xi, 

while in the multi-step methods higher order polynomials 

are employed, as will be shown next.  

    Let {x(τ)} or X denote a differentiable path in 𝑅𝑛, where 

τ ∈ R.   The vector polynomial x(τ) thus satisfies  

 

x(τ𝑗
(𝑖−1)

) = xi-m+j, for j = 0, 1,…,m, 

 

for some distinct values {𝜏𝑗
(𝑖−1)

}
𝑗=0

𝑚

. The corresponding 

gradient points are interpolated by a similar polynomial z(τ) 

satisfying 

z(τ𝑗
(𝑖−1)

) = gi-m+j, for j = 0, 1,…,m. 

 

Then upon applying the Chain rule to the gradient vector  

g(x(τ)) in order to find the derivative of the gradient g with 

respect to τ, we get 

 

𝑑𝑔

𝑑𝜏
= 𝐺(𝑥(𝜏))

𝑑𝑥

𝑑𝜏
     .                       (4) 

 

Thus, at any point on the path X, the Hessian G must 

satisfy (4) for any value of τ. More specifically, for τ = τc, 

where τc ∈ℛ. This will result in the following relation 

 
𝑑𝑔

𝑑𝜏
|

𝜏=𝜏𝑐

= 𝐺(𝑥(𝜏))
𝑑𝑥

𝑑𝜏
|

𝜏=𝜏𝑐

 

 

Thus, at any point on the path X, the Hessian G must 

satisfy (4) for any value of τ. More specifically, for some τ = 

τc, where τc ∈ 𝑅 the resulting relation is given by 

 
𝑑𝑔

𝑑𝜏
|

𝜏=𝜏𝑐

= 𝐺(𝑥(𝜏))
𝑑𝑥

𝑑𝜏
|

𝜏=𝜏𝑐

. 

 

By analogy with the Secant equation, the aim is to derive 

a relation satisfied by the Hessian at the new iterate xi+1. We 

choose a value for the parameter τ, namely τm,, that 

corresponds to the most recent iterate as follows 

 

𝑔′(𝜏𝑚) = 𝐵𝑖+1𝑥′(𝜏𝑚) 

or                                                                                                          

 𝑤𝑖 = 𝐵𝑖+1𝑟𝑖,                              (5) 

 

where the vectors ri and wi are defined in terms of the m 

most recent step vectors {𝑠𝑘}𝑘=𝑖−𝑚+1
𝑖  and the m most recent 

gradient difference vectors {𝑦𝑘}𝑘=𝑖−𝑚+1
𝑖  respectively, as 

follows 

𝑟𝑖 = ∑ 𝑠𝑖−𝑗 { ∑ 𝐿𝑘
′ (𝜏𝑚)

𝑚

𝑘=𝑚−𝑗

}

𝑚−1

𝑗=0

 

and   

𝑤𝑖 = ∑ 𝑦𝑖−𝑗 { ∑ 𝐿𝑘
′ (𝜏𝑚)

𝑚

𝑘=𝑚−𝑗

}

𝑚−1

𝑗=0

 

for 

𝐿𝑘
′ (𝜏𝑚) = (𝜏𝑘 − 𝜏𝑚)−1 [

𝜏𝑚 − 𝜏𝑗

𝜏𝑘 − 𝜏𝑗

] , 𝑘 < 𝑚 

and 

𝐿𝑚
′ (𝜏𝑚) = ∑ (𝜏𝑚 − 𝜏𝑗)−1

𝑚−1

𝑗=0

 

are the standard Lagrange polynomials. 

Ford and Moghrabi [10,11,12,18,19] examined several 

choices for the parameters {𝜏𝑘}𝑘=0 
𝑚 . It was found that 

different choices influence the structure of the interpolating 

curve and consequently the numerical performance of the 

multi-step methods.  

    The choices made for the parameters{𝜏𝑘}𝑘=0 
𝑚  rely on 

some metric of the following form 

 

∅𝑀(𝑧1, 𝑧2) = [(𝑧1 − 𝑧2)𝑇𝑀(𝑧1 − 𝑧2)]1/2, 

 

where M is a symmetric positive-definite matrix. The 

quantity ∅𝑀(𝑧1, 𝑧2) defines the distance between any two 

vectors 𝑧1 and 𝑧2, using some metric. For example, if M = I, 

then ∅𝑀(𝑧1, 𝑧2) denotes the 2-norm. 

Of the approaches considered in [12], the most 

numerically successful choice is selected in this work to 

derive our new algorithm. The choice is based on the so-
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called Accumulative Approach. The Accumulative approach 

chooses one of the iterates, say xj, as a base-point and sets 

the parameter τj corresponding to it to 0. Then, any value 𝜏𝑘, 

corresponding to the point xi-m+k+1 for any k except for k=j, 

is computed by distance accumulation (measured by the 

chosen metric ΦM) between each two consecutive pair of 

points in the sequence from xi-m+j+1 to xi-m+k+1. Therefore, 

any value 𝜏𝑘, for k = 0,1,...,m, is obtainable using 
 

𝜏𝑘 = − ∑ ∅𝑀(𝑥𝑖−𝑚+𝑝+1, 𝑥𝑖−𝑚+𝑝)
𝑗
𝑝=𝑘+1 , 𝑘 < 𝑗, 

     = 0, k = j, 

      = − ∑ ∅𝑀(𝑥𝑖−𝑚+𝑝+1, 𝑥𝑖−𝑚+𝑝)𝑘
𝑝=𝑗+1 , 𝑘 > 𝑗.        (6) 

 

    This approach will yield values of τ that satisfy 

 

𝜏𝑘 < 𝜏𝑘+1, 𝑓𝑜𝑟 𝑘 = 0, 1, … , 𝑚 − 1, 
  

under the assumption that no two consecutive points 

overlap. 

