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Abstract—In this paper, we investigate the distributed optimal
control for multi-agent systems with impulsive effects. We
present sufficient condition to guarantee that the distributed
protocol can make desired performance index reach minimal
value for the impulsive multi-agent systems and the general
case, respectively. An example is also presented to illustrate the
efficiency of the obtained results.

Index Terms—multi-agent system, inverse optimal control,
consensus performance, impulse

I. INTRODUCTION

NOWADAYS, more and more researchers([1]-[5]) pay
attention to networks of systems, especially, the multi-

agent systems (MASs) due to its wide application in various
areas, for example, flocking in biology, camera network
in airports, formation control in unmanned aerial vehicles
and so on. Optimal control for MASs is recently studied
by lots of authors. For example, Cao et al.[6] investigated
the optimal consensus of first-order multi-agent systems by
using algebraic Riccati equation to get the optimal control
input and then proved that the communication topology is a
complete directed graph. Dong[7] used a local observer to
obtain the global information but only presented a suboptimal
design with respect to a performance index. In [8], Liu
and Geng investigated the optimal control problem for the
second-order multi-agent systems by using the Pontrayagin
maximum principle. Liao et al.[9] derived the controller of
multi-agent systems with error integral and preview action
that can guarantee the achievement of cooperative optimal
preview tracking.

However, as was pointed out in [10] and [11], the global
optimization problem generally needs the global information
which is not easily obtained int the multi-agent networked
system. So the most common difficulty about the cooperative
optimal control problem is that the obtained protocol is
not distributed([7]-[9]). Indeed, we can investigate the co-
operative optimal control problem by the inverse optimality
theory[12]. The basic idea of the inverse optimal design
is to analyze the performance of a stabilizing control by
computing its cost and demonstrating optimality with respect
to some well defined and meaningful performance index.
Recently, a considerable amount of the existing literature is
dedicated to finding optimal strategy subject to the inverse
optimal control problem for the multi-agent system. In [10]
and [11], the authors obtained the optimal distributed consen-
sus protocols by constructing a specified global performance
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index. In [13], the sufficient and necessary conditions are pro-
vided for globally optimal cooperative control problems on
directed graphs. Feng et al.[14] designed optimal distributed
consensus protocols for general identical linear continuous
time cooperative systems which not only minimize some
local quadric performances, but also regulate the consen-
sus rate for the multi-agent systems. Chen and Sun[15]
investigated the distributed optimal control of a multi-agent
consensus problem in an obstacle-laden environment. For
the general linear discrete time multi-agent systems on a
fixed, directed graph, Zhang et al.[16] designed a novel
linear quadratic regulator (LQR)-based optimal distributed
cooperative synchronization control.

At the same time, it has been noticed that all the above
literatures pay attention to either continuous-time or discrete-
time systems. In practice, impulsive effects, which mean
sudden jumps of some state variables at some instants,
usually exist in the real world, such as frequency-modulated
signal processing systems and bursting rhythm systems in
pathology. This kind of system dramatically reduces the cost
needed, which makes it more efficient and applicable than
other systems, thus having received considerable attention.
In the recent several decades, systems with impulse have
aroused the interest of many authors([17]-[21]), to name just
a few. Of particular relevances to this paper are the works,
Jiang et al.[19] designed an impulsive control protocol for
multi-agent linear dynamic systems on undirected graphs.
Xiong et al.[20] presented a criterion to guarantee the con-
sensus for a multi-agent directed network with nonlinear
perturbations provided that each row sum of the impulse
matrix is equal to zero. Guan et al.[21] studied the problem
of guaranteed performance consensus in second-order multi-
agent systems. Ma et al.[22] investigated the problem of
cooperative synchronization of nonlinear multi-agent sys-
tems with time delays and impulsive disturbances. In Han
et al.[23], for the multi-consensus problem of the second
order multi-agent networks with a directed topology, three
rectangular impulsive protocols were proposed to solve the
stationary multi-consensus and the dynamic multi-consensus.
However, to the best of the authors’ knowledge, to this day,
with few exception[24], there exist no other literatures which
discuss the problem that the distributed consensus protocol
can make the specified performance reach minimal value for
multi-agent systems with impulse. Different with [24] which
pays attention to the hybrid protocol, this paper aims to
design the distributed optimal consensus or tracking protocol
for both the leaderless and leader-following cases.

