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The Hamiltonian Connectivity of Alphabet
Swergrid Graphs

Ruo-Wei Hung*, Fatemeh Keshavarz-KohjefdiChuan-Bi Lirf, and Jong-Shin Chén

Abstract—The Hamiltonian path problem on general graphs
is well-known to be NP-complete. In the past, we have proved
it to be also NP-complete for supergrid graphs. A graph is
called Hamiltonian connected if there exists a Hamiltonian path
between any two distinct vertices in it. Determining whether a
supergrid graph is Hamiltonian connected is clear to be NP-
complete. Recently, we proved the Hamiltonian connectivity of
some special supergrid graphs, including rectangular, triangu-
lar, parallelogram, and trapezoid. In this paper, we will study
the Hamiltonian connectivity of alphabet supergrid graphs.
There are 26 types of alphabet supergrid graphs in which every
capital letter is represented by a type of alphabet supergrid
graphs. We will prove L-, C-, F-, E-, N-, and Y-alphabet
supergrid graphs to be Hamiltonian connected. The Hamil-
tonian connectivity of the other alphabet supergrid graphs
can be verified similarly. The Hamiltonian connected property
of alphabet supergrid graphs can be applied to compute the
minimum stitching trace of computerized embroidery machines
during the sewing process.

Index Terms—Hamiltonian connectivity, alphabet supergrid
graphs, shaped supergrid graphs, computerized embroidery
machines.

I. INTRODUCTION
Hamiltonian path(resp.,cyclé of a graph is a simple

A

appears exactly once. Thdamiltonian path(resp.,cycle

[28]. The same holds true for bipartite graphs [35], split
graphs [12], circle graphs [8], undirected path graphs [3],
grid graphs [27], triangular grid graphs [13], and supergrid
graphs [17]. In the literature, there are many studies for
the Hamiltonian connectivity of interconnection networks,
including WK-recursive network [10], recursive dual-net
[37], hypercomplete network [5], alternating group graph
[29], arrangement graph [39], augmented hypercube [16],
generalized bask-hypercube [23], hyercube-like network
[41], twisted cube [25], crossed cube [24], Mdbius cube
[7], folded hypercube [15], and enhanced hypercube [38].
In this paper, we will verify the Hamiltonian connectivity of
alphabet supergrid graphs.

The two-dimensional integer grid grapf is an infinite
graph whose vertex set consists of all points of the Euclidean
plane with integer coordinates and in which two vertices are
adjacent if the (Euclidean) distance between them is equal
to 1. Thetwo-dimensional triangular grid grapfi™ is an
infinite graph obtained frond7>° by adding all edges on the
lines traced from up-left to down-right. Arid graphis a
finite, vertex-induced subgraph ¢f>. For a nodev in the
plane with integer coordinates, let andv, represent itse
andy coordinatesrespectively, denoted by = (v, vy). If v

path (resp., cycle) in which each vertex of the grapi3 5 vertex in a grid graph, then its possible adjacent vertices

include(vg, vy —1), (vz—1, vy), (va+1,vy), and(v,, v, +1).

probIgmi; to determine whether or not a graph. contains & triangular grid graph is a finite, vertex-induced sub-
Hamiltonian path (resp., cycle). A graphi is said to be graph of 7. If v is a vertex in a triangular grid graph,
Hamiltonianif it contains a Hamiltonian cycle, and is calledipen its possible neighboring vertices include., v, — 1),
Hamiltonian connectedf for each pair of distinct vertices (,, _ vy)s (Ve +1,0,), (Va, vy +1), (Vs — 1,0, — 1), and
u and v _of G, there ex!sts a Hamiltonian path betweelzlvx +1,v, + 1). Thus, triangular grid graphs contain grid
u andv in G. The Hamiltonian path and cycle problemgraphs as subgraphs. For example, Fig. 1(a) and Fig. 1(b)
have numerous applications in dlffe_rent areas, mcludw&mct a grid graph and a triangular graph, respectively. The
establishing transport routes, production launching, the Offangular grid graphs defined above are isomorphic to the
Ilne_ optimization of flexible mar_lufacturmg systems [1], COMgyriginal triangular grid graphs in [13] but these graphs are
puting the perceptual boundaries of dot patterns [40], patt&jfiferent when considered as geometric graphs. By the same
recognition [2], [42], [45], DNA physical mapping [14], construction of triangular grid graphs obtained from grid
fault-tolerant routing for 3D network-on-chip architecture raphs, we defined a new class of graphs, narsepergrid
[9], etc. It is well known that the Hamiltonian path a”%raphs in [17]. Thetwo-dimensional supergrid grap™ is
cycle problems are NP-complete for general graphs [1Hy infinite graph obtained froffi> by adding all edges on
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include (vg, vy, — 1), (v — L,vy), (Ve +1,0y), (Vg, vy + 1),

Ve — Lvy — 1), (vp + 1,0y + 1), (vy + 1,0, — 1), and

(bx —1,v,+1). Then, supergrid graphs contain grid graphs
and triangular grid graphs as subgraphs. For instance, Fig.
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1(c) shows a supergrid graph. Notice that grid and triangulabject, e.g., clothes. For example, given a string “CYUT” the
grid graphs are not subclasses of supergrid graphs, and toeputerized embroidery software first produces a series of
converse is also true: these classes of graphs have commets of lattices in which each set forms an alphabet supergrid
elements (vertices) but in general they are distinct singeaph, as depicted in Fig. 2(a). It then computes a path to visit
the edge sets of these graphs are different. Obviously, #ilk lattices of the sets such that each lattice is visited exactly
grid graphs are bipartite [27] but triangular grid graphs amahce, as shown in Fig. 2(b). Since each stitch position of a
supergrid graphs are not always bipartite. An elgev) in  embroidery machine can be moved to its eight neighboring
a supergrid graph is said to wrizontal (resp.,vertical) if  positions (left, right, up, down, up-left, up-right, down-left,
Uy = vy anduy, # v, (resp.,u, = v, andu, # v,), and is and down-right), one set of neighboring lattices forms a
calledskewedf it is neither a horizontal nor a vertical edge.connected alphabet supergrid graph. Note that each lattice
In the figures we will assume that, 1) are coordinates of will be represented by a vertex of a supergrid graph. The
the up-left vertex, i.e. the leftmost vertex of the first row, imlesired sewing track of each set of adjacent lattices is a
a supergrid graph. Hamiltonian path of the corresponding alphabet supergrid

The Hamiltonian cycle and path problems for grid andraph. Note that if the corresponding alphabet supergrid
triangular grid graphs were known to be NP-complete [13§raph contains no Hamiltonian path, then the sewing track
[27]. In [17], we have showed that the Hamiltonian path and it contains more than one path and these paths must be
cycle problems on supergrid graphs are also NP-completencatenated by jump lines. In this paper, we will show that
Thus, it is NP-complete for determining whether a supergradphabet supergrid graphs are always Hamiltonian connected
graph is Hamiltonian connected. In the past, we have veand hence there exists no jump line on the inside of an
fied the Hamiltonian and Hamiltonian connected properti@dphabet supergrid graph. By the Hamiltonian connectivity
of some special supergrid graphs. The Hamiltonian cycté alphabet supergrid graphs, we can seek the end vertices
problem on linear-convex supergrid graphs can be solvalsieHamiltonian paths in the corresponding alphabet supergrid
in linear time [18]. Recently, we verified the Hamiltonicitygraphs so that the total length of jump lines connecting two
and Hamiltonian connectivity of some special supergriglphabet supergrid graphs is minimum. For an example, Fig.
graphs, including rectangular [19], triangular, parallelogrard(b) shows such a minimum sewing track for the sets of
trapezoid [20], and.-shaped [22]. lattices in Fig. 2(a).

Rectangular, parallelogram, and alphabet supergrid graph®revious related works are summarized as follows. ltai
first appeared in [17], in which they are proved to bet al. [27] showed that the Hamiltonian path and cycle
Hamiltonian. An alphabet supergrid graph is a finite vertexroblems for grid graphs are NP-complete. They also gave
induced subgraph of the rectangular supergrid graph. Théhe necessary and sufficient conditions for a rectangular grid
are 26 types of alphabet supergrid graphs in which the shapaph to be Hamiltonian connected. Thus, rectangular grid
of each type of alphabet supergrid graphs forms a capitgaphs are not always Hamiltonian connected. Zamfirescu
letter. In this paper, we first prove-, C-, F'-, andE-alphabet et al. [46] gave the sufficient conditions for a grid graph
supergrid graphs to be Hamiltonian connected by decoifmaving a Hamiltonian cycle, and proved that all grid graphs
posing them into disjoint rectangular supergrid subgraphsf. positive width have Hamiltonian line graphs. Later, Chen
However, many other alphabet supergrid graphs can not dteal. [6] improved the Hamiltonian path algorithm of [27]
decomposed into only rectangular supergrid subgraphs, ean,rectangular grid graphs and presented a parallel algorithm
N- andY -alphabet supergrid graphs. We observe that thefge the Hamiltonian path problem with two given end ver-
alphabet supergrid graphs can be decomposed into disjdioés in rectangular grid graph. Also Lenhart and Umans
rectangular, triangular, parallelogram, and trapezoid supg36] showed the Hamiltonian cycle problem on solid grid
grid subgraphs. In [20], we provided a constructive proof tgraphs, which are grid graphs without holes, is solvable in
show that triangular, parallelogram, and trapezoid supergpdlynomial time. Recently, Keshavarz-Kohjereli al. [31]
graphs are Hamiltonian and Hamiltonian connected. Basprksented a linear-time algorithm to compute the longest
on the Hamiltonian connectivity of triangular, parallelogranpath between two given vertices in rectangular grid graphs.
trapezoid, and rectangular supergrid graphs, we will proReay and Zamfirescu [43] proved that all 2-connected, linear-
N- andY -alphabet supergrid graphs to be Hamiltonian cormonvex triangular grid graphs contain Hamiltonian cycles
nected. The Hamiltonian connectivity of the other alphabekcept one special case. The Hamiltonian cycle and path
supergrid graphs can be verified similarly. problems on triangular grid graphs were known to be NP-

The possible application of the Hamiltonian connectivitgomplete [13]. In addition, the Hamiltonian cycle prob-
of alphabet supergrid graphs is presented as follows. Cdem on hexagonal grid graphs has been shown to be NP-
sider a computerized embroidery machine which will seaomplete [26]. Alphabet grid graphs first appeared in [44],
a k-letters string into object. Its computerized embroiderpn which Salman determined the classes of alphabet grid
software is used to compute the sewing track of the inpgtaphs containing Hamiltonian cycles. Keshavarz-Kohjerdi
string. First, the software producksets of lattices in which and Bagheri [30] gave the necessary and sufficient conditions
every set of lattices represents a letter in the string. It théor the existence of Hamiltonian paths in alphabet grid
computes a path to visit the lattices of the sets such that earhphs, and presented a linear-time algorithm for finding
lattice is visited exactly once and the sum of lengths betwebklamiltonian path with two given endpoints in these graphs.
any two disconnected sets of lattices is minimum. Finally, tHeecently, Keshavarz-Kohjerdi and Bagheri [32] verified the
software transmits the stitching track of the computed patdemiltonian connectivity of L-shaped grid graphs. Very
to the computerized embroidery machine, and the machirecently, Keshavarz-Kohjerdi and Bagheri presented a linear-
then performs the sewing work along the track on th#me algorithm to find Hamiltoniafs, ¢)-paths in rectangular
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(a) (b) ()