    Those values of the parameters {τk} are the ones used in 

computing the vectors x′(τm)  and  g′(τm)  in (5) (or, 

equivalently, vectors ri and wi, respectively) needed to 

compute the new Hessian approximation Bi+1 . It should be 

noted that different choices of the metric matrix M in ∅𝑀 

will result in different methods. Choices investigated for M 

(see [11,12,18,19]), include M = I, M = Bi, and M = Bi+1.  

The method derived in this paper uses the choice M = I.  

Ford and Moghrabi [11,12] indicate that values of m > 2 

do not yield further substantial numerical gains in 

performance due to the non-smoothness of the interpolant. 

Thus, m = 2 is chosen here and such methods are termed 

two-step methods as they utilize data from the two most 

recent iterations to update the Hessian approximation. 

The inverse Hessian approximation update generally 

satisfies: 

𝐻𝑖+1(𝑦𝑖 − 𝜇𝑖−1𝑦𝑖−1) = 𝑠𝑖 − 𝜇𝑖−1𝑠𝑖−1    (7) 

 

Or, equivalently 

𝑤𝑖 = 𝐵𝑖+1𝑟𝑖  

where 

𝜇𝑖−1 =
𝛿𝑖−1

2

2𝛿𝑖−1 + 1
. 

and 

𝛿𝑖−1 =
𝜏2

(𝑖−1)
− 𝜏1

(𝑖−1)

𝜏1
(𝑖−1)

− 𝜏0
(𝑖−1)

. 

 

For M = I in (6), the corresponding τ-values are given by 

 

𝜏0 = −(‖𝑠𝑖‖2 + ‖𝑠𝑖−1‖2), 𝜏2 = 0, and 𝜏1 = −‖𝑠𝑖‖2 . 
 

This, hence, gives a value for 𝛿 in (7) as 

 

𝛿 =
‖𝑠𝑖‖

‖𝑠𝑖−1‖
.             (8) 

 

Equation (8) may be generalized by introducing a scaling 

factor, 𝛾 ≥ 0 (see [13]) that provides more control and is 

exploited for convenient switching to the standard one-step 

Secant equation update method, simply by setting the scalar 

to zero. Therefore, 

𝛿 = 𝛾
‖𝑠𝑖‖

‖𝑠𝑖−1‖
.                  (9) 

 

The multi-step B-version BFGS formula is given by  

 

 𝐵𝑖+1
𝑀𝑆 = 𝐵𝑖 +

𝑤𝑖𝑤𝑖
𝑇

𝑤𝑖
𝑇𝑟𝑖

−
𝐵𝑖𝑟𝑖𝑟𝑖

𝑇𝐵𝑖

𝑟𝑖
𝑇𝐵𝑖𝑟𝑖

.    (10) 

III. A NEW MULTI-STEP PRECONDITIONED CG METHOD 

(MSPCG) 

The approach considered here is based on the 

preconditioning of the gradient in (2) in order to improve the 

convergence of the CG method. If the initial direction 
0d  is 

selected as 𝑑0 = −𝑔0 and the objective function to be 

minimized is a convex quadratic function in the form of 

 

1
( ) ,

2

T Tf x x Ax b x c    

and exact line searches are used, that is 

 

𝛼𝑖 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝛼>0 𝑓(𝑥𝑖 + 𝛼𝑑𝑖), 

 
then the conjugacy condition is satisfied 

 

𝑑𝑖
𝑇𝐴𝑑𝑗 = 0, ∀𝑖 ≠ 𝑗,                       (11) 

 

where A is the positive definite Hessian matrix of f. Then, 

for general nonlinear twice differentiable function ,f  and 

using the mean value theorem, there exists some 𝜔 ∈ (0,1] 
such that 

 

𝑑𝑖
𝑇𝑦𝑖−1 = 𝛼𝑖−1𝑑𝑖−1∇2𝑓(𝑥𝑖−1 + 𝜔𝛼𝑖−1𝑑𝑖−1)𝑑𝑖−1. 

 
Thus, from (11), it makes sense to replace the quadratic 

conjugacy condition (11) with the following alternative 

 

𝑑𝑖
𝑇𝑦𝑖−1 = 0.              (12) 

 

Perry [21] extended the conjugacy condition (11) by 

utilizing second-order information. For the Hestenes-Stiefel 

conjugate gradient algorithm with 𝛽𝑖
𝐻𝑆 =

𝑔𝑖
𝑇(𝑔𝑖−𝑔𝑖−1)

𝑑𝑖−1
𝑇 (𝑔𝑖−𝑔𝑖−1)

 (see 

[25]), Perry notes that the search direction (3) can be 

expressed as 

 

di+1=- [I-
siyi

T

yi
Tsi

] gi+1=-Qi+1
HS gi+1. 