The organization of this paper is as follows. In Section
II, we show some concepts and results of matrix theory
and graph theory. In Section III, we present the consen-
sus or synchronization problem for the impulsive multi-
agent system with impulsive effects. Then we investigate
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the optimal cooperative regulator problem and the optimal
cooperative tracker problem for the above impulsive system
and the general case, respectively. In Section IV, numerical
simulation is presented to illustrate the feasibility of our main
results. In the last section, we give a brief discussion.

II. PRELIMINARIES

In this section, we will give several notations and some
results in matrix theory and algebraic graph theory which
shall be used throughout this paper.

First we provide some notations as follows. Let Z+ =
{1, 2, . . .} and N+ = {1, 2, . . . , N}. Rn denotes the
n−dimensional Euclidean space, Rn×m is the set of all
n × m real matrices and In ∈ Rn×n is an identity matrix.
1N = (1, 1, . . . , 1)T ∈ RN . A S.P.D. matrix A or A > 0
means that A is symmetric and positive definite. Also, a
S.P.S-D. matrix A or A ≥ 0 means that A is symmetric
and positive semi-definite. λmin(A)(λmax(A)) denotes the s-
mallest(largest) eigenvalue of S.P.S-D. matrix A. λ>0min(A)
means the smallest positive eigenvalue of S.P.S-D. matrix A.
For A ∈ RN×N , let ∥A∥ indicate the norm of A induced
by the Euclidean vector norm, i.e., ∥A∥ =

√
λmax(ATA).

A ⊗ B denotes the Kronecker product of matrix A and
B. d(x, S) = inf

y∈S
d(x, y) is the distance of a point from

the manifold S as given by the distance function d of the
embedding space. A function φ defined in [0,+∞) is a κ
class function which means that φ is continuous, strictly
monotone increasing, φ ≥ 0 and φ(0) = 0.

Let G = (N+, E,A) be a graph consisting of a vertex
set N+ = {1, 2, . . . , N}, an edge set E = {(j, i) : i, j ∈
N+} ⊂ N+ × N+ and an adjacency matrix A = (aij) ∈
RN×N . An edge (j, i) ∈ E implies that the agent i can
access the information of agent j. The set of neighbors of
vertex i is denoted by Ni = {j ∈ N+ : (j, i) ∈ E, j ̸= i}.
The degree matrix Ξ ∈ RN×N is a diagonal matrix with
Ξii =

∑
j∈Ni

aij and the Laplacian matrix L = Ξ− A and
L = (lij), i, j ∈ N+. Also, a path between any two distinct
vertices i and j is meant as a sequence of distinct edges of
G of the form (i, k1), (k1, k2), . . . , (kl, j). The graph is said
to contain a directed spanning tree if there exists a vertex,
v0, such that every other vertex can be connected to v0 by a
directed path starting from v0. Such a special vertex is then
called a root node. L has a simple zero eigenvalue if and
only if the directed graph contains a spanning tree. In this
paper, we assume that the graph has a directed spanning tree.
When considering the leader-following case, we assume that
the directed spanning tree with at least one non-zero pinning
gain connecting to a root node. Define di ≥ 0, i ∈ N+, by
the pinning gain coefficient and D = diag{d1, d2, . . . , dN}
is the pinning matrix. And di > 0 when the ith agent is
directed connected to the leader, while di = 0 otherwise.

III. INVERSE OPTIMAL CONTROL

As we know, the traditional first-order multi-agent system
is

ẋi(t) = ui(t), (1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ Rn and

ui(t) = (ui1(t), ui2(t), . . . , uin(t))
T ∈ Rn are the state

and the control input of ith agent at time t, respectively.

Motivated by [25], we construct a hybrid controller ui(t) =

u
(1)
i (t) + u

(2)
i (t) for (1) as follows.

u
(1)
i (t) = u

(c)
i (t)lk(t), u

(2)
i (t) =

∞∑
k=1

Bkxi(t)δ(t− tk),

(2)
where u

(c)
i (t) is the continuous control input. lk(t) = 1 as

t ̸= tk, and otherwise, lk(t) = 0. δ(·) is the Dirac impulse.
Here 0 = t0 < t1 < t2 < . . . < tk−1 < tk < . . .
and lim

k→∞
tk = +∞. Under the protocol (2), the system

(1) becomes a multi-agent system with impulsive effects as
follows. {

ẋi(t) = ui(t), t ̸= tk,
∆xi(tk) = Bkxi(tk), k ∈ Z+.