Fig. 1. (a) A grid graph, (b) a triangular grid graph, and (c) pesgrid graph, where circles represent the vertices and solid lines indicate the edges in
the graphs.
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Fig. 2. (a) Four sets of lattices for string “CYUT” in which ealghter is represented as a set of connected lattices, and (b) a possible sewing trace for
the sets of lattices in (a), where solid lines indicate the computed trace and dashed lines indicate the jump lines connecting two continuous letters.

grid graphs with a rectangular hole [33], [34]. The supergridamiltonicity and the Hamiltonian connectivity d¥- and
graphs were first introduced in [17], in which we proved -alphabet supergrid graphs in Section IV. The other types
that the Hamiltonian cycle and path problems on supergmd alphabet supergrid graphs can be verified to be Hamilto-
graphs are NP-complete, and every rectangular supergmidn and Hamiltonian connected by similar arguments as in
graph is Hamiltonian. Recently, we proved that linear-convéSections IlI-IV. Finally, we make some concluding remarks
supergrid graphs, which form a subclass of supergrid graphs Section V.

always contain Hamiltonian cycles [18]. In [19], we have

proved that rectangular supergrid graphs (with one trivial 11. NOTATIONS AND BACKGROUND RESULTS
exception) are always Hamiltonian connected. Very recently,In this section, we will introduce terminology and sym-

we verified the Hamiltoni_city and H"f‘m”tor_‘ia” gonnectivitybolsl Some observations and previously established results
0:‘| slome shap((ejd superggd Zgoraphs, including triangular, P#r the Hamiltonicity and Hamiltonian connectivity of shaped
allelogram, and trapezoid [20]. _supergrid graphs are also presented. For graph-theoretic

The rest of t_he paper is organized as follows. _In Sec“%rminology not defined in this paper, the reader is referred
II, some notations and background results are |ntroduc<r-i~g.[4]

By using the Hamiltonicity and Hamiltonian connectivity o
rectangular supergrid graphs in [19], Section Il proves )
C-, F-, and E-alphabet supergrid graphs to be Hamiltoniafi- Notations

connected. Based on the Hamiltonicity and Hamiltonian Let G = (V, E) be a graph with vertex sét'(G) and
connectivity of shaped supergrid graphs in [20], we verify thedge setE(G). Let S be a subset of vertices i@, and let
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horizontal

uw andv be two distinct vertices inG. We write G[S] for . m=10 - n=10 [ bowdy
the subgraph of inducedby S, G — S for the subgraph i S i3 ) N

G[V — 5], i.e., the subgraph induced By — S. In general,
we write G — v instead ofG — {v}. If (u,v) is an edge in ]
G, we say thatu is adjacentto v. A neighborof v in G »=10
is any vertex that is adjacent to We useNg(v) to denote
the set of neighbors af in G. The subscript&” of N¢(v)

)
/|- horizontal edge

5
~skewed cdge ;
triangular
S corner
down-right ;
corner

can be removed from the notation if it has no ambiguity. = T eundary R
The degreeof vertexv, denoted bydeg(v), is the number @ ®)

of vertices adjacent to vertex The notationu ~ v (resp., Lom=5 by o m=6__,

u ~ v) means that verticeg andv are adjacent (resp., non- D pA & boundar e

adjacent). A vertexw adjoins edge (u,v) if w ~ u and DN ,,4I k 7,(6.4)
w ~ v. Two nonincident edges; and e, are parallel if pul ESENERIAN S
each end vertex o€, is adjacent to some end vertex of m=9
e2, denote this bye; =~ e,. A path P of length |P| in G, e

denoted byv; — vy — --- = vp|_1 — vjp|, IS @ SEQUENCE n4I A LG9

(v1,v2,- -+ ,vipj—1,vp|) Of vertices such that; # v; for
i # j, and (v;,v;+1) € E(G) for 1 < ¢ < |P|. The first
and last Vertlce.s visited bf are denoted byﬁtart(“P) .and Fig. 3. (a) A rectangular supergrid grapR(10, 10), (b) a triangular
end(P), respectively. We will use; € P to denote “Pvisits supergrid grapm\ (10, 10), (c) two types of parallelogram supergrid graph
vertexv;” and use(v;,v;+1) € P to denote P visits edge 5((5542) ange(d) t\gﬁj types olf trap(_ezo(id) s_ug_ergtrid grgpﬁﬁ(dGAé) s;(rj] o
. . " I - 2(Y,4), wnere solld arrow lines In (a) Indicate a boun
leélggélznéw%ag;;o?; ileft(;)r 1{8 'I[fleczifdofa\(/gll’:[il():];)spvaigi]t.e dR(lO, 10) and dashed line in (c) indicates a vertical separation.
by path P if it is understood without ambiguity. A patR is
a cycle if |[V(P)| > 3 andend(P) ~ start(P). Two paths
(or cycles)P; and P, of graphG are calledvertex-disjointf ~ A(10,10). Each triangular supergrid graph contains three
and only ifV(P,)NV (P,) = (). Two vertex-disjoint path®,  boundaries, namelyorizontal vertical, and skewed and
and P, can be concatenated to a path, denoted®py- P, these boundaries form a triangle, as illustrated in Fig. 3(b).
if end(Py) ~ start(Pz). The triangular supergrid grapi\(n,n) is called ann-
Rectangular supergrid graphs first appeared in [17fjangle, and the vertex in A(n,n) is called triangular
in which the Hamiltonian cycle problem was solvedcornerif deg(v) = 2 and it is the intersection of horizontal
Let R(m,n) be the supergrid graph whose vertex sdpr vertical) and skewed boundaries.
V(R(m,n)) equals to{v = (vz,vy) | 1 < v, < m and Parallelogram supergrid graphs are defined similar to rect-
1 < vy < n}. That is, R(m,n) containsm columns and:. angular supergrid graphs as follows.
rows of vertices inS°°. A rectangular supergrid graphs
a supergrid graph which is isomorphic 8(m,n). Thenm
andn, thedimensionsspecify a rectangular supergrid grap
up to isomorphism. The size @(m, n) is defined to benn,
and R(m,n) is called ann-rectangle. Let = (v,,v,) be a
vertex in R(m,n). The vertexv is called theup-left (resp.,
up-right down-left down-righ) corner of R(m,n) if for
any vertexw = (w, wy) € R(m,n), w, > v, andw, > v, In the above definition, there are two types of parallelo-
(resp.,w, < v, andwy > vy, w, > v, andw, < vy, gram supergrid graphs. We can see that they are isomorphic
wy < v, andw, < vy). There are four boundaries (bordersalthough they are different when considered as geometric
in a rectangular supergrid grapR(m,n) with m,n > 2. graphs. In this paper, it suffices to consider the parallelo-
An edge in any boundary of?(m,n) is called boundary gram supergrid grapt®(m,n) with V(P(m,n)) = {v =
edge For example, Fig. 3(a) shows a rectangular supergfid,,v,) | 1 < v, < n andv, < v, < v, +m — 1}. Each
graphR(10,10) which is called a 10-rectangle and containparallelogram supergrid graph contains four boundaries, two
2(949) = 36 boundary edges. Fig. 3(a) also indicates thigorizontalboundaries and twekewedboundaries, and these
types of corners. boundaries form a parallelogram, as illustrated in Fig. 3(c).
Next, we will introduce some shaped supergrid graph®he size of P(m,n) is defined to bemn, and P(m,n)
including triangular, parallelogram, and trapezoid, defingd called ann-parallelogram. The vertexs of P(m,n) is
in [20]. The triangular supergrid graphs are subgraphs o#lledparallelogram corneiif deg(w) = 2. We can see that
rectangular supergrid graphs and are defined as follows. a parallelogram supergrid graph contains two parallelogram
corners and it can be decomposed into disjoint triangular
pr rectangular supergrid subgraphs. For instance, Fig. 3(c)
depicts a parallelogram supergrid grapits,4) which can
be partitioned into two triangular supergrid graphst, 4).
We then introduce trapezoid supergrid graphs. Let
R(m,n) be a rectangular supergrid graph with> n > 2.
For instance, Fig. 3(b) depicts a triangular supergrid graphtrapezoid graphl’;(m,n) or Tx(m,n) is obtained from

+
trapezoid =——mmmmmmmmmmmmmmmmmmmmed

corner ()

Definition 2. Let P(m,n) be the supergrid graph with >

n whose vertex seV (P(m,n)) equals to{v = (vg,vy) |

q <vy <nandvy, < vy < vy +m—1} or {v = (vg,vy) |
l1<v, <nand—-v, +2 < v, < m— (v, — 1} A
parallelogram supergrid grapls a supergrid graph which is
isomorphic toP(m,n).

Definition 1. Let ¢ be a diagonal line ofR(n,n) with

n > 2 from the up-left corner to the down-right corner. Le
A(n,n) be the supergrid graph obtained froR(n,n) by
removing all vertices undet. A triangular supergrid graph
is a supergrid graph that is isomorphicAqn, n).

(Advance online publication: 1 February 2019)
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R(m,n) by removing one or two triangular supergrid graphg-—- R |, T ‘_ R |
A(n — 1,n — 1) from its corners. The trapezoid supergrid + + | e s
graphsTy (m,n) andTy(m,n) are defined as follows. - lm RO I
Definition 3. Let R(m,n) be a rectangular supergrid grap Bt e I .
with m > n > 2. A trapezoid supergrid grapfy(m,n) LLL2d BB | LORORA | !

with m > n + 1 is obtained fromR(m,n) by removing @ ® ©

a triangular supergrid grapi\(n — 1,n — 1) from the ,
corner of R(m,n). A trapezoid supergrid grapt(m,n) R !
is constructed fromR(m,n) with m > 2n by removing ”””I"*
two triangular supergrid graph&(n — 1,n — 1) from the 2} e I(WL vt
:
J

up-left and up-right corners a®(m, n). Fig. 3(d) illustrates
these two types of trapezoid graphs.tiapezoid supergrid << : NG |
graphis a supergrid graph which is isomorphic®(m, n) F= P
or To(m,n). @ @ 0