The matrix  1

HS

kQ   resembles an approximation to the 

inverse Hessian though it is neither positive definite nor 

symmetric although the search direction obtained, namely, 

𝑑𝑖+1, satisfies the conjugacy condition (11). Perry [21] notes 

that, when the line searches are not exact, it is more 

appropriate to choose the approximation to the inverse 

Hessian to satisfy the Secant condition (3) than the 

conjugacy condition (11). Therefore, the following equality 

is used instead in [21] 

 

-gi+1+βisi=-Bi+1
-1 gi+1 

where 𝐵𝑖+1 is as in (3). Consequently, Perry’s choice for 𝛽𝑖 

is given by 
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𝛽𝑖 =
𝑦𝑖

𝑇𝑔𝑖+1 − 𝑠𝑖
𝑇𝑔𝑖−1)

𝑠𝑖
𝑇𝑦𝑖

. 

The corresponding search direction is computed using 

 

di+1=- [I-
siyi

T

y
i
Tsi

+
sisi

T

y
i
Tsi

] g
i+1

=-Qi+1
P g

i+1
. 

    
If the line search direction is exact, than Perry’s algorithm is 

equivalent to the HS conjugate gradient method and satisfies 

the Dai and Yuan [5] conjugacy condition  

 

di+1
T yi=-u(si

Tgi+1),  

with 1.u   

The above argument motivates our choice of the search 

direction in this paper which takes the general form 

 

𝑑𝑖 = −𝜎𝑖𝑔𝑖 + 𝛽𝑖𝑠𝑖−1,                 (13) 

 
where 𝜎𝑖  can be chosen to be some scalar or positive definite 

matrix. For example, if 𝜎𝑖 = 1, then (13) is equivalent to (2). 

If, however, 𝜎𝑖 is chosen to be some approximation to the 

inverse of the Hessian matrix, then 𝑑𝑖 becomes a 

combination of the quasi-Newton and the conjugate gradient 

directions, as will be the case in the derivation to follow. 

The main feature of our method is that 𝜎𝑖 is chosen to be a 

conditioning matrix that exploits second order and two-step 

iteration information that is expected to improve the quality 

of the generated search direction. The result is a descent 

Conjugate Gradient method with multi-step quasi-Newton 

updates. 

Following Perry’s argument [21] and given that the quasi-

Newton search direction is given by 𝑑𝑖 = −𝐻𝑖𝑔𝑖, the 

equality in (12) can be expressed by 

 
𝑑𝑖

𝑇𝑦𝑖−1 = −𝑔𝑖
𝑇𝑠𝑖−1.                  (14) 

 
Now, using (3) and (14), we obtain 

 

𝑑𝑖
𝑇𝑦𝑖−1 = −𝑔𝑖

𝑇(𝐻𝑖𝑦𝑖−1). 

 
From (7), we have 

 

𝑑𝑖
𝑇𝑦𝑖−1 = −𝑔𝑖

𝑇𝑟𝑖−1 − 𝜇𝑖−1𝑔𝑖
𝑇𝐻𝑖𝑦𝑖−2. 

 

This yields 

𝑑𝑖
𝑇𝑤𝑖−1 = −𝜖𝑔𝑖

𝑇𝑟𝑖−1,                     (15) 

 
for some 𝜀 ≥ 0 that serves as a scaling factor to impose 

conjugacy.                                                 

From (13) and (15), we have 

 

−𝜎𝑖𝑤𝑖−1
𝑇 𝑔𝑖 + 𝛽𝑖𝑤𝑖−1

𝑇 𝑠𝑖−1 = − 𝜖𝑔𝑖
𝑇𝑟𝑖−1,         (16) 

 

which yields an expression for 𝛽𝑖  as follows 

 

𝛽𝑖 =
𝑔𝑖

𝑇[𝜎𝑖𝑤𝑖−1−𝜖𝑟𝑖−1]

𝑠𝑖−1
𝑇 𝑤𝑖−1

.             (17) 

 

If 𝜎𝑖 = 𝐻𝑖  and 𝜀 = 1, 𝛽𝑖  vanishes and hence (17) reduces 

to the plain multi-step method search direction that satisfies 

the relation in (7). If  𝜀 = 0, then (17) reduces to the choice 

of 𝛽𝑖 obtained in [13]. 

We proceed with our derivation with the choice 𝜎𝑖 = 𝐻𝑖 .  

To complete the implementation details of the algorithm, the 

quantity (see (13)) 

 

𝑑𝑖+1 = −𝐻𝑖+1𝑔𝑖+1 + 𝛽𝑖+1𝑠𝑖 , 
 

needs to be computed efficiently without requiring that the 

update matrix is stored in explicit format. In specific,  

 

𝑧𝑖+1 = 𝐻𝑖+1𝑔𝑖+1                (18) 

 

needs to be computed without having to store the matrix 

𝐻𝑖+1 or having to carry out any matrix-vector multiplication, 

thus adhering to the spirit of the CG methods. 

