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Abstract—In this paper, a reduced high-order compact finite
difference scheme is proposed for numerical solution of the
generalized Kuramoto-Sivashinsky equation. This approach
uses implicit high-order compact finite difference scheme to
attain high accuracy for generalized Kuramoto-Sivashinsky
equation and combines proper orthogonal decomposition tech-
nique to improve the computational efficiency of the high-
order compact finite difference scheme. The validation of the
proposed method is demonstrated by four test problems. The
numerical solutions are compared with the exact solutions and
the solutions obtained by the corresponding high-order compact
finite difference scheme. The numerical results indicate that
the proposed method can largely improve the computational
efficiency without a significant loss in accuracy for solving
generalized Kuramoto-Sivashinsky equation compared with the
corresponding high-order compact finite difference scheme.

Index Terms—high-order compact finite difference scheme,
proper orthogonal decomposition, generalized Kuramoto-
Sivashinsky equation, computational efficiency.

I. INTRODUCTION

AS is said in [1] the generalized Kuramoto-Sivashinsky
(GKS) equation is originally derived in the context

of plasma instabilities, flame front propagation, and phase
turbulence in reaction-diffusion system. Thus, GKS equation
can as a model for a variety of physical contexts, such as
long waves on the interface between two viscous fluids, thin
hydrodynamics films, thin-water-film flow on a vertical wall
[2]. Accordingly, GKS is an important nonlinear evolution
partial differential equation. Meanwhile, GKS is a simple
partial differential equation which exhibits chaotic behavior
[2]. In this paper, we shall concentrate on the numerical
solution of GKS equation [3]

ut + 0.5(u2)x + αuxx + βuxxx + γuxxxx = 0 (1)

where α, β, γ are real constants. For β = 0, The equation (1)
is usually called the Kuramoto-Sivashinsky (KS) equation.
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In generally, it is difficult to get an exact solution for the
GKS equation because of its complex nonlinearity, thus, it
is solved by numerical methods. Meanwhile,GKS equation
is also an important model for testing various numerical
algorithm. In recently, several types of numerical methods
have been developed for numerical simulation of the KS
equation and GKS equation. For example, Akrivis [4] pre-
sented a Crank-Nicolson-type finite difference scheme for
KS equation with periodic boundary conditions. Khater et al.
[5] extended the Chebyshev spectral collocation method to
solve GKS equation. Mittal et al. [1] implemented quantic
B-spline collocation method to find numerical solution of
KS equation. Uddin et al. [2] applied radial basis function
based meshfree method for the solution of KS equation.
Later, Dabboura et al. [6] used moving least squares meshfree
method to solve the GKS equation. Lakestani et al. [3]
proposed B-spline function to solve this equation. Lai et
al. [7] and Otomo et al. [8] investigated KS equation by
lattice Boltzmann method. Singh et al. [9] presented the high-
order compact finite difference scheme to simulate the KS
equation.

In the last decade, the high-order compact finite difference
scheme (CFDS) has widely been paid attention and imple-
mented for numerical simulation of various types of partial
differential equations. Such as parabolic equations [10],
Burgers’ equation [11], Korteweg-de Vries (KdV) equation
[10], Navier-Stokes equations [12], [13], Schrödinger equa-
tion [14], Sine-Gordon equation [15], Rosenau-RLW equa-
tion [16], [17], time fractional sub-diffusion equation [18].
Although the high-order CFDS usually can get high accurate
solution, it need very small time step for numerical stability
consideration. Thus, high-order CFDS may be need long
computational time for very long period of time of evolution.
In general, the computational accuracy and computational
efficiency are often the two important factors to assess a
numerical algorithm, and that once the computational time
is in conflict with computational accuracy, the algorithm with
less time is usually given priority. Therefore, it is necessary
to develop a high-order CFDS with high computational
efficiency to simulate the GKS equation. In recent years,
the model reduction technique such as proper orthogonal
decomposition (POD) has received increasing attention in the
field of computational mechanics [19]. POD, also known as
Karhunen-Loève decomposition (KLD), principal component
analysis (PCA) or singular value decomposition (SVD),
provides a powerful technique to reduce a large number
of interdependent variables to a much smaller number of
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uncorrelated variables while retaining as much as possible
of the variation in the original variables [20]-[22]. Thus,
using POD technique, the computational cost can be greatly
reduced.