(5n-4)-

. . . . Fig. 4. Alphabet supergrid graphs studied in the paper, whayear
In a trapezmd SUperg”d graph, a vertexs said to be L-alphabet supergrid grapl(4,3), (b) an C-alphabet supergrid graph

trapezoid cornerif deg(v) = 2. We can see thali(m,n) ©(4,3), (c) an F-alphabet supergrid grapi'(4,3), (d) an E-alphabet
contains a trapezoid corndr;(m, n) contains two trapezoid supergrid graphi(4,3), (e) an N-alphabet supergrid grapiv(4, 3), and
corners, Ty (m,n) contains two horizontal boundaries, ond? a1 Y -alphabet supergrid grapti(4, 3).
vertical boundary and one skewed boundary, @htn, n)
contains two horizontal boundaries and two skewed bound-
aries. By definition, each boundaryBf(m, n) and7>(m,n) of the edge set(S(m,n)). Z is called anedge separator
contains at least two vertices. On the other hdhdm,n) of S(m,n) if the removal ofZ from S(m,n) results in two
and Tx(m,n) are called anng,-trapezoid and amnp,- disjoint supergrid subgraphS; and S.. An edge separator
trapezoid, respectively. For instance, Fig. 3(d) shdw$,4) Z is called vertical (resp., horizonta) if Z is a set of
andT5(9,4) that are alr, - and a4, -trapezoid, respectively. horizontal (resp., vertical) edges and it separates, n) into
In [30], the authors studied the Hamiltonian path probleri; and S, so thatS; is to the left (resp., upper) of,. The
on alphabet grid graphs. We extend their definition of alphsertical (resp.,horizonta) separation operation ofi(m,n)
bet grid graphs to alphabet supergrid graphs and prove tfgto compute avertical (resp.,horizonta) edge separator of
alphabet supergrid graphs are Hamiltonian connected. Aim,n).
alphabet supergrid grapfs a finite vertex-induced subgraph
of the rectangular supergrid graph of a certain type, a
follows. Let R(3m — 2,5n — 4) be a rectangular supergrid ;.. . . .
graph such thatn > 1+ 1 andsn — 4 > 3m — 2. For each disjoint triangular sup_ergnd subgraphg4, 4). _
: . Let S(m,n) be a triangular, parallelogram, trapezoid, or
letter of the alphabet, a corresponding alphabet supergri . o
. . alphabet supergrid graph. Létbe a Hamiltonian cycle or
graph is an induced subgraph Bf3m — 2,5n —4). The L-
. . path of S(m,n) and letH be a boundary of(m,n), where
, C-, I'-, E-, N-, andY -alphabet supergrid graphs stud|e(% . . .
. is a subgraph ofS(m,n). The restriction ofC to H is
In the paper are denoted biy(m,n), C(m,n), F(m,n), denoted byC 4. If |Cz| = 1, i.e. the number of paths in
E(m,n), N(m,n), andY (m,n), respectively. These studied |H - |H] = P

alphabet supergrid graphs are shown in Fig. 4, where 4 Ci equals to one, theﬂ‘.H is called flat face on H. If
andn — 3. IClz| > 1 and C |y contains at least one boundary edge

) . of H, thenCy is called concave faceon H. In proving
Every alphabet supergrid graph(m,n) satisfies that ,, raqit we will construct a Hamiltonian cycle (path) of
5n—4 >3m—22>3n+1)—2=3n+1, and hence

triangular, parallelogram, trapezoid, or alphabet supergrid
n > 3 andm > 4. There are 26 types of alphabet supergr:-g g P 9 P P pery

graph; in which each type of alphabet _s;upergrid graph for Zq‘?]%?{icz];egsgjt[)ﬁm Hamiltonian cycle (path) is called
a capital letter. In this paper, it suffices to consider the

alphabet supergrid graphs shown in Fig. 4. The other typeslgfinition 5. Let S(m,n) be a triangular, parallelogram,
alphabet supergrid graphs can be verified to be Hamiltonittapezoid, or alphabet supergrid graph witboundaries, and
connected similarly. Letd(m,n) be an alphabet supergridlet s andt be two distinct vertices of (m, n). A Hamiltonian
graph. Then, it can be embedded into a rectangular superdgiygle of S(m,n) is called canonicalif it contains x — 1
graph R(3m — 2,5n — 4), wherem > n + 1 > 4 and flat faces onx — 1 boundaries, and it contains at least one
5n — 4 > 3m — 2. The parameters, andn are used to boundary edge in the other boundary. A Hamilton{art)-
adjust the width and height of the alphabet supergrid gragiath of S(m,n) is calledcanonicalif it contains at least one
By the structure of alphabet supergrid graphs, we can see thatundary edge of each boundarySitm, n).

they can be decomposed into disjoint rectangular, triangular,
parallelogram, or trapezoid supergrid subgraphs. In provi
our results, we need to partition a supergrid graph into two
disjoint parts. The partition is defined as follows. In [17], we have shown that rectangular supergrid graphs
always contain canonical Hamiltonian cycles except 1-
'rectangles.

For instance, the bold dashed line in Fig. 3(c) shows a
Rrtical separation o(5, 4) that is to partition it into two

Background results

Definition 4. Let S(m,n) be a triangular, parallelogram
trapezoid, or alphabet supergrid graph, and/die a subset

(Advance online publication: 1 February 2019)
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o
~¢-0un

(a) (b)

Fig. 5. Rectangular supergrid graph in which there exists nmilanian
(s, t)-path for (@) R(m, 1), and (b)R(m, 2), where solid lines indicate the
longest path betweern andt.

beidy
w?— ‘;,,O,,,,,, ¢ /‘ :
FEE trapezoid
Lemma 1. (See [17].) LetR(m,n) be a rectangular super- | " e oo s , T\, comer
H : . arallelogram - - o c S
grid graph withm > n > 2. Then, the following statements fme: "~ 0 7 R / oo e
hold true: R
(1) if n = 3, thenR(m, 3) contains a canonical Hamiltonian © ©
cycle, Fig. 6. The conditions for that P(S(m,n), s,t) does not exist, where

(2) if n =2 o0rn >4, thenR(m, n) contains four canonical (a)-(b) S(m,n) = A(n,n), (c)~(€) S(m,n) = P(m,n), and ()~(9)

Hamiltonian cycles with concave faces being located ot ) = T(m,n), where dashed lines indicate the forbidden edge)
. . andT'(m,n) = T1(m, n) or To(m, n).
different boundaries.

Let (G, s,t) denote the supergrid gragh with two given
distinct verticess and¢. Without loss of generality, we will Lemma 4. (See [20].) LetS(m,n) be a triangular, paral-
assume thas, < t,, i.e., s is to the left of¢, in the rest |e|ogram’ or trapezoid Supergrid graph with > n > 2.
of the paper. We denote a Hamiltonian path betweemd Then,S(m,n) contains a canonical Hamiltonian cycle.
tin G by HP(G,s,t). We say thatd P(G, s, t) does exist
if there is a Hamiltonian(s, t)-path of G. It is clear that
there exists a Hamiltoniafs, ¢)-path of graphG if edge
(s,t) is in a Hamiltonian cycle of. In [19], we proved that
HP(R(m,n),s,t) always exists forn,n > 3 as follows.

Lemma 2. (See [19].) For(R(m,n), s, t) withm > n > 3,
R(m,n) contains a canonical Hamiltoniags, ¢)-path, and  (F2)  A(n, n) is a 3-triangle, ands, ¢) is a nonboundary
henceH P(R(m,n), s,t) does exist. edge ofA(n,n) (see Fig. 6(a)).

Recently, we verified the Hamiltonian connectivity of (F3) A(n,n) satisfiesn > 3, and (s,?) is an edge
rectangular supergrid graphs except one condition [19]. The of A(n,n) such thats and ¢ are adjacent to a
exception for P(R(m,n), s, t) holds only for 1-rectangles triangular cornerw of A(n,n), i.e., {st} is a
or 2-rectangles. To describe the exception condition, we vertex cut ofA(n, n) (see Fig. 6(b)).

define the vertex cut and cut vertex of a graph as follows. (F4) FP(m,n) is a 1-parallelogram, ane or ¢ is a cut
vertex of P(m,n) (see Fig. 6(c)).

Definition 6. Let G be a connected graph and [€t be a (F5) P(m,n) is a 2-parallelogram withn > 2, and

For a triangular, parallelogram, or trapezoid supergrid
graph S(m,n), HP(S(m,n),s,t) does exist except
some trivial conditions [20]. These conditions for that
HP(S(m,n),s,t) does not exist are stated as the following
seven conditions:

subset of the vertex sé&f(G). The setl] is called avertex {s,t} is a vertex cut ofP(m,n) (see Fig. 6(d)).
cutof G if G—V; is disconnected. A vertexof G is said to (F6) P(m,n) satisfiesn > n > 2, and(s,t) is an edge
be acut vertexof G if {v} is a vertex cut of&. For example, of P(m,n) such thats ~ w andt ~ w for any
in Fig. 5(b) {s,t} is a vertex cut and in Fig. 5(a)is a cut parallelogram cornew of P(m,n), wheres # w,
vertex. t # w, anddeg(w) = 2, i.e., {s,t} is a vertex cut

of P(m,n) (see Fig. 6(e)).
(F7) T(m,n) is a2, -trapezoid or2r,-trapezoid, and
(s,t) is a vertical and nonboundary edge of

) ) T(m,n), i.e.,{s,t} is a vertex cut ofl'(m, n) (see
(F1) s ort is a cut vertex ofR(m,1), or {s,t} is a Fig. 6(f)).

vertex cut of R(m, 2) (see Fig. 5(a) and Fig. 5(b)). (F8)
Notice that, heres or ¢ is a cut vertex ofR(m, 1) w is a trapezoid comer of'(m,n), s,t # w

if either s or ¢ is not a corner vertex, anfk, ¢} is s ~w, andt ~ w, i.e., {s,t} is a vertex cut of
a vertex cut ofR(m,2) if 2 < s, =t, <m — 1. T(m n’) (see Fig 6(g)) ’

The following condition implies thatd P(R(m, 1), s,t)
and HP(R(m,2), s,t) do not exist.

T(m,n) is a trapezoid supergrid graph for> 2,

Obviously, the following lemma, showing that | [20], we verified the Hamiltonian connectivity of tri-
HP(R(m,n),s,t) does not exist if (R(m,n),st) angular, parallelogram, and trapezoid supergrid graphs as
satisfies condition (F1), holds true. follows.

Lemma 3. Let R(m,n) be a rectangular supergrid graph | emma 5. (See [20].) LetS(m, n) be a triangular, parallel-

with two verticess andt. If (R(m,n), s, t) s_atlsfles condition ogram, or trapezoid supergrid graph, and leeind¢ be two

(F1), thenR(m,n) contains no Hamiltoniars, t)-path. distinct vertices of5 (i, n). If (S(m,n), s, t) does not satisfy
In [20], we have verified the Hamiltonicity of triangular,conditions (F2)(F8), then S(m,n) contains a canonical

parallelogram, and trapezoid supergrid graphs as foIIows.Ha_n:iltonian (s,t)-path, and hencei P(S(m,n),s,t) does
exist.

(Advance online publication: 1 February 2019)
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(a) (b) (c) (d)

L;

Fig. 7. A schematic diagram for (a) Statement (1), (b) Statér(@n (c) "L
Statement (3), and (d) Statement (4) of Proposition 6, where bold dashed
lines indicate the cycles (paths) aadrepresents the destruction of an edge® =* s
while constructing a cycle or path. (a) (b) (c)

-

Fig. 8. (a) The separations of(m,n), where bold dashed lines
indicate the separation operations, and (b)-(c) the construction of

In the past, we have obtained some observations on ﬂiﬁs&%éﬁhn);ﬁghmﬁiraeﬁ ;‘;f":tshems the destruction of an edge while

relations among cycle, path, and vertex [18], [19]. They wifl 9 s trpe
be used in verifying the Hamiltonian connectivity of alphabet
supergrid graphs.