(3)

For simplicity, here we still denote u
(c)
i (t) by ui(t).

∆xi(tk) = xi(t
+
k ) − xi(t

−
k ) and Bk ∈ Rn×n is

impulse matrix where k ∈ Z+. Also, x(t0) =
(x1(t0), x2(t0), . . . , xN (t0))

T = x0, xi(t
+
k ) = lim

t→t+
k

xi(t)

and xi(tk) = xi(t
−
k ) = lim

t→t−
k

xi(t).

For the single-integrator multi-agent systems with impul-
sive effects, an important and interesting problem is whether
the distributed control which guarantees the consensus is
optimal for some specified performance index or not. In this
section, we will discuss this problem by the inverse optimal
approach of the impulsive system. Following we will present
a useful lemma about the inverse optimal approach of the
impulsive system[24].

Lemma 1: Consider the impulsive system{
ẋ(t) = A1x(t) +A2uc(t), x(t0) = x0, t ̸= tk,
∆x(tk) = (A3k − In)x(tk) +A4kud(tk), k ∈ Z+,

(4)
with quadratic hybrid performance functional

J(x0, uc(·), ud(·)) =
∫ +∞
0

[xT (t)Q1x(t) + uT
c (t)Ruc(t)]dt

+
∑

k∈Z+

[xT (tk)Q3kx(tk) + uT
d (tk)Q4kud(tk)],

(5)
where (uc(·), ud(·)) is a stable control with respect to a target
manifold S. Here A1, A2, A3k and A4k are matrices with
compatible dimension. Assume that there exists a positive
semi-definite matrix PT = P such that

AT
1 P + PA1 +Q1 − PA2R

−1AT
2 P = 0, (6)

AT
3kPA4k(Q4k +AT

4kPA4k)
−1AT

4kPA3k

−AT
3kPA3k + P −Q3k = 0.

(7)

Then the hybrid feedback control law

ϕc(x(t)) = −R−1AT
2 Px(t), t ̸= tk,

ϕd(x(tk)) = −(Q4k +AT
4kPA4k)

−1AT
4kPA3kx(tk)

(8)

is asymptotically stable with respect to the manifold S
which is the null space of P. Moreover, (8) can make
J(x0, uc(·), ud(·)) subject to the system (4) achieve the
minimal value J(x0, ϕc(·), ϕd(·)) = xT

0 Px0.
By using of the above lemma, next we will present the

distributed optimal control results for both the leaderless
and the leader-following cases, respectively. Firstly we will
consider the following linear quadratic regular problem

J(x0, u) =
∫ +∞
0

(xT (t)Q1x(t) + uT (t)Ru(t))dt
+

∑
k∈Z+

xT (tk)Q3kx(tk) (9)
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subject to the system (3). For a given control

u(t) = −(L⊗K)x(t), (10)

our purpose is to give the sufficient conditions to guarantee
that the control law (10) minimizes the cost performance
index (9) for some specified S.P.S-D. matrices Q1, Q3k and
R = R1 ⊗ R2 where R1 and R2 are two given S.P.D.
matrices.

Theorem 1: Consider the system (3) and the performance
index (9). Suppose that P1 = R1L is a S.P.S-D. matrix and
P2 is a S.P.D. matrix which satisfies that Mk = P2 − (In +
Bk)

TP2(In+Bk) is a S.P.S-D. matrix. Let the feedback gain
matrix K = R−1

2 P2. Then the control law (10) is optimal
with respect to the following performance index

J(x0, u) =
∫ +∞
0

[xT (t)(P1R
−1
1 P1)⊗ (P2R

−1
2 P2)x(t)

+uT (t)(R1 ⊗R2)u(t)]dt+
∑

k∈Z+

xT (tk)(P1 ⊗Mk)x(tk),

(11)
and is asymptotically stable with respect to the null space of
L ⊗ In. Moreover, if the graph G has a directed spanning
tree, the consensus is reached.