In the past few decades, the POD technique has been
attracted wide attention and used in the numerical solution
to construct some reduced models. For example, Lou et
al. coupled POD technique with finite difference method,
finite element method and finite volume method to solve
the parabolic equations [23]-[25], Burgers’ equation [26],
Navier-Stokes equations [27], [28], and hyperbolic equations
[29]. Bialecki et al. [30] used the finite element method and
POD to solve transient thermal problems. Bill et al. [31]
coupled finite difference method with POD to solve transient
mass transport problems. Zhang et al. had proposed a fast and
efficient meshless method based on POD for solving tran-
sient heat conduction problems [32] and convection-diffusion
problems [19]. Recently, Dehghan et al. used POD and
radial basis function meshfree methods to solve groundwater
equation[33] and shallow water equations [34]. However, to
our best knowledge, there are no published results when
POD is used to reduce the implicit high-order compact finite
difference scheme (CFDS) for GKS equation. The main goal
of this paper is to construct a numerical algorithm which
has high computational accuracy and efficiency for solving
GKS equation. Thus, the focus of the present paper is on
combining the CFDS and the POD method, namely the
CFDS&POD, to solve GKS equation.

The organization of this paper is as follows. In Section
II, a brief background is given on the theoretical foun-
dations of high-order CFDS and POD technique. Then,
the CFDS&POD is explained for the GKS equation. In
Section III, four test numerical examples are presented to
demonstrate the capabilities and potential of the proposed
method. Also the comparisons of the global relative error
at different time and the computational time of CFDS and
CFDS&POD method are discussed. A summary is given at
the end of the paper in Section IV.

II. NUMERICAL ALGORITHMS

In this section, we first briefly review an implicit high-
order CFDS and POD technique, then based on CFDS
and POD, the CFDS&POD for solving GKS equation is
constructed.

A. An implicit high-order CFDS for GKS equation

To gain the solution of the GKS equation, discretizations
are needed in both space and time. In the high-order CFDS,
one can obtain all the numerical derivatives along a grid line
using small stencils and solving a linear system of equations
[10], that is, the derivatives of u are obtained by solving a
tridiagonal or pentadiagonal system for any scalar value u .
More details on how to derive such formulae can be found
in [10], [13].

For simplicity, we consider a uniform one-
dimensional mesh which consisting of N
nodes:x1, x2, . . . , xi−1, xi, xi+1, . . . , xN . The mesh size is
denoted by h = xi+1 − xi . Because the GKS equation (1)
contains the first-order to fourth-order spatial derivatives,
in the following, we will list final formulas of an implicit

high-order compact finite difference scheme for first-order
derivative to fourth-order derivative.

For the first-order derivative at interior nodes, we have the
formula [10]

αu′i−1 + u′i + αu′i+1 = b
ui+2 − ui−2

4h
+ a

ui+1 − ui−1
2h

(2)

a simple sixth-order tridiagonal scheme is given by the
coefficients [10]

α =
1

3
, a =

14

9
, b =

1

9
(3)

For those near boundary nodes, approximation formulas
for the derivatives of non-periodic problems can be derived
by one-sided schemes. More details about the derivations for
the first derivative can be referenced in [10], [13].

At boundary point 1, the sixth-order formula for the first-
order derivative is [10], [13]

u′1 + 5u′2 = 1
h (− 197

60 u1 −
5
12u2+

5u3 − 5
3u4 + 5

12u5 −
1
20u6)

(4)

At boundary point 2, the sixth-order formula for the first-
order derivative is [10], [13]

2
11u
′
1 + u′2 + 2

11u
′
3 = 1

h (− 20
33u1−

35
132u2 + 34

33u3 −
7
33u4 + 2

33u5 −
1

132u6)
(5)

At boundary point N − 1, the sixth-order formula for the
first-order derivative is [10], [13]

2
11u
′
N−2 + u′N−1 + 2

11u
′
N = 1

h ( 20
33uN + 35

132uN−1

− 34
33uN−2 + 7

33uN−3 −
2
33uN−4 + 1

132uN−5)
(6)