. disjoint rectangular supergrid subgraphs= R(2m —2,n)
Proposition 6. (See [18], [19].) LetC: and C> be two 447+ — R(m, 5n — 4);
vertex-disjoint cycles of a grapfi, let ¢’y and Py be acycle ) 5 horizontal separation o* to partition it into two
and a path, respectively, ¢ with V(C1)nV(P1) =0, and  gisjoint rectangular supergrid subgraphs = R(m,n) and
let = be a vertex inG — V(Cy) or G — V(Py). Then, the Ly = R(m,4n — 4).
following statements hold true: Fig. 8(a) depicts the above separation operations. Since
(1) If there exist two edges; € C; and ez € C> such that >n+1>4, L =R2m—2,n), Ly = R(m,n), and
e1 ~ ey, thenC; and C; can be combined into a cycle of;_ R(m, 4n — 4) satisfy that2m — 2. n >3 o > 3
G (see Fig.7(a). andm,4n — 4 > 3. Depending on the locations efand¢,
(2) If there exist two edges; € C; ande; € P, such that there are the following two cases:
e1 = ez, thenCy and P; can be combined into a path 6f Casel: s,t € L; for 1 < i < 3. In this case,s and

(see Fig.7(b)). o t are located in the same partitioned rectangular supergrid
(3) If vertexz adjoins one edg&u,, v:) of_ Ch (_resp.,Pl), subgraph. There are two subcases:

then Cy (resp., Py) and_:c can be combined into a cycle Casel.l:s,t € Lo. Since L, = R(m,n) satisfies
(resp., path) of (see Fig.7(c)). m,n > 3, by Lemma 2 there exists a canonical Hamiltonian

(4) If there exists one edgeui,v1) € Ci such that (s,t)-path P, of Ly. Then, P, visits at least one boundary
ui ~ start(P1) and vy ~ end(P1), thenCy and Py can  gqge in each boundary dfs. On the other handL, —
be combined into a cyclé' of G (see Fig.7(d)). R(2m — 2,n) and Ly = R(m,4n — 4) satisfy that2m —
2,n > 3 andm,4n — 4 > 3. By Lemma 1, there exist two
canonical Hamiltonian cycleH C; and HC5 of L, and Ls,
respectively. We can place one flat face #t;, i = 1 or
3, to face its neighboring rectangular supergrid subgtaph
In this section, we will show thal-, C-, F-, and E- Thus, there exist four edges, e € P, e; € HCy, and
alphabet supergrid graphs are Hamiltonian connected. legte HCj such thate} ~ e¢; ande} = e3. By Statement
A(m,n) be anL-, C-, F-, or E-alphabet supergrid graph,(2) of Proposition 6,/%, HC;, and HC3 can be combined
and lets andt be two distinct vertices i (m, n). We will into a (s, ¢)-path P. Clearly, P is a canonical Hamiltonian
provide a constructive proof to show thAtP(A(m,n),s,t) (s,t)-path of L(m,n). The construction of such a canonical
does exist. Our basic idea is described as follows. Firgtamiltonian(s,¢)-path is depicted in Fig. 8(b).
we perform a series of separation operations Afmn, n) Casel.2: s,t € Ly or Lz. Suppose that,t € L;.
to obtain £ disjoint rectangular supergrid subgrapds— By Lemma 2, there exists a canonical Hamiltoni@gnt)-
Ayj. Consider the relative positions of and ¢. We then path P, of L. Then, P, visits at least one boundary edge
use Lemmas 1 and 2 to construct canonical Hamiltoniaf each boundary in;. Let L* = Ly U L3. Then, L* =
cycles or paths ofi;—Ay. By using Proposition 6, we finally R(m,5n — 4) satisfies thatn,5n — 4 > 3. By Lemma 1,
combine these cycles and paths into a Hamiltofian)-path  there exists a canonical Hamiltonian cyéle”* of L*. Then,
of A(m,n). Our constructed Hamiltonias, t)-path contains HC* contains a flat face that is placed to fatg. Thus,
at least one boundary edge in each boundary(@f, n) and there exist two edges; € P, ande* € HC* such that
hence is canonical. e; = e*. By Statement (2) of Proposition & and HC*
can be combined into a canonical Hamiltoniant)-path P
of L(m,n). The case of,t € L3 can be proved by the same
construction.
Case2: s € L; andt € L, for i # j. In this cases andt
are located in the different partitioned rectangles. There are
Proof: We prove this lemma by constructing a canonicaio subcases:

IIl. THE HAMILTONIAN CONNECTIVITY OF L-, C-, F-,
AND E-ALPHABET SUPERGRIDGRAPHS

Lemma 7. Let L(m,n) be an L-alphabet supergrid graph
with m > n+1 > 4, and lets andt be two distinct vertices
of L(m,n). Then,L(m,n) contains a canonical Hamiltonian
(s,t)-path, and hencél P(L(m,n), s,t) does exist.

Hamiltonian (s, t)-path of L(m,n). Note thats, < t,, i.e., Case2.1: exactly one of andt is in Ly. By symmetry,
s is to the left oft. We first make a series of separatiorit suffices to consider that € L, andt € L. Letp € Lo
operations orL(m,n) as follows: andq € L; such thap # s, g # t, andp ~ ¢q. By Lemma 2,

@ a vertical separation ofi(m,n) to partition it into two L, contains a canonical Hamiltonign, p)-path P, and L,

(Advance online publication: 1 February 2019)
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A L0 U G G .. supergrid subgraphs; andCs. Then, there exist four edges
o % % % % H FM\ Gle ﬂ_I_I_I_M e1 € P1, es € HCy, andej, e € HC* such thate; = e
¢ i i ‘f:j i and e; ~ e3. By Statements (1) and (2) of Proposition
G 3n-4 sz c /sz 6, P1, HCy, and HC* can be combined into a canonical
. Imd . ma 5 ¢ 2m2 Hamiltonian(s, t)-path of C'(m, n). The construction of such
. IR | ! 3, . ele [ a Hamiltonian(s, t)-path is depicted in Fig. 9(b).
- P {C; ﬂH L(m’n)(j—n—n—ﬂ ’ mgﬁ—ﬂ Case?2: exactly one ofs andt is in C;. Without loss of
() (b) (© generality, assume thate C; andt € L(m,n). Letp € C;

andg € L(m,n) such thatp # s, ¢ # t, andp ~ ¢. By
bold dashed lines indicate the separation operations, (b) the constrhce—mma 2, there exists a Canomcal Hamllt(-)n(amp)-path.
tion of HP(C(m,n),s,t) for s,t € C1, and (c) the construction of 1 Of C1. By Lemma 7, there exists a canonical Hamiltonian
HP(C(m,n),s,t) for s,t € Cs, where® represents the destruction of (¢, ¢)-path Py, of L(m,n). Then,P, = P, forms a canonical
an edge while constructing a Hamiltonigs, ¢)-path. Hamiltonian (s, ¢)-path of C(m, n).

Case 3: s,t ¢ (4. In this case,s,t € L(m,n). We

then perform a vertical separation @rfm,n) to obtain two
contains a canonical Hamiltonidg, ¢)-path P,. By Lemma disjoint rectangular supergrid subgrapfis= R(2m —2,n)
1, there exists a canonical Hamiltonian cydte”’s of Ls and C* = R(m,5n — 4) such that2m — 2,n > 3 and
in which one flat face off C5 is placed to facel,. Then, m,5n—4 > 3, as shown in the separati@) of Fig. 9(a). If
there exist two edges; € P, andes € HCs with e = {s,t}NCy # 0, then, by symmetry, a canonical Hamiltonian
es. By Statement (2) of Proposition &% and HC3 can (s, t)-path ofC(m,n) can be constructed by using the same
be combined into a canonical Hamiltoniés p)-path P of  construction of Case 1 or Case 2. In the following, suppose
LyULs. Therefore Py = P, forms a canonical Hamiltonian that s, ¢ ¢ C5. We then make two horizontal separations on
(s, t)-path of L(m,n). The construction of such a canonical’* to partition it into three disjoint rectangular supergrid
Hamiltonian(s, t)-path is shwon in Fig. 8(c). subgraphsCs = R(m,n), C4 = R(m,3n — 4), and

Case2.2:s andt are notinLs. In this subcases € Ly C5; = R(m,n), wherem,n > 3 andm,3n —4 > 3, as
andt € Ly. Letp € L3, ¢ € Ly, andri,ri € Lo such depicted in the separation®—@ of Fig. 9(a). There are
thatp # s, ¢ # t, r5 ~ p, andr; ~ ¢. By Lemma 2, three subcases:

Ls, Lo, and L; contain canonical Hamiltoniags, p)-path Case3.1:s,t € C3 or C5. By symmetry, it suffices to
Ps, (ri,r7)-path P», and(q, t)-path P;, respectively. Then, consider that, ¢ € C3. By Lemma 2, there exists a canonical
P; = P, = P, forms a canonical Hamiltoniafs, ¢)-path  Hamiltonian (s, ¢)-path P; of C3. Then, P3 contains two
of L(m,n). boundary edges; and e; that are to faceC; and Cy,

We have considered any case to construct a canonisegpectively. LeCy; = C4UC5. Then,Cys = R(m, 4n—4).
Hamiltonian(s, ¢)-path of L(m,n). Thus,H P(L(m,n),s,t) By Lemma 1,Cy5 contains a canonical Hamiltonian cycle
does exist. B HC,45. We can place two flat faces @f Cy5 to face its two

We next considerC- and F-alphabet supergrid graphs.neighboring rectangular supergrid subgraphsand Cs. By
By the structures of considered alphabet supergrid graphdiemma 1, there exist canonical Hamiltonian cycld<,
Fig. 4, L(m,n) forms a subgraph o€’ (m,n) or F(m,n). andHC, of C; andCy, respectively. Then, there exist four
We first prove the Hamiltonian connectivity 6f(m,n) as edgese; € HC1, es € HC5, andey, e5s € HCy5 such that
follows. e1 = e}, eq = e}, andes = e5. By Statements (1) and (2) of
Proposition 6,P;, HCy, HC3, and HCYy; can be combined
into a canonical Hamiltoniafs, t)-path of C'(m, n).

Case3.2: exactly one of andt is in C5 or Cs. Without
loss of generality, assume that C3 andt ¢ C5. Consider
thatt € Cy. Letp € C53 andq € Cy such thatp # s,

Proof: We prove this lemma by constructing a canong # ¢, andp ~ ¢. By Lemma 2,C5 contains a canonical
ical Hamiltonian (s, t)-path of C(m,n). We first partition Hamiltonian (s, p)-path P;. By Lemma 1,C; contains a
C(m,n) into two disjoint supergrid subgraph€; and canonical Hamiltonian cycledf/C; whose one flat face is
L(m,n) by a vertical separation, as depicted in Fig. 9(aplaced to faceC;. Then, there exist two edges € Ps
where the circled numbef indicates the separation op-and e; € HC; such thate; =~ e;. By Statement (2) of
eration andCy; = R(2m — 2,n) satisfies2m — 2,n > 3. Proposition 6,P; and HC; can be combined into a canonical
Depending on the positions sfandt, there are the following Hamiltonian(s, p)-path Py of C; UC5. Let Cas = C3 U Cs.
three cases: Then, Cys = R(3m — 2,n) satisfies3m — 2,n > 3. By
Casel: s,t € Cy. By Lemma 2, there exists a canonicaLemma 1, there exists a canonical Hamiltonian cyi@dl€s5
Hamiltonian (s, ¢)-path P; of C;. We next make a vertical of C5 such that one flat face df Cs5 is placed to face’,.
separation orL(m,n) to obtain two disjoint rectangular su-By Lemma 2, there exists a canonical Hamiltoni@nt)-
pergrid subgraph€s = R(2m—2,n) andC* = R(m,5n— path P, of C,. Then, there exist two edges € HCos
4), where2m—2,n > 3 andm, bn—4 > 3, as depicted in the and e} € P, such thates =~ ef. By Statement (2) of
separatior2) of Fig. 9(a). By Lemma 15 andC* contain Proposition 6,2, andCs5 can be combined into a canonical
canonical Hamiltonian cycle&/C> and HC*, respectively. Hamiltonian (g, t)-path P} of Cy; U Cy. Then, P§ = Py
Since HC™* is a canonical Hamiltonian cycle @f*, we can forms a canonical Hamiltoniafs, ¢t)-path of C'(m,n). On
place one flat face aff C* to face its neighboring rectangularthe other hand, consider thate C5. Let p € Cs, g € Cs,

Fig. 9. (a) A series of separation operations 6H{m,n), where

Lemma 8. Let C(m,n) be anC-alphabet supergrid graph
withm > n+1 > 4, and lets andt be two distinct vertices of
C(m,n). Then,C(m,n) contains a canonical Hamiltonian
(s,t)-path, and hencéd P(C(m,n), s,t) does exist.