Proof: Let A1 = 0, A2 = IN ⊗ In, A3k = IN ⊗
(In + Bk), A4k = 0, R = R1 ⊗ R2 and Q4k = 0. Let
P = P1 ⊗ P2. Here P1 and P2 are two matrices which
satisfy all the conditions of Theorem 1. It is easy to verify
that the conditions (6) and (7) hold. From Lemma 1, we
obtain that u = −(L ⊗ K)x is optimal with respect to the
performance index (11), i.e., Q1 = (P1R

−1
1 P1)⊗(P2R

−1
2 P2)

and Q3k = P1 ⊗ Mk. Moreover, we obtain that under the
distributed control law u = −(L⊗K)x, the time derivative
of the Lyapunov function V (x) = xTPx along the solution
of the system (3) is

V̇ (x) = −2xT (P1 ⊗ P2)(L⊗K)x
= −2xT (P1 ⊗ P2)(R

−1
1 ⊗R−1

2 )(P1 ⊗ P2)x
= −2xTPR−1Px, t ̸= tk

and
V ((IN ⊗ (In +Bk))x(tk))− V (x(tk))

= xT (tk)[P1 ⊗ ((In +Bk)
TP2(In +Bk)− P2)]x(tk)

= −xT (tk)(P1 ⊗Mk)x(tk), k ∈ Z+

which imply asymptotic stability to the null space of P.
Because P2 and R1 are nonsingular, it follows that the null
space of P equals the null space of L ⊗ In. As a result,
u = −(L ⊗ K)x is asymptotically stable with respect to
the null space of L⊗ In. Furthermore, if the graph G has a
directed spanning tree, then the consensus is also achieved,
thus we complete the proof.

Remark 1: If Bk = 0 in the system (3), i.e., the multi-
agent systems don’t have impulse, then we can choose Mk =
0 and the corresponding result is reduced to Theorem 5.2 in
[11].

Remark 2: The conditions of Theorem 1 can be satisfied.
For example, when Bk = −pIn(0 < p < 1), it naturally
follows that Mk is symmetric positive semi-definite for any
k ∈ Z+. Also, for the case that the graph is undirected and
connected, we can choose R1 = I . Then the condition that
R1L is a S.P.S-D. matrix can be satisfied.

Moreover, the optimal control result in Theorem 1 can be
easily extended to the general first-order multi-agent systems
as follows.

Theorem 2: Consider the system{
ẋ(t) = (IN ⊗ F )x(t) + (IN ⊗G)u(t), t ̸= tk,
∆x(tk) = (IN ⊗Bk)x(tk), k ∈ Z+

(12)

and the performance index (9). Suppose that P1 = cR1L is
a S.P.S-D. matrix where the positive coupling gain c > c1

c2
.

Assume that P2 is a S.P.D. matrix which satisfies that Mk =
P2 − (In + Bk)

TP2(In + Bk) and N = P2GR−1
2 GTP2 −

FTP2 − P2F are S.P.S-D. matrices. Let the feedback gain
matrix K = R−1

2 GTP2. Then the distributed control law
u = −c(L ⊗ K)x is optimal with respect to the following
performance index

J(x0, u) =
∫ +∞
0

(xT (t)Q1x(t) + uT (t)(R1 ⊗R2)u(t))dt
+

∑
k∈Z+

xT (tk)(P1 ⊗Mk)x(tk),

(13)
where c1 = λmax(R1L ⊗ (N − KTRK)), c2 =
λ>0min(L

TR1L ⊗ (KTR2K)) and Q1 = c2LTR1L ⊗
(KTR2K)− cR1L⊗ (FTP2 + P2F ).

Lastly, for the leader-following case, we also can give the
optimal control analysis. Now we will consider the leader-
following case:{

ẋi(t) = Fxi(t) +Gui(t), t ̸= tk,
∆xi(tk) = Bk(xi(tk)− xl(tk)),

(14)

and
ẋl(t) = Fxl(t). (15)

Here xi(t), i ∈ N+ and xl(t) mean the position of the ith
agent (follower) and the leader at time t, respectively. Let
ei(t) = xi(t) − xl(t), i ∈ N+, we can obtain the error
system{

ė(t) = (IN ⊗ F )e(t) + (IN ⊗G)u(t), t ̸= tk,
∆e(tk) = (IN ⊗Bk)e(tk), k ∈ Z+.