The H-version of the multi-step BFGS formula, is given 

by 

 

𝐻𝑖+1 = 𝐻𝑖 −
𝑟𝑖𝑤𝑖

𝑇𝐻𝑖+𝐻𝑖𝑤𝑖𝑟𝑖
𝑇

𝑤𝑖
𝑇𝑟𝑖

+ (1 +
𝑤𝑖

𝑇𝐻𝑖𝑤𝑖

𝑤𝑖
𝑇𝑟𝑖

)
𝑟𝑖𝑟𝑖

𝑇

𝑤𝑖
𝑇𝑟𝑖

.     (19) 

 

It follows that 

 

 

𝐻𝑖+1𝑔𝑖+1 = 𝐻𝑖𝑔𝑖+1 −
𝑟𝑖

𝑇𝑔𝑖+1

𝑤𝑖
𝑇𝑟𝑖

𝑣𝑖 + [(1 +
𝑤𝑖

𝑇𝑣𝑖

𝑤𝑖
𝑇𝑟𝑖

)
(𝑟𝑖

𝑇𝑔𝑖+1)

𝑤𝑖
𝑇𝑟𝑖

−

(𝑣𝑖
𝑇𝑔𝑖+1)

𝑤𝑖
𝑇𝑟𝑖

] 𝑟𝑖 ,    (20) 

where 

 

𝑣𝑖 ≅ 𝐻𝑖𝑤𝑖 . 
 

Using (19), we obtain an expression for 𝑣𝑖 in (20) as follows 

 

𝑣𝑖 = 𝑤𝑖 −  
𝑟𝑖−1(𝑤𝑖−1

𝑇 𝑤𝑖) + 𝑤𝑖−1(𝑟𝑖−1
𝑇 𝑤𝑖)

𝑤𝑖−1
𝑇 𝑟𝑖−1

 

+ (1 +
𝑤𝑖−1

𝑇 𝑤𝑖−1

𝑤𝑖−1
𝑇 𝑟𝑖−1

)
𝑟𝑖−1(𝑟𝑖−1

𝑇 𝑤𝑖)

𝑤𝑖−1
𝑇 𝑟𝑖−1

,                (21) 

and  

 

𝐻𝑖𝑔𝑖+1 = 𝑣𝑖 + 𝛽𝑖𝑠𝑖−1 − 𝑑𝑖 + 𝜇𝑖−1𝐻𝑖𝑦𝑖−1, 
 

 

where 𝜇𝑖−1 is as in (7). To complete the derivation, we still 

need to be able to compute the quantity 𝐻𝑖𝑦𝑖−1 efficiently. 

Using (3), we have  

 

𝐻𝑖𝑦𝑖−1 = 𝐻𝑖𝑔𝑖 − 𝐻𝑖𝑔𝑖−1 = 𝑧𝑖 − 𝐻𝑖𝑔𝑖−1, 
 

where 𝑧𝑖  is as in (18). From (19), we get 

 

𝐻𝑖𝑔𝑖−1 = 𝑧𝑖−1  −
𝑟𝑖−1(𝑤𝑖−1

𝑇 𝑧𝑖−1) + 𝑣𝑖−1(𝑟𝑖−1
𝑇 𝑔𝑖−1)

𝑤𝑖−1
𝑇 𝑟𝑖−1

 

    + (1 +
𝑤𝑖−1

𝑇 𝑣𝑖−1

𝑤𝑖−1
𝑇 𝑟𝑖−1

)
𝑟𝑖−1(𝑟𝑖−1

𝑇 𝑔𝑖−1)

𝑤𝑖−1
𝑇 𝑟𝑖−1

.               (22) 

 

Hence, the derivation is complete. 

Al-Baali [1] proved global convergence of the Fletcher-

Reeves method on general functions with inexact line 

searches. Similarly, Dai and Yuan [5] developed a CG 

method that is based on the Secant condition and also 

proved global convergence of their method.  In order to 
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guarantee the convergence of both the algorithms in [1] and 

[5], the step size 𝛼𝑖 in (1) should satisfy the Wolfe 

conditions [31] (see [1,2,5,15]): 

 

𝑓(𝑥𝑖 + 𝛼𝑖𝑑𝑖) −  𝑓(𝑥𝑖) ≤ 𝜌1𝛼𝑖𝑑𝑖
𝑇𝑔𝑖 ,           (23) 

 

g(𝑥𝑖 + 𝛼𝑖𝑑𝑖)T di ≥ 𝜌2𝑑𝑖
𝑇𝑔𝑖 ,             (24) 

 

where 0 < 𝜌1 ≤ 𝜌2 < 1.  
We now present the following theorem that states the 

conditions that ensure the search direction is downhill and 

hence guarantee convergence by the argument presented in 

[1,2,5,29]. 

 

Theorem 1. Suppose that 𝛼𝑖 in (1) satisfies the Wolfe 

conditions (23) and (24); If 𝑤𝑖
𝑇𝑟𝑖 > 0, then −𝐻𝑖+1𝑔𝑖+1 in 

(20) is a descent direction.  

 

Proof. Given that 𝑑0 = −𝑔0, it follows that 𝑔0
𝑇𝑑0 =

−‖𝑔0‖2 ≤ 0. For subsequent iterations, 

 

𝐻𝑖+1𝑔𝑖+1 = 𝐻𝑖𝑔𝑖+1 −
𝑟𝑖

𝑇𝑔𝑖+1

𝑤𝑖
𝑇𝑟𝑖

𝑣𝑖

+ [(1 +
𝑤𝑖

𝑇𝑣𝑖

𝑤𝑖
𝑇𝑟𝑖

)
(𝑟𝑖

𝑇𝑔𝑖+1)

𝑤𝑖
𝑇𝑟𝑖

−
(𝑣𝑖

𝑇𝑔𝑖+1)

𝑤𝑖
𝑇𝑟𝑖

] 𝑟𝑖 . 