(Advance online publication: 1 February 2019)



TAENG International Journal of Applied Mathematics, 49:1, [JAM 49 1 10

Casel: s,t € I; for 2 < ¢ < 6. In this subcases andt
are in the same partitioned rectangular supergrid subgraph.

Fs

o - There are four subcases:

Fs Case 1.1: s,t € F,. By Lemma 2,F, contains a

oF canonical Hamiltonian(s, t)-path P». Then, P, contains a

Fog boundary edgee; that is placed to face its neighboring
4

subgraphFs. Let F* = F3U Fy U F5 U Fg. Then, F* =
R(m,5n —4) and F; = R(m,n) satisfy thatm,5n—4 > 3
Fig. 10. (a) A series of separations dfi(m,n), (b) the construction andm,n > 3. By Lemma 1,F* and F; contain canonical
of HP(F(m,n),s,t) under thats,t € F; and F} is a 1-rectangle, and Hamiltonian cyclesHC* and H(C4, respectively. We can

(c) the construction ofH P(F'(m,n),s,t) under thats,¢ € Fs, where *
bold dashed lines indicate the separation operationscamdpresents the place one flat face off C* to face F; and F». Thus, there

destruction of an edge while constructing a Hamiltonfant)-path. exist four edges:j,e5 € HC", e; € HCy, andey € P
such thate} =~ e; andej =~ es. By Statements (1) and (2)
of Proposition 6,P,, HC*, and HC; can be combined into
a canonical Hamiltoniais, ¢t)-path of F'(m, n).

andr3, rj € Cy such thap # s, g #t, p ~ r3, andg ~ r3. Casel.2:s,t € Fy. Let F* = Fy U F5 U Fs. Then,

By the same construction in proving the casetof Ci, o« _ R(m,4n—4), F; = R(m,n), andF, = R(2m—2,n)

Cy U C5 contains a canonical Hamiltoniafs, p)-path Py, satisfy thatm, 4n —4 > 3, m,n > 3, and2m — 2,n > 3. By

andC,UC}5 contains a canonical Hamiltoniag, t)-path P;. | amma 1,F:‘, P and By contain canonical Hamiltonian

By Lemma 2, there exists a canonical Hamilton{a#, rg_)- cycles HC*, HCy, and HC», respectively. We can place

path Py of Cy. Then, Py = Py = P7 forms a canonical yq fiat faces ofH C* to respectively facé? and Fy. Thus,

Hamiltonian (s, ¢)-path of C(m, n). . HC* and HC, can be combined into a Hamiltonian cycle

Case3.3:s,t ¢ C3U Cs. In this subcases,t € [ of F* U Fy such thatH C contains a flat face of to

Cy. Let C13 = O UC3 and Cys = Cy U Cs. Then, face ;. By Lemma 2,F; contains a canonical Hamiltonian

Ciz = R(3m —2,n) and Cy; = R(3m — 2,n) satisfy that (5 4)-path P;. Then, P; contains two boundary edgg and

3m —2,n > 3. By Lemma 1,C3 and Cy; respectively ¢« that are placed to face its neighboring subgraphsnd

contain canonical Hamiltonian cycldgC, 3 and HCy5 in Fy, respectively. Thus, there exist two edggse HC and

which their one flat face is placed to facg. By Lemma ., < ¢, such thate, ~ et ande, ~ e3. By Statement (2)

2, there exists a canonical Hamiltonién ¢)-path P, of Cy.  f Proposition 6,P;, HC», and HC' can be combined into

Then, there exist four edges [ C13, es € H (5, and g canonical Hamiltoniars, t)-path of F/(m, n).

e3¢5 € Py such thate; ~ e3 ande; =~ e5. By Statement Casel.3:s,t € Fy. If HP(Fy,s,t) does exist, then

(2) of Proposition 6P, HC13, andH Czs can be combined 5 canonical Hamiltoniar(s, t)-path can be constructed by

into a canonical Hamiltoniaris, ¢)-path of C'(m,n). The gimijar construction in Case 1.2. Suppose thaP(Fy, s, )

construction of such a Hamiltonian path is depicted in Figiyas not exist. TherE, is either a 1-rectangle or 2-rectangle

9(c)- (see [19]). Consider thaft, is a 1-rectangle. Lefy = F5 U

We have considered any case to construct a canoni@gl and Fys = F, U F3. Then, F¥ = R(m,2n — 2) and

Hamiltonian(s, t)-path of C(m,n). Thus, the lemma holds f,, — R(3m — 2,n) satisfy thatm,2n — 2 > 3 and3m —
true. - . . B 5 1n>3 Bylemma 2, there exists a canonical Hamiltonian
By _S|m|Iar arguments in proving the Hamlltor_nan_con(s’t)-path Py of F7. By Lemma 1, there exist canonical
nectivity of C'(m,n), we proveF(m,n) to be Hamiltonian Hamiltonian cyclesHCo3, HCy, and HCg of Fas, Fiy, and
connected as follows. Fs, respectively. Then, there exists edgésef, e; € Pz,

Lemma 9. Let F(m,n) be anF-alphabet supergrid graph 3 € HCy3, e € HCy, andeg € HCg such thate] =~ ey,

withm > n+1 > 4, and lets andt be two distinct vertices of ;6* zHecG‘, ar};jgg = Z?)Hgy Sta‘t)ement éZ) cc)lf' F;roposmon_ 6’|
F(m,n). Then,F(m,n) contains a canonical Hamiltonian 5+ 12 23, /7€, an ¢ Cah be combined Into a canonica

| : Hamiltonian(s, t)-path of F/(m, n). The construction of such
(s,t)-path, and hencel P(F(m, n),s,t) does exist. a canonical Hamiltoniafs, ¢)-path is depicted in Fig. 10(b).

Proof: We first make a vertical separation @(m,n) On the other hand, consider th&j is a 2-rectangle. Then,
to partition it into L(m,n) and F; = R(m,n), as depicted (s,t) is a vertical and nonboundary edgefin (see [19]) and
in separation® of Fig. 10(a). ThenF; = R(m, n) satisfies hences, = t,. We then make a horizontal separation Bn
m,n > 3. If {s,t} N F, # 0, then a canonical Hamiltonian to obtain two 1-rectangle®,; and Fy; such thatFy; is to the
(s,t)-path of F(m,n) can be constructed by the sameipper ofFy,. Without loss of generality, assume thgt< ¢,,.
construction in Case 1 or Case 2 of Lemma 8. In thEhen,s € Fy; andt € Fys. Let Ff = F3 U Fy; and FY =
following, assume that,t ¢ Fy. Then,s,t € L(m,n). Fs;UFy. Then,Fy = R(m,n+1) andF¥ = R(m,n+1).
We next perform a series of separation operations, includihgt p € Fiy andq € FZ such thatp # s, ¢ # ¢, andp ~ g.
one vertical separation and three horizontal separatioBy, Lemma 2, F; and F; contain canonical Hamiltonian
on L(m,n) to obtain five disjoint rectangular supergrid(s, p)-pathP; and(q,t)-path PZ, respectively. By Lemma 1,
subgraphsf, = R(2m — 2,n), F3 = R(m,n), Fy = I, F», andFg contain canonical Hamiltonian cyclg$C,
R(m,n—2), Fs = R(m,n), andFs = R(m,2n—2), where HC5, and HCg, respectively. Then, there exist edggse
2m —2,n >3, m,n > 3, andm,2n — 2 > 3, as shown in P5, ej, e € P, ea € HCo, 3 € HCq, andeg € HCg such
separationg2)—®) of Fig. 10(a). Consider the following two that e =~ eq, e] = e, andef = es. By Statement (2) of
cases: Proposition 6 2y andH C5 can be combined into a canonical
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®  om-2 2m-2 2m-2

Hamiltonian (s, p)-path Ps of F3 U F5, and P¥, HC;, and R S B g
HC; can be combined into a canonical Hamiltonignt)- - . % % % % H %T T S % E , @f}ﬂ
path P5 of FZ U Fy U Fgs. Then, P; = P5 forms a canonical m 2 E m E v o m
Hamiltonian(s, t)-path of F'(m,n). £ 5] J 5 M e {U‘}
. . IO : RO :

Casel.4:s,t € F5 or Fg. This subcase can be proved o B e = E, - 5,
by similar arguments in proving Case 1.2. For example, Fig. ] SRR """" J £—1 1 q
10(c) shows a canonical Hamiltonids, ¢)-path of F(m, n) X - I B 8 E% 1 br”% -
under thats, t € F. o 'f) " ' T ‘

Case2: s € F, andt € F, for 2 < 1,7 < 6 ande # 3.

Without loss of generality, assume that. ;. There are the Fig. 11. (a) Three vertical separations Bifm, n) to obtainEy, Ez, E3,

followina tw : and E*, (b) four horizontal separations of*, and (c) the construction

olio g two ?meases L . of HP(E(m,n),s,t) under thats € Ej, t € E¥ and E5,E; are 1-
Case2.1: Fy = R(m,n — 2) satisfiesn — 2 > 3, .6, rectangles, where bold dashed lines indicate the separation operations and

n > 5. Lets, = s and t, =1t. For: < 7 <y, let s, andt, ® represents the destruction of an edge while constructing a Hamiltonian

be two distinct vertices of, so thatt;, ~ sy for: < k< (s:1)-path.

7—1. Since everyF; = R(m,,n;), 1 < 7 < J, satisfies that

m.,n, > 3, F, contains a canonical Hamiltonia®., ¢, )-

path P, by Lemma 2. ThenP, = P11 = --- = P, forms g g, andE; contain canonical Hamiltonian cyclésC™,

a canonical Hamiltoniafs, ¢)-path P of U,<,<,Fr. FOr2 < [ ¢, and HC3, respectively. We can place one flat face of
k < 1—1, there exists a canonical Hamiltonian cy&l€’, of ¢+ to face Ey, E,, and E5. Then, there exist six edges
Fj, by Lemma 1, and one boundary 6 is adjacent to one et es,e5 € HC*, ep € Py, ey € HCy, andes € HCs
boundary ofF}+,. By Statements (1) and (2) of Propositionsych thate; = e;, ¢4 = 2, andej ~ e;. By Statements
6, P.and.U2<k<1,1HCk can be combined into a canonica(1) and (2) of Proposition 6/, HC*, HC,, and HCs
Hamiltonian(s, t)-path P* of Us<k<, Fi. For the subgraphs can be combined into a canonical Hamiltoniént)-path
Fi’s, 7+ 1 < k < 6, their canonical Hamiltonian cyclesof £(m, n). The other cases of = 2 and: = 3 can be
can be also merged int&* by the same construction. Inproved by the same arguments.

addition, a canonical Hamiltonian cycléC'y of Iy contains  case2: exactly one of andt is in E, for somel < ¢ < 3.

a flat face that is placed to fack; and hence it can be without loss of generality, assume thate E,. Let B/ =
combined into the canonical Hamiltonidw, t)-path P* of = gy, ) — E,. Then,E' is eitherC(m, n) or F(m,n), and
Uz<k<o P by Statement (2? of I_Droposition 6. Thus(m,n) ¢ c g’ Letp € E, andq € E' such thatp # s, ¢ # t, and
contains a canonical Hamiltonign, t)-path. p ~ ¢. By Lemma 2, there exists a canonical Hamiltonian
~ Case2.2:F, = R(m,n—2) does notsatisfy.—2 > 3, (s p)-pathP, of E,. By Lemma 8 or Lemma 92’ contains a
i.e, n < 4. In this subcasef is either a 1-rectangle or 2- canonical Hamiltoniarfq, t)-path P’. Then, P, = P’ forms
rectangle. By _the same arguments in proving Case 1.3, etanonical Hamiltonianis, ¢)-path of E(m, n).