At boundary point N , the sixth-order formula for the first-
order derivative is [10], [13]

5u′N−1 + u′N = 1
h ( 197

60 uN + 5
12uN−1−

5uN−2 + 5
3uN−3 −

5
12uN−4 + 1

20uN−5)
(7)

For the second-order derivative at interior nodes, one can
derive the formula [9], [10]

αu′′i−1 + u′′i + αu′′i+1 =

bui+2−2ui+ui−2

4h2 + aui+1−2ui+ui−1

h2

(8)

which provides a α−family of fourth-order triadiagonal
schemes with a = 4

3 (1−α), b = 1
3 (−1+10α). When α = 2

11 ,
the scheme becomes sixth-order accurate [10]. But in the
paper, we choose α = 1

10 because that sixth-order scheme is
not convergence in our numerical experiments. For α = 1

10 ,
Eq. (8) reduced to [9]

1

10
u′′i−1 + u′′i +

1

10
u′′i+1 =

12

10h2
(ui+1 − 2ui + ui−1) (9)

Similar to the scheme for first-order derivative at boundary
point 1, the fourth-order formula for second-order derivative
is [9]

u′′1 + 1
10u
′′
2 = 12

10h2 ( 115
36 u1 −

1555
144 u2

+ 89
6 u3 −

773
72 u4 + 151

36 u5 −
11
16u6)

(10)

At boundary point N , the fourth-order formula for second-
order derivative is [9]

1
10u
′′
N−1 + u′′N = 12

10h2 ( 115
36 uN −

1555
144 uN−1

+ 89
6 uN−2 −

773
72 uN−3 + 151

36 uN−4 −
11
16uN−5)

(11)
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The matrix representation of the scheme for first-order and
second-order derivatives are given as follows

Bxu
′ = Axu (12)

Bxxu
′′ = Axxu (13)

where
u = (u1, u2, . . . , uN )

T (14)

Bx =



1 5
2
11

1 2
11

1
3

1 1
3

. . .
. . .

. . .
1
3

1 1
3

2
11

1 2
11

5 1


(15)

Ax =
1

h



−197
60

−5
12

5 −5
3

5
12

−1
20

−20
33

−35
132

34
33

−7
33

2
33

−1
132

−1
36

−7
9

0 7
9

1
36

. . .
. . .

. . .
. . .

. . .
−1
36

−7
9

0 7
9

1
36

1
132

−2
33

7
33

−34
33

35
132

20
33

1
20

−5
12

5
3

−5 5
12

197
60


(16)

Bxx =


1 1

10
1
10

1 1
10

. . .
. . .

. . .
1
10

1 1
10

1
10

1

 (17)

Axx =

12
10h2



115
36

−1555
144

89
6

−773
72

151
36

−11
16

1 −2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2 1
−11
16

151
36

−773
72

89
6

−1555
144

115
36


(18)

As far as third-order and fourth-order derivatives in GKS
equation are concerned, we also can use Taylor expansion to
deduce high-order implicit CFDS, and this may be tedious
and labour-consuming. Here, we approximate the third-
order and fourth-order derivatives by formula (12) and (13)
directly, i.e.

Bxu
′′′ = Axu

′′ (19)

Bxxu
(4) = Axxu

′′ (20)

After the spatial derivative is discretized by the compact
scheme (12), (13), (19) and (20), we obtain a system of initial
value problem of ordinary differential equations (ODEs),

du

dt
= L(u) (21)

where the operator L(u) denotes the residual. This set of
ODEs can be discretized by a third-order TVD Runge-Kutta
(TVD-RK3) method, which is given as follows [11]:

u(1) = un + ∆tL(un),

u(2) = 3
4un + 1

4u(1) + 1
4∆tL(u(1)),

un+1 = 1
3un + 2

3u(2) + 2
3∆tL(u(2)).

(22)

and thus, the solutions of u(x, t) at the required time level
are obtained.

Other higher order versions of time discretization method
such as the fourth-order four-stage Runge-Kutta (RK4)
method can be also applied.