 

Pre-multiplying (20) by −𝑔𝑖+1
𝑇  gives 

 

−𝑔𝑖+1
𝑇 𝐻𝑖+1𝑔𝑖+1

=
1

(𝑤𝑖
𝑇𝑟𝑖)

2
[
−𝑔𝑖+1

𝑇 𝐻𝑖𝑔𝑖+1(𝑤𝑖
𝑇𝑟𝑖)2 + 2(𝑟𝑖

𝑇𝑔𝑖+1)(𝑤𝑖
𝑇𝑟𝑖)(𝑔𝑖+1

𝑇 𝑣𝑖)

−(𝑔𝑖+1
𝑇 𝑟𝑖)2(𝑤𝑖

𝑇𝑟𝑖) − (𝑟𝑖
𝑇𝑔𝑖+1)2(𝑤𝑖

𝑇𝑣𝑖)
]. 

 

If the inequality 𝑢𝑇𝑞 ≤
1

2
(‖𝑢‖2 + ‖𝑞‖2) is applied to the 

second term above with 𝑢 = (𝑤𝑖
𝑇𝑟𝑖)𝑔𝑖+1 and  𝑞 =

(𝑟𝑖
𝑇𝑔𝑖+1) 𝑣𝑖, we obtain 

 

−𝑔𝑖+1
𝑇 𝐻𝑖+1𝑔𝑖+1 ≥ −

(𝑟𝑖
𝑇𝑔𝑖+1)2

𝑤𝑖
𝑇𝑟𝑖

. 

 

Since (𝑟𝑖
𝑇𝑔𝑖+1)2 > 0, then if 𝑤𝑖

𝑇𝑟𝑖  > 0, it follows that 

𝑔𝑖+1
𝑇 𝐻𝑖+1𝑔𝑖+1 is positive and the direction -𝐻𝑖+1𝑔𝑖+1 is a 

descent one for all i. Hence, the proof is complete.  

   Numerically speaking, the condition 𝑤𝑖
𝑇𝑟𝑖  > 0 is checked 

every iteration to ensure it holds. Due to the approximation 

𝑣𝑖 ≅ 𝐻𝑖𝑤𝑖 used in (21), the condition might fail to hold. In 

that case, we resort to using 𝑣𝑖 = 𝑤𝑖 . By the above theorem 

and for a line search parameter 𝛼𝑖 that satisfies conditions 

(23) and (24), convergence is guaranteed. If the function f  is 

strongly convex and Lipschitz continuous on the level set  

𝐿0 = {𝑥 ∈ 𝑅𝑛: 𝑓(𝑥) < 𝑓(𝑥0)}, then it becomes easy to 

prove that if the search direction given by (13) with 𝛼𝑖 in (1) 

is computed to satisfy the Wolfe conditions (23) and (24), 

then it is the case that 𝑔𝑖 = 0 for some i, or 𝑙𝑖𝑚𝑖→∞{𝑔𝑖 = 0}. 

Theorem 1 and the restart procedure implemented both 

guarantee the convergence of the algorithm on general 

functions. So, under reasonable assumptions, the Wolfe 

relations and the Powell restart criterion (25) provide 

sufficient conditions to prove the global convergence of the 

algorithm. 

    We now present the algorithm steps as follows: 

     

 

Algorithm MSPCG 

    Step 1.   Choose the initial starting point x₀∈ Rⁿ and 

compute the gradient g(x₀) and d₀=-g(x₀); set the iteration 

counter i = 0; select a value for ε in (17). Set the stopping 

criteria parameter 𝜖. 

    Step 2.   If ‖gi‖< 𝜖, then stop; otherwise go to step 3. 

    Step 3.   Using the Wolfe line search conditions (23) and 

(24), determine the step length αi. 

    Step 4.   xi+1 = xi +αidi 

    Step 5.   Compute: g(xi+1) , si = xi+1  - xi,   yi = gi+1  - gi, wi= 

yi - μi-1 yi-1, and 𝑟𝑖 = 𝑠𝑖 − 𝜇𝑖−1𝑠𝑖−1 (for 𝜇𝑖−1 =
𝛿𝑖−1

2

2𝛿𝑖−1+1
) [see 

(8) and (9)]. 

    Step 6.   If 𝑤𝑖
𝑇𝑟𝑖 > 0, then compute 𝑣𝑖 in (20) using (21) 

else set 𝑣𝑖 = 𝑤𝑖 . 

    Step 7.   If the restart criterion of Powell (17) is satisfied, 

then set 𝑑𝑖+1 = −𝑔𝑖+1 else compute 𝑑𝑖+1 = −𝑧𝑖+1 + 𝛽𝑖+1𝑠𝑖 ,  

using the recurrence in (18)-(22). 

    Step 8.   i++. 

    Step 9.    