Fé’; = F5UF,if Fy = R(m,1), and letFy = FsUFy and  case3: 5,1 ¢ E*. In this case, we make four horizontal
Fy = F5 U Fy it Fy = R(m, 2) in which Fy = R(m,2) s geparations or* to partition it into five disjoint rectangles
partmoned into two 1-rectanglel;; ar_1<_jF42 such thatFy; Ef for 1 < ; < 5, as depicted in Fig. 11(b). By similar
IS to /the/ upper of. Thlen,leach partitioned subgraph = constructions in Cases 1-2 of Lemma 9, a canonical Hamilto-
R(m’,n') satisfies thatn',n" > 3. By the same construction pjan (s, ¢)-path of E(m, n) can be constructed. For example,
in Case 2.1, a canonical Hamiltonian ¢)-path of F(m,n)  \whens € B, t € E2, andn = 3, the constructed canonical
can be constructed. _ Hamiltonian (s, t)-path of E(m, n) is shown in Fig. 11(c).

It follows from the above cases that a canonical Hamil- |, any case, a canonical Hamiltoniafs, ¢)-path of
tonian (s, t)-path ofF(m,n_) can be constructed, and henc%(mvn) is constructed. Thusd P(E(m, n), s,t) does exist.
HP(F(m,n),s,t) does exist. | -

Based on Lemmas 8 and 9, we verify the Hamiltonian |, jmediately follows from Lemmas 7-10 that we con-
connectivity of E(m,n) as follows. clude the following theorem.

Lemma 10. Let E(m,n) be anFE-alphabet supergrid graph Theorem 11. Let A
withm > n+1 > 4, and lets andt be two distinct vertices of
E(m,n). Then,E(m,n) contains a canonical Hamiltonian
(s,t)-path, and hencdl P(E(m,n), s,t) does exist.

(m,n) be anL-alphabet(C-alphabet,F-
alphabet, orE-alphabet supergrid graph witm > n+1 >
4, and lets andt¢ be two distinct vertices afi(m, n). Then,
A(m,n) contains a canonical Hamiltoniafs, t)-path, and
Proof: We first make three vertical separations ohenceH P(A(m,n),s,t) does exist.

E(m,n) to obtain four disjoint rectanglef; = R(2m —

2,n), By = R(m,n), E3 = R(2m — 2,n), and E* =

R(m,5n — 4), as shown in Fig. 11(a). Since,n > 3, we

get thatF; = R(m;,n;), 1 <i < 3, and E* = R(m*,n*)

satisfym;,n; > 3 andm™*,n* > 3. Consider the following
three cases:

Case l: s,t € E, for somel < 1+ < 3. In this
case,s and¢ are in the same rectanglg,. Suppose that Corollary 12. Let A(m,n) be an alphabet supergrid graph
1+ = 1. Then, s,t € FE;. By Lemma 2, there exists awith m > n+1 > 4 such that it can be partitioned into dis-
canonical Hamiltoniar(s, t)-path P, of E;. By Lemma 1, joint rectangular supergrid subgraphs by a series of vertical

By the proofs of Lemmas 7-10, we can see that if an
alphabet supergrid graph can be decomposed into disjoint
rectangular supergrid subgraphs by a series of vertical and
horizontal separations, then it contains a canonical Hamilto-
nian path between any two vertices. Thus, we conclude the
following corollary.
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and horizontal separations, and letand ¢ be two distinct a Hamiltonian(s, t)-path of N(m,n). Fig. 12(b) depicts a

vertices of A(m,n). Then, A(m,n) contains a canonical such constructed Hamiltonias, ¢)-path.

Hamiltonian (s, t)-path, and hencéf P(A(m,n), s,t) does  Case2: s,t € N,. By Lemma 1, there exist canonical

exist. Hamiltonian cyclesHC; and HC5 of Ny and N3, respec-
We can construct-, H-. I-, J-. O-, P-, S-. T-. and tively. We can place two flat faces éf C', and HC5 to face

i . . Ns. Consider the following two subcases:
U-alphabet supergrid graphs to satisfy the above corollary: Case2.1:(Na, s, £) does not satisfy conditions (F5) and

However, many other alphabet supergrid graphs can BE%) By Lemma 5, there exists a Hamiltonién t)-path P

be partitioned into only disjoint rectangular supergrid su .
P y i) g perg of N> such thatP, contains at least one boundary edge of

graphs. For examplely- and Y-alphabet supergrid graphs . : 4
. ach horizontal or skewed boundaryi. Then, there exist
are such alphabet supergrid graphs. However, they canfebgr edgese; € HCy, ¢f,¢; ¢ Py, andes € HCy such

separated into some disjoint shaped supergrid subgraphs N . .
including rectangle, triangle, parallelogram, and trapezoitg."j}ltfl;;l ::ggcw gg'n Bb)é igar;eanzrg i(nzt)o(g E;%ﬁi'gg;
In the following section, we will verify the Hamiltonian (; t)2-,path1c,)fN(m n:)”
connectivity of N- andY -alphabet supergrid graphs. Case2.2: (Ny,s,1) satisfies condition (F5) or (F6).
Suppose tha{N., s,t) satisfies condition (F5). Thenys
IV. THE HAMILTONIAN CONNECTIVITY OF N- AND is a 2-parallelogram(s, ¢) is a horizontal edge ofV,, and
Y-ALPHABET SUPERGRIDGRAPHS HP(Ns,s,t) does not exist. Let’, be the longests, t)-
In this section, we will verify the Hamiltonian connectivitypath of No computed in [20], and leN; = Ny — P,. Then,
of N- and Y-alphabet supergrid graphs. Lét(m,n) be for every vertexv € N}, v adjoins one edge if{C; or
either anN- or Y-alphabet supergrid graph. We can see froff C5. By Statement (3) Proposition 6, all of vertices v}
the structures of these two types of alphabet supergrid graglas be merged inté/Cy, or HCs. Let the above combined
that they can be decomposed into disjoint shaped supergrigtles of HC; and HC3; be HC}] and HCY, respectively.
subgraphs, including rectangles, triangles, parallelograni$ien, there exist four edges € HCY, ef,e5 € P», and
and trapezoids. By the Hamiltonicity and Hamiltonian core; € HCY such thate; = ej ande; =~ e}. By Statement (2)
nectivity of shaped supergrid graphs (see Lemmas 1-2 asfdProposition 6,P,, HC}, and HC, can be combined into
4-5), we will construct a Hamiltoniafs, t)-path of B(m,n) a Hamiltonian(s,¢)-path of N(m,n). Fig. 12(c) shows a
through Statements (1)—(4) of Proposition 6. such constructed Hamiltonigw, ¢)-path. On the other hand,
We first verify the Hamiltonian connectivity df-alphabet suppose thatN», s, t) satisfies condition (F6). Le®, be the
supergrid graphs. LeN (m,n) be anN-alphabet supergrid longest(s, t)-path of N, computed in [20], and lefV) =
graph withm > n+1 and5n—4 > 3m—2, as shown in Fig. N> — P>. Then,V(N}) = {w}, wherew is a parallelogram
4(e). Then,m > 4 andn > 3. We first make two vertical corner of N, such thats ~ w andt ~ w. Sincew adjoins an
separations onV(m,n) to partition it into three disjoint edge ofHC: or HC3, w can be merged inté/ Cy or HCs.
subgraphsVy; = R(m,5n—4), No = P(5n—4—m,m—2), Then,P, and these two above combined Hamiltonian cycles
and N3 = R(m,5n — 4), as illustrated in Fig. 12(a). Sincecan be merged into a Hamiltonids, t)-path of N (m,n) by
m >n+1>4andbn —4 > 3m — 2, we get that the same arguments.
Ny and N3 satisfy thatm > 4 and5n — 4 > 11, and Case3: (s € Ny andt € Ny) or (s € Ny andt € N3). By
Ny = P(5n — 4 —m,m — 2) satisfies thabn —4 —m > 6 symmetry, we can only consider that N; andt € N,. Let
andm—2 > 2. The following lemma shows the Hamiltonianp € N; andg € N, such thatp # s, ¢ # t, (N2, q,t) does
connectivity of N(m,n), wherem > 4 andn > 3. not satisfy conditions (F5) and (F6), apd~ ¢. By Lemma
2, there exists a canonical Hamiltonian p)-path P, of Ny.
By Lemma 1, there exists a canonical Hamiltonian cycle
HC(C45 of N3 such that one flat face df C; is placed to face
N,. By Lemma 5, there exists a Hamiltonidaq, ¢)-path P,
of N, such thatP, contains at least one boundary edge in
each horizontal or skewed boundary/$. Then, there exist
Proof: In this lemma,N, = P(5n — 4 — m,m — 2) two edgeses € HC3 andey € P, such thates = e;. By
satisfiessn—4—m > 6 andm—2 > 2, andN; = R(m,5n— Statement (2) of Proposition & andH C5 can be combined
4) and N3 = R(m, 5n — 4) satisfym > 4 and5n —4 > 11. into a Hamiltonian(¢, t)-path P; of NoUN3. Then,P, = P;
Without loss of generality, assume that < t,. Depending forms a Hamiltoniar(s, t)-path of N(m,n).
on the relative locations of andt, there are four cases: Cased: s € Ny andt € N3. Letp € Ny, ¢ € N3, and
Casel: s,t € Ny or N3. By symmetry, it suffices to r1,r72 € Ny such thatp # s, g # t, p ~ 11, ¢ ~ r2, and
consider thats,t € N;. By Lemma 4, N, contains a (N2,71,72) does not satisfy conditions (F5) and (F6). By
canonical Hamiltonian cyclé/Cy whose two flat faces are Lemma 5,N, contains a Hamiltoniariry, r2)-path P,. By
respectively placed to fac&; and N3. By Lemma 1,N; Lemma 2, there exist canonical Hamiltonién p)-path P;
contains a canonical Hamiltonian cycléCs such that its and (g, t)-path P; of N; and N3, respectively. ThenP; =
one flat face is placed to fad€,. By Lemma 2,N; contains P, = P; forms a Hamiltonian(s, t)-path of N(m,n). Fig.
a canonical Hamiltonian(s, ¢)-path P;. Then, there exist 12(d) depicts such a constructed Hamilton{ant)-path.
four edgese; € Py, ef,e5 € HCs, andes € HC5 such We have considered any case to construct a Hamiltonian
thate; =~ e} andes = e}. By Statements (1) and (2) of (s,¢)-path of N(m,n). This completes the proof of the
Proposition 6,P;, HC5, and HC3 can be combined into lemma. [ |

Lemma 13. Let N(m,n) be anN-alphabet supergrid graph
withm > n+1>4and5n—4 > 3m—2, and lets andt be

two distinct vertices ofV (m,n). Then,N(m,n) contains a
Hamiltonian (s, t)-path, and hencél P(N(m,n), s,t) does

exist.
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Sn—4-2m
>2

Sn—4-2m  Sn—4-m
[ |22 26

Sn—4-m

Fig. 12. (a) Two vertical separations @¥i(m, n) to obtain two rectangular supergrid subgraphg, and N3, and one parallelogram supergrid subgraph
N>, (b) the construction off P(N(m,n), s,t) under thats,¢ € Ny, (c) the construction off P(N(m,n), s,t) under thats,t € N2 and (N2, s, t)
satisfies condition (F5), and (d) the constructionfbP (N (m, n), s, t) under thats € N1 andt € N3, where bold dashed lines indicate the separation
operations andd represents the destruction of an edge while constructing a Hamiltégjah-path.