(16)

Following we pay attention to the linear quadratic regular
problem

J(x0, u) =
∫ +∞
0

(xT (t)Q̄1x(t) + uT (t)R̄u(t))dt
+

∑
k∈Z+

xT (tk)Q̄3kx(tk) (17)

subject to the system (16). Here Q̄1, Q̄3k are S.P.S-D. matri-
ces and R̄ = R̄1⊗ R̄2 where R̄1 and R̄2 are S.P.D. matrices.
It is not difficult for us to obtain the following result.

Theorem 3: Consider the system (16) and the performance
index (17). Suppose that P̄1 = cR̄1(L+D) is a S.P.D. matrix,
where the positive coupling gain c satisfies c > c3

c4
. Assume

that P̄2 is a S.P.D. matrix which satisfies that are S.P.S-D.
matrices. Let the feedback gain matrix K̄ = R̄−1

2 GT P̄2.
Then the distributed protocol u = −c((L + D) ⊗ K̄)e(t)
is optimal with respect to the following performance index

J(x0, u) =
∫ +∞
0

(eT (t)Q̄1e(t) + uT (t)(R̄1 ⊗ R̄2)u(t))dt
+

∑
k∈Z+

eT (tk)(P̄1 ⊗ M̄k)e(tk).

(18)
Here we have c3 = λmax(R̄1(L + D) ⊗ (N̄ − K̄T R̄2K̄)),
c4 = λ>0min((L+D)T R̄1(L+D)⊗ (K̄T R̄2K̄)) and Q̄1 =
c2(L+D)T R̄1(L+D)⊗(K̄T R̄2K̄)−cR̄1(L+D)⊗(FT P̄2+
P̄2F ).

Remark 3: In Theorem 2-3, we extend the corresponding
result in [10] and [11] to the impulsive case.
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Fig. 1. The communication topology G1

IV. EXAMPLE

In this section, we give an example to show the feasi-
bility of our main results. We choose the communication
topology as G1 and consider a multi-agent system con-
sisting of seven agents with the dynamics depicted in (3)
where n = 2. Also, Bk = −0.1I2, tk − tk−1 = 0.3,
R1 = I7 and R2 = P2 = I2. We have given the
comparison between the special performance index (11)
and other kinds of performance indexes. For example, in
Table 1, under the control law (10), we have presented the
performance indexes (11), J1 =

∫ +∞
0

(xT (t)(P1R
−1
1 P1) ⊗

(P2R
−1
2 P2)x(t) + uT (t)u(t))dt +

∑
k∈Z+

xT (tk)x(tk) and

J2 =
∫ +∞
0

(xT (t)x(t) + uT (t)u(t))dt +
∑

k∈Z+

xT (tk)x(tk),

respectively. From Table 1, one can see that the value of
the performance index (11) is less than that of the tradi-
tional performance index under three different initial cases,
i.e., (a)(0 1 1 1 − 1 0 0 − 1 − 1 − 1 2 0 1 1),
(b)(0.4 0.5 1.5 1 − 0.5 0 0 1 − 0.5 − 1 1 0.5 − 1 0)
and (c)(−0.5 0.6 1 0.5 0.35 0 0.5 0.55 − 1 0.5 − 1 − 0.45
0 − 0.65).

TABLE I
THE PERFORMANCE INDEX UNDER DIFFERENT INITIAL CONDITIONS

J J1 J2
case (a) 0.0612 2.3818 19.5677
case (b) 0.0874 0.5164 3.7680
case (c) 0.2296 11.2853 92.7865

V. CONCLUSION

In this paper, we have investigated the distributed optimal
control for multi-agent system with impulsive effects. We
have provided the sufficient conditions to ensure that the
consensus protocol can make the specified performance index
reach minimal value. In addition, for the general first-order
multi-agent system, we have discussed the optimal cooper-
ative regulator and the optimal cooperative tracker, respec-
tively. Lastly, an example has been presented to illustrate our
main results.
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