IV. NUMERICAL COMPUTATIONS  

The numerical experiments were conducted on 32 

different test problems with dimensions varying from 2 to 

100000. The unconstrained optimization test problems used 

in our experiments are listed in Table I and are primarily 

found in [14] and [20]. A good portion of the test problems 

have been selected from the updated CUTEr unconstrained 

problem collection [14]. The collection has been updated 

with almost 200 new examples since its release. These 

include large collections of problems arising from real-life 

quadratic programming problems and  linear 

complementarity. Each problem was tested on six different 

starting points. The total number of test problems obtained 

is 1941. The functions tested are grouped into four 

categories, low (2 ≤ n ≤20), medium (21 ≤ n ≤ 40), 

moderately high (41 ≤ n ≤1000) and high (n >10000).  Our 

computational results are benchmarked against Anderi’s [2] 

SCALCG and the algorithm developed in [13]. Unlike the 

method in [13], Anderi’s [2] and our algorithm both utilize a 

weighting matrix in the computation of the CG direction 

vector. The results reported in Table II correspond to the 

collective totals obtained on all the test problems. The 

scores reported indicate iteration, function/gradient 

evaluations as well as the total execution times. In addition, 

the right most column (Scores) indicate the number of times 

a method outperformed the other two methods on a specific 

problem. In case of a tie, the methods involved in that tie all 

get a score of one. Tables III to VI report the results for each 

of the four dimension categories mentioned earlier (high, 

moderately high, medium and low). The parameter 𝛾 in (9) 

was chosen to be one in the results reported here as values 

other than zero, such as 0.5 and 1.2, did not introduce any 

significant changes in the outcomes. The coding was done 

using C++ on a 64-bit machine with i7-3770, 3.4 GHZ CPU.  
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TABLE I 

TEST PROBLEMS 
  

Function                                      Dimension 

 

Watson function [20] 3  n  14 

Extended Rosenbrock [20] 2  n  10000, n even 

Extended Powell [20] 2  n  10000, n div.by 4 

Penalty function I [20] 2  n  1000 

Variably dimensioned function [20] 2  n  10000 

Trigonometric function [20] 2  n  10000 

Modified Trigonometric function [14] 2  n  100000  

Broyden Tridiagonal function [20] 2  n  1000 

Discrete Boundary value function [20] 2  n  1000 

Oren & Spedicato Power function [20] 2  n  10000 

Distinct EigenValues Problem [20]  2  n  10000 

Tridiagonal function [20] 2  n  10000 

Wolfe function [20] 2  n  1000 

Diagonal Rosenbrock’s function [14] 2  n  1000, n even 

Generalized Shallow function [14] 2  n  1000, n even 

Powell Singular [20] 
Sphere function [14] 

Trid function [14] 

Power Sum [20] 
Dixon-Price [14] 

Sum Squares [14] 

n = 10000 
n = 100 

n = 100 

2  n  10000, n even  

2  n  10000, n even 

2  n  10000 

Broyden Banded [14] 2  n  10000  

Penalty function II [20] 2  n  10000 

Brown almost linear [14] 2  n  10000 

Discrete Integral Equation [14] 2  n  10000 

Kowalik and Osbome [14] 2  n  10000 

Meyer [14] 2  n  10000 

Bard [14] 2  n  10000 

Linear full rank [14] 2  n  100000 

Brown badly scaled [14] 2  n  10000 

Linear rank 1 [14] 2  n  10000 

Gulf Research & develop. [14] 2  n  10000 

  

 
TABLE II 

OVERALL ITERATION, FUNCTION EVALUATIONS COUNT 

AND TIMING 

 
Method Evaluations Iterations Time (sec.) Scores 

Ford et al. 
355889  

(88%) 

221256 

(89.2%) 

44573.2 

(89.1%) 
554 

Anderi’s 
407688 

(100%) 

249127 

(100%) 

49988.3 

(100%) 
365 

MSPCG 
289532 

 (71.0%) 

175898 

(70.6%) 

37286.1 

(74.4%) 
1022 

 

 
TABLE III 

ITERATION, FUNCTION EVALUATIONS COUNT AND 

TIMING-LARGE PROBLEMS 

 
Method Evaluations Iterations Time (sec.) Scores 

Ford et al. 
171118 

 (87.4%)  

109311 

(89.3%) 

3678.8 

(89.8%) 

188 

Anderi’s 
197955 

(100.0%) 

123011 

(100.0%) 

4112.7 

(100.0%) 

102 

MSPCG 
140118 

 (70.3%) 
86039 

(69.5%) 
3041.7 

(73.1%) 

331 

 

 
TABLE IV 

ITERATION, FUNCTION EVALUATIONS COUNT AND 

TIMING- MODERATELY HIGH PROBLEMS 

 
Method Evaluations Iterations Time (sec.) Scores 

Ford et al. 
118412 

 (87.5%) 

70019 

(89.4%) 

8511.78 

(86.8%) 

171 

Anderi’s 
135411 

(100.0%) 

78388 

(100.0%) 

9855.6 

(100.0%) 

131 

MSPCG 
94612  

(69.7%) 

55617 

(70.1%) 

6911.4 

(70.3%) 

330 

 

TABLE V 

ITERATION, FUNCTION EVALUATIONS COUNT AND 

TIMING- MEDIUM PROBLEMS 

 
Method Evaluations Iterations Time (sec.) Scores 

Ford et al. 
54518  

(88.7%) 

33311 

(86.0%) 

20891.1 

(89.0%) 

128 

Anderi’s 
61811  

(100.0%) 
38717 

(100.0%) 
23611.7 

(100.0%) 
91 

MSPCG 
44211 

 (70.6%) 

26977 

(69.6%) 

17141.3 

(72.5%) 

268 

 
 

TABLE VI 
ITERATION, FUNCTION EVALUATIONS COUNT AND 

TIMING- SMALL PROBLEMS 

 
Method Evaluations Iterations Time (sec.) Scores 

Ford et al. 
11841 

 (95.3%) 

8611 

(96.0%) 

11490.7 

(93.3%) 

67 

Anderi’s 
12511 

 (100.0%) 
9011 

(100.0%) 
12408.3 
(100.0%) 

41 

MSPCG 
10691 

 (85.0%) 

7211 

(80.2%) 

10191.1 

(82.1%) 

93 

 

The numerical evidence, reported in Tables II to VI, 

reveals that the new method MSPCG shows substantial 

improvements over Anderi’s [2] and over the method of 

Ford et al. [13] on the majority of the test problems. 