From the above, we can give solving process of the CFDS
for GKS equation in one time step, that is, the first-order
spatial derivative in Eq. (1) is obtained by solving Eq. (12),
the second-order spatial derivative is obtained by solving Eq.
(13), third-order derivative is obtained by solving Eq. (19)
and fourth-order derivative uses Eq. (20). Then, the TVD-
RK3 method is applied to approximate the corresponding
semi-discrete equation.

B. The review of POD technique

We briefly describe the POD method, following [19]. For
a detailed presentation, the reader can refer to [20]-[29] .
Meanwhile, a detailed discussion about the equivalence of
the POD, KLD, PCA and SVD can be referred to [20]-[22].

This section has mainly been taken from [32]. The main
idea of the POD is to find a set of ordered orthonormal basis
vectors in a subspace where a random vector takes its values,
such that the samples in the sample space can be expressed
optimally using the selected first k basis vectors [20]. In the
paper, we use SVD to construct the optimal basis. According
to the POD theory in [23], the high dimension data generally
rely on the use of a sequence of snapshots to build a
low-dimensional discretized system. Thus, the fundamental
notion of POD is the snapshots which can be obtained from
either the numerical simulation or experiments. The set of
snapshots can be expressed as a N ×d matrix Ts as follows

Ts =
(
T1,T2, . . . ,Td

)
(23)

where the columns of Ts represent snapshots, d is the
number of the snapshots.

In the following, we first generate a group of optimal
basis from the set of snapshots Ts. In order to construct
the optimal POD basis, we use SVD method, which can be
viewed as the extension of the eigenvalue decomposition for
the case of non-square matrices. Using the SVD on matrix
Ts, we have

Ts = U

(
Dr 0
0 0

)
VT (24)

where U = UN×N and V = Vd×d are orthogonal
matrices,Dr = diag(λ1, λ2, . . . , λr). The matrix U =
(Ψ1,Ψ2, . . . ,ΨN )contains the orthogonal eigenvectors of
TsT

T
s , while the singular values λi(i = 1, 2, . . . , r) satisfy

λ1 ≥ λ2 ≥ . . . ≥ λr > 0.
If we denote d columns of Ts by al =

(T l1, T
l
2, . . . , T

l
N )T (l = 1, 2, . . . , d), and define a projection
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Pk as follows

Pk(al) =
k∑
i=1

(Ψi,a
l)Ψi (25)

where 0 < k ≤ d and (., .) denotes the inner product of
vectors, then according to [23], one has the following result:

‖al − Pk(al)‖2 ≤ λk+1 (26)

where ‖.‖2 is standard norm of vector. Therefore,
Ψ1,Ψ2, . . . ,Ψk are a group of the optimal POD basis and
stored in basis matrix Φ = (Ψ1,Ψ2, . . . ,Ψk). Obviously,
the basis matrix fulfills the orthogonality condition, i.e.,
ΦTΦ = I ( I is unit matrix of dimension k ).

C. The CFDS&POD method for GKS equation

In the following, we combine CFDS with POD method to
derive CFDS&POD for GKS equation.

If u of Eqs. (12), (13), (19) and (20) are substituted for

u∗ = ΦW = ΦN×k(W)k×1, (27)

we have
BxΦW′ = AxΦW (28)

BxxΦW′′ = AxxΦW (29)

BxΦW′′′ = AxΦW′′ (30)

and
BxxΦW(4) = AxxΦW′′ (31)

Multiplying Eqs. (28)-(31) by ΦT from left, we get

(ΦTBxΦ)k×k(W′)k×1 = (ΦTAxΦ)k×k(W)k×1 (32)

(ΦTBxxΦ)k×k(W′′)k×1 = (ΦTAxxΦ)k×k(W)k×1 (33)

(ΦTBxΦ)k×k(W′′′)k×1 = (ΦTAxΦ)k×k(W′′)k×1 (34)

and

(ΦTBxxΦ)k×k(W(4))k×1 = (ΦTAxxΦ)k×k(W′′)k×1
(35)

Similarly, if u of (22) is substituted for

u∗n = ΦWn = ΦN×k(Wn)k×1, n = 0, 1, 2, . . . (36)

and noting that ΦTΦ = I , we obtain TVD-RK3 for the
reduced solution as follows

W(1) = Wn + ∆tL(Wn),

W(2) = 3
4Wn + 1

4W(1) + 1
4∆tL(W(1)),

Wn+1 = 1
3Wn + 2

3W(2) + 2
3∆tL(W(2)).