Finally, we will considerY -alphabet supergrid graphs. Letcases:
Y (m,n) be anY -alphabet supergrid graph with > n+1 > Casel: s,t € Y; for 1 < i < 6. In this case;s andt are
4 and5n — 4 > 3m — 2, as lllustrated in Fig. 4(f). Then, jn the same partitioned subgraph. Note that= Y; = 0.
m > 4 andn > 3. We first make three horizontal separation$here are two subcases:
onY(m,n) to obtain three rectanglég = Y> = R(m, m), Casel.l:s,t € Yi,Ya, or Ys. Suppose that, ¢ € Y;.
Y3 = R(m, (5n —4) — (2m — 1)), wo parallelogram&’s = gy | emma 2,v; contains a canonical Hamiltonias, ¢)-
Y5 = P(m, [ ~2), and one trapezoitl; = To(2m, |3 |+ ot p. Then, P, visits at least one boundary edge of each
1) or T(2m—1, | 3] +1) depending on whethen is even, ongary iny; = R(4,4). By Lemma 1,Y; andY; contain
as depicted in Fig. 13(a). Since —4 > 3m —2,m >4, an5nical Hamiltonian cycle&C, and HCs, respectively.
arrld" > 3, we get that(5n —4) — (rgm ~1)>m =123 \we can place the flat faces dfC, and HC; to face to
(5] - 2/ > 0, Qm/_ } >T7,and 3] +1 >3 LetY, = o neighboring separated supergrid subgraphs. By Lemma
R(m/,n') or Ty(m', 1) for 1 <« < 6 ande # 4,5. Then, 4y 7o, || 4 1) = T»(8,3) contains a canonical
' Hamiltonian cycle HCs whose two flat faces are placed

Y, satisfies thatn’ > 3 andn’ > 3. On the other hand
Yo = Y5 = P(m, [5] - 2) satisfies thaf 3] -2 > 0, to faceY; U Y, andYs. Then, there exist edges € Py,

and henceY4_andY5 may be empty. We first consider that62 € HCy, e5 € HCs, andegy, o, es3 € HCy such that
Yi=Y;=0,ie,[%]—-2=0,in Lemma 14.

e1 = eg1, €2 = eg2, andes = eg3. By Statements (1) and (2)
of Proposition 6,P,, HCs, HC3, and HCg can be combined
into a Hamiltonian(s, t)-path of Y(m,n) = Y(4,3). The
case ofs,t € Y, or Y; can be proved by the same

Lemma 14. LetY (m,n) be anY-alphabet supergrid graph
such thatn > n+1 > 4 and5n—4 > 3m—2, and lets and

t be two distinct vertices df (m,n). LetY;’s, 1 <i < 6, be construction
partitioned subgraphs of (m, n) as defined in Figl3(a) If '

Yy = Y; = 0, thenY (m,n) contains a Hamiltoniar(s, t)- _ Casel.2: g,t € Ys. In this ;ubcase, we fi_rst perform a
path, and hencef P(Y (m,n), s, t) does exist. vertical separation ofis to obtain two trapezoid subgraphs

Ys1 andYge, as depicted in Fig. 13(b). Thels; = Yso =

Proof: By the separation operations ori(m,n), as Z1(m,[%]|+1) =T1(4,3). By Lemma 1Y}, Y2, andY3
depicted in Fig. 13(a)Y, = R(m’,n’) or Ty(m',n') for contain canonical Hamiltonian cyclésC,, HCs, andH Cs,
1 <:<6and. +# 4,5 satisfies’ > 3 andn’ > 3. Since respectively. We can place the flat facesi6€';, HC> and
Yi=Ys =0 andm > 4, we get thatf 2] — 2 = 0 and H (3 to face to their neighboring trapezoi@. Consider the
hencem = 4. Sincem >n+1 >4 and5n — 4 > 3m — 2, following subcases:
we obtain thatn = 3. Thus,Y(m,n) = Y(4,3). Then, Case1.2.1:s,t € Y1 or Yg. Without loss of
Yi = Yo = R(4,4), Y3 = R(4,4), Y4 = Ys; = 0, and generality, assume thaft € Y5;. By Lemma 4 Y5, contains
Ys = T»(8,3), as shown in Fig. 13(b). Depending on the canonical Hamiltonian cycléfCs,. We can place the
relative locations ofs and ¢, there are the following two flat faces of HCs2 to face to their neighboring separated
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subgraphd?, Y3, Ys1. Suppose thatYsy, s,t) does not sat- Y (m,n) = Y (4,3). Fig. 13(c) depicts the construction of a
isfy condition (F8). By Lemma 5Y5; contains a canon- such Hamiltoniar(s, t)-path.

ical Hamiltonian (s, t)-path Ps;. Then, there exist edges It immediately follows from the above cases that the
e1 € HCy, eg € HCy, e3 € HCS, eg2, ¢4 € HCg2, and  lemma holds true. [ |
€61, €63, €66 € Ps1 such thate; = eg1, €2 ~ eg2, €3 = €43, We have considered the case ¥of = Y5 = (). Next, we
andegg ~ eqs. By Statements (1) and (2) of Proposition 6will considerY, (= Ys) # 0. Then,Y, = P(m, [%3]-2) # 0,
HCy,HCy, HCs, HCg2, and P51 can be combined into a and hencg %] — 2 > 0. Thus,m > 5. Whenm = 5 or 6,
Hamiltonian(s, t)-path ofY'(m,n) = Y (4,3). On the other [21] —2 = 1 and henceY, andY; are 1-parallelograms.
hand, suppose thats,, s, t) satisfies condition (F8). Leb  The following lemma shows the Hamiltonian connectivity
be a trapezoid corner dfs; such thatw ~ s andw ~ t. of Y (m,n) under thats6 > m > 5.

Then, there exists one edge= (u,v) of HC; such that
w ~ uw andw ~ v. By Statement (3) Proposition &/ C}
and w can be merged into a Hamiltonian cycEC] of
Y1 U {w}. By the construction in [20], we can construct
canonical Hamiltoniar(s, t)-path P§; of Ys; — {w}. Then,

Lemma 15. LetY (m,n) be anY-alphabet supergrid graph
such thatn > n+1 > 4 andb5n—4 > 3m—2, and lets and
4 be two distinct vertices df (m,n). LetY;’s, 1 <i < 6, be
partitioned subgraphs o¥ (m,n) as defined in Fig13(a)
P},,HC{,HC5, HC5, and HCsy can be combined into a :f' Y _zlatnd_Y5 aretl_—patrslIelogrsms,étllrw;d;(m,n) cor;tatljns a
Hamiltonian(s, t)-path of Y’ (m,n) = Y (4, 3) by Statements ' o onian (s, )-path, and hencél P(Y (m, n), s,t) does
(1) and (2) of Proposition 6. The construction of a sucﬁX'St'
Hamiltonian(s, t)-path is shown in Fig. 13(b). Proof: SinceY} is al-parallelogram, we get that = 5
Casel.2.2:s € Ys1 andt € Yso. Letp € Ys1  or 6. The partitioned subgraphs af(5,n) is depicted in
and ¢ € Yse such thatp ~ ¢, (Ys1,s,p) and (Ysa,q,t) Fig. 14(a). By Lemmas 1 and &7, Ys, Y3, andYs contain
do not satisfy condition (F8). The verticgs and ¢ can canonical Hamiltonian cycle&C,, HCy, HC3, and HCj,
be easily computed. By Lemma 5%; and Yz, contain respectively, such that their flat faces are placed to face their
canonical Hamiltonian(s, p)-path Ps; and (¢, t)-path Ps2, neighboring partitioned subgraphs. Consider the following
respectively. ThenP; = P51 = Pz forms a canonical cases:
Hamiltonian (s, t)-path of Ys. By Statements (1) and (2) of Casel: s,t € Y; for 1 < ¢ < 6. In this case,s and
Proposition 6,Ps, HCy, HC>, and HC3 can be combined ¢ are in the same partitioned subgraphs|f ¢ Y, and Y,
into a Hamiltonian(s, ¢)-path of Y (m,n) = Y'(4, 3). then the case can be verified by similar arguments in proving
Case2: s € Y; andt € Y for 1 <i,j < 6 andi # j. Case 1 of Lemma 14. Suppose that € Y, or Y;. Without
Depending on whether; andY; are adjacent subgraphs, wdoss of generality, assume thatt € Y,. By visiting every
consider the following subcases: vertex of Y5, we can obtain a Hamiltonian patR; of Ys.
Case2.1:Y; andY; are adjacent, i.e. they are neighBy Statements (1), (2), and (4) of Proposition/6(5, Fs,
boring partitioned subgraphs. In this subcakg,or Y; is HCs, and HC3 can be combined into a Hamiltonian cycle
Ys. Without loss of generality, assume thdt = Ys. Then, HC’ of Y2 UY5 U Y5 U Ys. Consider the following subcases:
seY forl <i <3, andt € Ys. Letp € Y; — {s} Case 1.1: (Y4, s,t) satisfies condition (F4). In this
andg € Ys — {t} such thatp ~ ¢ and (Y, ¢,t) does not subcaseY, contains no Hamiltoniaiis, ¢)-path. LetP, be
satisfy condition (F8). By Lemma 2;; contains a canonical the longest(s, t)-path of Y;. Let e4; andeyss be two edges
Hamiltonian(s, p)-path P;. By similar construction in Case in Y, such thatey,; € P, and,eqs € Py if [V(Py)| > 3,
1.2, Y5 contains a canonical Hamiltoniafy,¢)-path Ps. andeyss € Yy, — P, otherwise. Sincen > 5, ey does exist.
Then, P = P, = Ps forms a canonical Hamiltoniafs,t)- Let W = Y, — Py — e46. By Statement (3) of Proposition
path of Y; U Ys. Let Y,,,Ys be the partitioned subgraphss, each vertex ol/ can be embedded into cycléC; or
different fromY; andY;. Then,Y,, andY} are rectangles. By HC". Let the combined cycles to bHC] and HC*. Let
Lemma 1,Y,, andY} contain canonical Hamiltonian cyclese; € HC] ande* € HC* such thates; = e; andeys = e*.
HC, and HCj, respectively, such that their flat faces arBy Statement (2) of Proposition &, e4s, and HC{ can
placed to face’s. By Statements (1) and (2) of Propositiorbe merged into a pathiP*. Then, there exist two edges
6, P,HC,, and HC can be combined into a Hamiltonianess € P* ande* € HC* such thatess = e*. By Statement
(s,t)-path of Y (m,n) = Y (4, 3). (2) of Proposition 6,P* and HC* can be combined into a
Case2.2:Y; andY; are not adjacent. In this subcaseHamiltonian (s, t)-path of Y (m,n) with m = 5 or 6. The
Y,,Y; # Ys. Letp € Y, — {s}, ¢ € Y; — {t}, and construction of such a Hamiltoniafs, ¢)-path is shown in
r1,7T9 € Yg such thatp ~ T, q~T, and (}/6,7"1,7’2) does Flg 14(b)
not satisfy condition (F8). By Lemma 2} andY; contain Casel.2: (Y4, s, t) does not satisfy condition (F4). In
Hamiltonian (s, p)-path P; and (g, t)-path P;, respectively. this subcase}; contains a Hamiltoniars, t)-path P;. By
By similar construction in Case 1.2 contains a canonical Statement (2) of Proposition &, HC,, and HC' can be
Hamiltonian (ry, r2)-path Ps. Then, P = P; = P; = P; easily combined into a Hamiltoniafy, ¢)-path of Y (m,n)
is a Hamiltonian(s, t)-path ofY; UY; UYs. LetY, be the with m =5 or 6.
partitioned subgraph different fror;, Y;, and Ys. Then, Case2: s € Y; andt € Y; for 1 < 4,7 < 6 andi # j. In
Y, is a rectangle. By Lemma 1y, contains a canonical this cases andt are in the different partitioned subgraphs.
Hamiltonian cycle HC, whose one flat face is placed toWe only consider the case ofe Y; andt € Y;. The other
faceYs. Then, there exist two edgesc P ande, € HC,, case can be verified similarly. Lete Y; andg € Y, such
such thate = e,. By Statement (2) of Proposition € thatp ~ ¢ andq is a corner ofY;. Let P, be the longest
and HC\, can be combined into a Hamiltonids, ¢)-path of (g, t)-path ofY, and letWW = Y, — P,. Then, every vertex