Compared to the algorithm in [2], the new method improves 

by an average of 29% overall and around 17% over the 

method in [13]. It has been observed that the merits of the 

new algorithm become more significant as the size of the 

problem increases. There are a few test problems on which 

either of the two other methods failed to converge (or took 

too long to do so) and on which our algorithm was able to 

reach a near optimal solution. Such failures were not 

included in the results reported in the above tables to 

maintain consistency of the benchmarking.  

All methods use exactly the same line search 

implementation with choices 𝜌1 = 0.0001 and 𝜌1 = 0.88 in 

(23) and (24). The termination condition used is 

  

‖𝑔(𝑥𝑖)‖ ≤ 10−5. 
 

The methods were restarted periodically using Powell’s 

restart test to measure the degree of orthogonality (see 

[22,26,27,30]) 

|𝑔𝑖+1
𝑇 𝑔𝑘| ≥ 0.2‖𝑔𝑖+1‖2.       (25) 

 

We used Anderi’s [2] restart search direction for 

SCALCG. As for MSPCG, the restart was done using 

𝛽𝑖 = 0 and 𝐻𝑖 = 𝜎𝑖𝐼 in (16), for 𝜎𝑖 =
𝑠𝑖

𝑇𝑠𝑖

𝑠𝑖
𝑇𝑦𝑖

 (see [2,26,29]). 

This situation was not been encountered very frequently in 

our tests. Wolfe’s conditions (23) and (24) ensure that 

𝑠𝑖
𝑇𝑦𝑖 > 0 and hence guarantee that Anderi’s SCALCG [2] 

search direction is downhill. In our case, by analogy, 

𝑟𝑖
𝑇𝑤𝑖 > 0 ensures that the search direction is descent. 

Nevertheless, due to the approximation used in (20), 

numerical safeguarding remains a must [24].  

As a further means of assessment, We have introduced 

the CPU performance profile as was done in Anderi [2] as 

shown in the figure below. 
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FIG 1. CPU TIME METRIC MEASURE 

V. CONCLUSION 

In this paper, a new weighted descent Conjugate Gradient 

method with multi-step quasi-Newton updates is developed. 

The method generates search directions that are a 

combination of the two-step quasi-Newton and CG vectors 

in an attempt to utilize the advantages of both methods. The 

derived method requires a few additional vectors to be 

retained and updated, compared to SCALCG and the 

method in [3]. The reasonable savings in computational 

costs, especially on large problems, seem to present a good 

justification for that extra storage requirement. The 

conditioning matrix utilized in our method exploits iteration 

information accumulated from the two latest steps.  

 

We are currently investigating other choices for the 

weighting matrix to determine whether the numerical 

performance of similar methods can be improved further. 

There also remains the issue of developing automatic restart 

criteria that provides appropriate switching among several 

options similar to what was done in [1]. The global 

convergence properties of such methods are also under 

consideration. 

REFERENCES 

[1] Al-Baali, M. “New property and global convergence of the Fletcher–

Reeves method with inexact line searches”, IMAJ. Numer. Anal., 5, 

Feb. 1985, pp. 122–124. 

[2] Anderi, N. “A scaled BFGS preconditioned conjugate gradient 

algorithm for unconstrained optimization”, Applied Mathematics 

Letters, 20, April 2007, pp. 645-650. 

[3] Broyden, C.G. “The convergence of a class of double-rank 

minimization algorithms - Part 2: The new algorithm”, J. Inst. Math. 

Applic., 6, June 1970, pp. 222-214.  

[4] Byrd, R.H., Schnabel, R.B., and Shultz, G.A., “Parallel quasi-Newton 

methods for unconstrained optimization”, Math. Programing, 42,  

April 1988, pp. 273-306. 

[5] Dai, Y.H. and Yuan Y., “A nonlinear conjugate gradient method with 

a strong global convergence property”, SIAM J. Optim., 10, Dec. 

1999, pp. 177–182. 

[6] Dennis, J.E. and Schnabel,  R.B., “Least change Secant updates for 

quasi-Newton methods”, SIAM Review,  21,  Feb. 1979, pp. 443-459. 

[7] Fletcher, R., Practical Methods of Optimization (second edition), 

Wiley, New York, 1987.   

[8] Fletcher, R., “A new approach to variable metric algorithms”, 

Comput. J. , 13, April 1970, pp. 147-322. 

[9] Fletcher, R. and Reeves, C., “Function minimization by conjugate 

gradients”, Computer J., 7, Jan. 1964, pp. 149–154. 

[10] Ford, J.A. and Moghrabi I.A.R., “Using function-values in multi-step 

quasi-Newton methods”, J. Comput. Appl. Math., 66,  March 1996, 

pp. 201-211. 

[11] Ford, J.A. and Moghrabi I.A.R., “Multi-step quasi-Newton methods 

for optimization”, J. Comput. Appl. Math., 50, Jan. 1994, pp. 305-323. 

[12] Ford, J.A. and Moghrabi I.A.R., “Alternative parameter choices for 

multi-step quasi-Newton methods”, Optimization Methods and 

Software, 2, June 1993, pp. 357-370. 

[13] Ford, J.A., Narushima, Y. and Yabe, H., “Multi-step nonlinear 

conjugate gradient methods for unconstrained minimization”, 

Comput. Optim. Appl., 40, Nov. 2008, pp. 191-216. 

[14] Gould, N.I.M., Orban, D. and Toint, Ph.L., CUTEr and SifDec: 

Aconstrained and unconstrained testing environment, revisited," 

ACM Transactions on Mathematical Software, 29, 2003, pp. 373-394. 

[15] Hager W. and Zhang H.C., “A new conjugate gradient method with 

guaranteed descent and an efficient line search”, SIAM J.Optim., 16, 

Feb. 2005, pp.170–192. 

[16] Hestenes, M.R. and Stiefel, E., “Methods of conjugate gradients for 

solving linear systems”, J. Res. Nat. Bur. Stan. Sec. B, 48, July 1952, 

pp. 409–436. 

[17] Liu, Y. and Storey, C., “Efficient generalized conjugate gradient 

algorithms, part1:theory”, J. Optim. Theory Appl., 69, Feb. 1991, pp. 

129–137. 

[18] Moghrabi, I.A.R., “Numerical experience with multiple update quasi-

newton methods for unconstrained optimization”, Journal of 

Mathematical Modeling and Algorithms, 6, Jan. 2007, pp. 214-238.  

[19] Moghrabi, I.A.R., “Implicit extra-update multi-step quasi-

newton methods”, Int. J. Operational Research, 28, August 

2017, pp. 69-81. 

[20] Moré, J.J., Garbow, B.S., Hillstrom, K.E., “Testing unconstrained 

optimization software”, ACM Trans. Math. Softw., 7, April 1981, pp. 

17–41. 

[21] Perry, A., “A modified conjugate gradient algorithm”, Oper. Res. ,26, 

Jan. 1978, pp. 1073-1078. 

[22] Polak, E. and Ribiére G., “Notesurla convergence de directions 

conjuguées”, Rev. Francaise Infomat Recherche Operatonelle, 3e 

Année, 16, Dec. 1969, pp. 35–43. 

[23] Polyak, B. T., “The conjugate gradient method in extreme problems”, 

USSR Comp. Math. Phys., 9, March 1969, pp. 94–112. 

[24] Powell, M.J.D., “Restart procedures for the conjugate gradient 

method”, Math. Program. , 12, Nov. 1977, pp. 241–254. 

[25] Haelterman, R., Bogaers, A., Degroote, J. and Boutet, N., "Quasi-

Newton Methods for the Acceleration of Multi-Physics Codes," 

IAENG International Journal of Applied Mathematics, vol. 47, no.3,  

pp 352-360, 2017. 

[26] Salane, D. and Tewarson, R.P., “On Symmetric Minimum Norm 

Updates”, IMA Journal of Numerical Analysis, 9, 1, Jan. 1983, pp. 

235-240. 

[27] Shanno, D.F., “Conditioning of quasi-Newton methods for function 

minimization”, Math. Comp., 24,  May 1970, pp. 647-656. 

[28] Shanno, D.F. and Phua, K.H., “Matrix conditioning and nonlinear 

optimization”, Math. Programming ,14, May 1978, pp. 149-160. 

[29] Shanno, D.F., “On the convergence of a new conjugate gradient 

algorithm”, SIAM J. Numer. Anal., 15,  Jan. 1978, pp. 1247–1257. 

[30] Zhang, W., Qiu, D. and Dong, M., "Optimizations of Convex and 

generalized Convex Fuzzy Mappings in The Quotient Space of Fuzzy 

Numbers", IAENG International Journal of Applied Mathematics, 

vol. 47, no. 4, pp 431-436, 2017. 

[31] Wolfe, P., “Convergence conditions for ascent methods II: Some 

corrections”, SIAM Rev., 13, June 1971, pp. 185-188. 

Issam  A.R. Moghrabi is a Professor of M.I.S/C.S in the College of 

Business Administration at Gulf University for Science and Technology. 

He laid the foundations of the M.B.A Program at GUST while serving as 

the MBA Director for the past five years.  He is a Fulbright Scholar and did 
a post-doctoral research in Geographic Information Systems. The author 

got his B.Sc. in Computer Science, with distinction,  from the Lebanese 
American University, his M.Sc, with distinction, and Ph.D. from Essex 

IAENG International Journal of Applied Mathematics, 49:1, IJAM_49_1_05

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 



 

University. His main research interests are in mathematical Optimization, 

Management Science and Information Retrieval and database systems. This 
author became a Member (M) of IAENG in 2000. He is also a member of 

the Non-Linear Analyst Group and a referee for several reputable journals 

[email: Moughrabi.i@gust.edu.kw]. 

IAENG International Journal of Applied Mathematics, 49:1, IJAM_49_1_05

(Advance online publication: 1 February 2019)

 
______________________________________________________________________________________ 