(Advance online publication: 1 February 2019)



TAENG International Journal of Applied Mathematics, 49:1, [JAM 49 1 10

Fig. 13. (a) Three horizontal separations ®ifm, n) to obtain three rectangle¥;—Y3, two parallelogramsYs—Ys, and one trapezoid’s, (b) the
construction ofHP(Y (4, 3), s,t) under thats,t € Ys1 and (Ys1, s,t) satisfies condition (F8), and (c) the construction ®P (Y (4, 3), s, t) under
thats € Y7 andt € Ya, where bold dashed lines indicate the separation operationsvargpresents the destruction of an edge while constructing a
Hamiltonian (s, t)-path.

of W can be merged intdi Cs, as depicted in Fig. 14(c). a canonical Hamiltonian cyclé/ C; such that its flat faces
Let HC{, be the embedded Hamiltonian cycleXefUW. By are placed to face its neighboring partitioned subgraphs. By
Lemma 2,Y; contains a Hamiltoniaris, p)-path P;. Then, Lemmas 2 and 5H P(Y;, s;,t;) does exist and; contains

P’ = P, = P, forms a canonical Hamiltoniafs, t)-path of a canonical Hamiltoniar(s;,t;)-path P, for 1 < ¢ < 6,

Y1 U (Y, — W). By Statement (2) of Proposition 6, we carif (Y;,s;,t;) does not satisfy conditions (F6)—(F8), where
construct a canonical Hamiltonian cyd&C) of YoUY5. By s, andt; are any two distinct vertices df;. On the other
Statement (1) of Proposition &/ C5, HC{, and HC5 can hand, HC; and HC, (resp.,HC> and HC5) can be easily
be combined into a cycl€*. Then, there exist two edgescombined into a canonical Hamiltonian cycléC’ (resp.,

e/ € P’ ande* € C* such thate’ =~ e*. By Statement HCY) of Y1 UY} (resp.,Y> UY5). By the same arguments in
(2) of Proposition 6,P" and C* can be combined into a proving Lemma 14, we consider the following cases:
Hamiltonian (s, t)-path of Y'(m,n) with m = 5 or 6. The Casel: s,t € Y; for 1 <i < 6. Lets,t € Y,. Then,Y,
construction of such a Hamiltoniafs, ¢)-path is shown in contains a canonical Hamiltonig®, t)-path P, if (Y;,s,t)
Fig. 14(c). does not satisfy conditions (F6)—(F8). For the partitioned

In any case, we have constructed a Hamiltorfian)-path subgraphY,, . # ~, Y, contains a canonical Hamiltonian
of Y(m,n), where6 > m > 5. Thus, HP(Y (m,n),s,t) cycle HC, such that its flat faces are placed to face its
does exist under that, andYs arel-parallelograms. B neighboring partitioned subgraphs. Note that’jf=Y; is a

For the case thaty and Y; are 2-parallelograms, we gettrapezoid, we can construct a canonical Hamiltoniart)-
that [%] — 2 = 2, and hencen = 7 or 8. The following path of Y5 by the same arguments in proving Case 1.2 of
lemma shows the Hamiltonian connectivity¥ofm, n) under Lemma 14. There are two subcases:
that8 > m > 7, and can be verified by similar arguments in Casel.l: (Y,,s,t) satisfies condition (F6), (F7), or
proving Lemma 15. (F8). In this subcasey, = Yi, Y5, or Ys. In [20], we can
construct a canonical Hamiltonida, t)-path P of Y., —{w},
wherew is a corner ofY,, with s ~ w andt¢ ~ w. LetY,
be a neighboring partitioned subgraph Bf. Then, there
exists one edgéu,v) in HC, such thatu ~ w andv ~
w. By Statement (3) of Proposition &/C, andw can be
merged into a canonical Hamiltonian cydi&”! of Y, U{w}.
Then, we can find some parallel edges i), HC;, and
HC(C,'s, wherey # ~ andj # +. By Statements (1) and (2) of

Proof: By similar arguments in proving Lemma 15, theProposition 6,P,, HC,, and HC,’s can be combined into a
lemma can be proved. B Hamiltonian(s, t)-path of Y (m,n).

Finally, we consider thatn > 9. Then, Y, = Y; = Casel.2: (Y,,s,t) does not satisfy conditions (F6)—
P(m,[%]—2) is ax-parallelogram withx > 3. By similar  (F8). In this subcase, we can easily compute some parallel
arguments in proving Lemma 14, we verify the Hamiltoniardges inP, and HC,’s, wherel < « < 6 and¢ # ~. By
connectivity ofY (m,n) underm > 9 as follows. Statements (1) and (2) of Proposition8, and HC,’s can
be combined into a Hamiltoniafs, t)-path of Y (m, n).

Case2: s € V; andt € Y; for 1 < ¢ < 6 andi # j.
Depending on whether; andY; are adjacent neighbors, we
consider the following subcases:

Case2.1:Y; andY; are adjacent partitioned subgraphs.
Letp € Y¥; andq € Y; such thatp ~ ¢, and(Y;, s,p) and
(Yj,q,t) do not satisfy conditions (F6)—(F8). The vertices
Proof: By Lemmas 1 and 4Y;, 1 < ¢ < 6, contains p, ¢ can be easy to compute. By Lemmas 2 andYb,

Lemma 16. LetY (m,n) be anY-alphabet supergrid graph
such thatm >n+1>4andb5n—4 > 3m — 2, and lets, ¢
be two distinct vertices of (m,n). LetY;’s, 1 <i < 6, be
partitioned subgraphs o¥ (m,n) as defined in Fig13(a)
If Y, andY; are 2-parallelograms, theit’(m, n) contains a
Hamiltonian (s, ¢t)-path, and hencéf P(Y (m,n), s, t) does
exist.

Lemma 17. LetY (m,n) be anY-alphabet supergrid graph
such thatn > n+1 > 4 andbn—4 > 3m—2, and lets and
t be two distinct vertices df (m,n). LetY;’s, 1 < i < 6, be
partitioned subgraphs oY (m,n) as defined in Figl3(a)
If m > 9, thenY (m,n) contains a Hamiltoniar(s, t)-path,
and henceld P(Y (m,n), s, t) does exist.
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Fig. 14. (a) The partitioned subgraphs ¥{m, n) for m = 5, (b) the construction off P(Y'(5,n), s,t) under thats,t € Y4 and (Y4, s, t) satisfies
condition (F4), and (c) the construction &f P(Y (5,n), s,t) under thats € Y; andt¢ € Y4, where bold dashed lines indicate the separation operations
and ® represents the destruction of an edge while constructing a Hamilt¢sjah-path.

and Y; contain canonical Hamiltoniats, p)-path P, and a Hamiltonian (s, ¢)-path, and henced P(AB(m,n), s, t)
Hamiltonian (¢, t)-path P;. Then, P = P, = P; forms a does exist.
canonical Hamiltoniar{s, t)-path of Y; UY;. Let Y, be the
partitioned subgraph such that # Y; andY,, # Y;. Then,
we can easily find some parallel edgesfirand HC,,’s. By
Statements (1) and (2) of Proposition8,and HC,’s can
be combined into a Hamiltoniafs, t)-path of Y (m, n).
Case2.2:Y; andY; are not adjacent. L&t} = Y; UY,
and Y; = Y, U Y;s. By the constructions in [19] and
[20], we can construct a canonical Hamiltoniém , ¢;)-
path and(p., ¢2)-path of Y/ and Yy, respectively, where

,q1 € Y/ andps,q2 € V). Lets € Y/ andt € Y/, . . . .
thg;eY’ }ﬁ, c {;1,2522,2 Vs Yz}. If Ys, and&zf’ are adjacént into disjoint shaped supergrid subgraphs, including rectan-
then HIS(’YJ(m n) ; t)’ca;1 be conétructedj by the same algles,.trlangles, parallelograms, gnd trapezo!dg. By using the
guments in proving Case 2.1; otherwise, it can be construcgam'lton'c'ty and the Hamiltonian connectivity of shaped

. : upergrid graphs, we verify the Hamiltonian connectivity
by the same arguments in proving Case 2.2 of Lemma 1% N- and Y -alphabet supergrid graphs in which they can

Be partitioned into disjoint rectangles, parallelograms, and
trapezoids. The other types of alphabet supergrid graphs can
be verified to be Hamiltonian connected similarly. We leave
Sheir proofs to interested readers. On the other hand, the
Hamiltonian cycle problem on solid grid graphs was known
Lemma 18. LetY (m,n) be anY -alphabet supergrid graph to be polynomial solvable. However, it remains open for solid
such thatn > n+1 > 4 and5n—4 > 3m—2, and lets and¢ supergrid graphs in which there exists no hole.

be two distinct vertices df (m, n). Then,Y (m,n) contains
a Hamiltonian (s, t)-path, and henceH P(Y (m,n), s,t)
does exist.

V. CONCLUDING REMARKS

Based on the Hamiltonicity and Hamiltonian connectivity
of rectangular supergrid graphs, we prove that C-, F-,
and E-alphabet supergrid graphs are Hamiltonian connected.
These types of alphabet supergrid graphs can be partitioned
into disjoint rectangular supergrid subgraphs. In addition,
many other alphabet supergrid graphs can not be decomposed
into disjoint rectangles. However, they can be partitioned

(s,t)-path of Y(m,n) for m > 9, and hence the lemma
holds true.

It immediately follows from Lemmas 14-17 that th
following lemma holds true.
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Theorem 19. Let B(m, n) be anN-alphabet orY -alphabet
supergrid graph withm > n+ 1 > 4, and lets and ¢ be
two distinct vertices of3(m,n). Then,B(m,n) contains a
Hamiltonian (s, ¢t)-path, and hencél P(B(m,n), s,t) does
exist.
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