(37)

where W0 = ΦTu0 = ΦT (u01, u
0
2, . . . , u

0
N ), Once reduced

solution Wn+1 is obtained from Eq. (37), one can obtain
the global solution un+1 = ΦWn+1 .

Here, we summarize the CFDS&POD algorithm for GKS
equation as follows:

(1) Generate the snapshots (samples) ensemble Ts ;
(2) Use SVD method to obtain the optimal POD basis

matrix Φ ;
(3) Solve reduced Eqs. (32) and (33) to get the reduced

first-order derivative W′ and second-order derivative W′′ ;
(4) Solve reduced Eqs. (34) and (35) to get the reduced

third-order derivative W′′′ and fourth-order derivative W(4);

(5) Solve the Eq. (37) and get the reduced solution Wn+1

;
(6) Expand the reduced solution to the global solution:

un+1 = ΦWn+1 .
Form the above algorithm, it can be clearly found that

the CFDS&POD only solves k × k system equations (Eqs.
(32) to (35)) at each time loop, while CFDS scheme needs
to solve N ×N system equations (Eqs. (12), (13), (19) and
(20)) at each time loop. In general, N is much larger than k ,
which implies that CFDS&POD requires less computational
time than that of CFDS, although the SVD processes needs
some extra expense.

III. NUMERICAL EXAMPLES AND DISCUSSION

In this section, to test the CFDS&POD proposed in
the above section, numerical simulations of GKS and GS
equations are performed. In comparison with the analytical
solutions and CFDS solutions, the accuracy and efficiency
of CFDS&POD are validated. To illustrate accuracy of the
method, we compute the global relative error (GRE) which
is defined as follows [8], [9]

GER =

∑
i |u(xi, t)− u∗(xi, t)|∑

i |u∗(xi, t)|
(38)

where u(xi, t), u
∗(xi, t) are numerical solution and exact

solution, respectively.
Example 1 In this example, we first consider the GS

equation, represented by α = γ = 1 and β = 0. The exact
solution is [1]-[3],[5]-[9]

u∗(x, t) = b+ 15
19

√
15
19 [tanh(κ(x− bt− x0))+

11 tanh3(κ(x− bt− x0))]
(39)

where b = 5, κ = 1
2

√
11
19 and x0 = −12. We will use

this solution, evaluated at t = 0 , as the initial condition,
and the boundary conditions correspond to the data from
the exact solution, too. The computational domain is fixed
on the interval [−30, 30] . The obtained solutions and point-
wise absolute errors of CFDS with 121 uniformly distributed
points at time t = 1, 2, 3 and 4 are shown in Fig. 1.
Meanwhile, we also plot the corresponding numerical results
of CFDS&POD with 30 POD bases for comparison purposes
(see Fig. 2). In our computations, the time step ∆t = 0.001.
It not difficult to see that the results of CFDS&POD are
in very good agreement with those of CFDS and exact
solutions. In order to make further improvement on the
computational accuracy of CFDS&POD, the comparison of
the global relative errors obtained by CFDS and CFDS&POD
at different time levels t ≤ 4 taking different nodes and
time steps are listed in Tables I and II. It can be seen that
the accuracy of CFDS&POD is almost identical with that
of CFDS under the same nodes and time steps. Table III
shows the computational time of CFDS and CFDS&POD at
t = 4 for different nodes. It can be seen that under the same
number of nodes, the computational times of CFDS&POD
are less than those of CFDS, especially the more nodes, the
higher computational efficiency is obtained.

Example 2 Consider Eq. (1) with α = −1, β = 0 and
γ = 1. The exact solution of the problem is given by [1]-
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TABLE I
THE GLOBAL RELATIVE ERRORS OF CFDS AT DIFFERENT NODES AND TIMES FOR EXAMPLE 1

node numbers time step
CFDS

t = 1 t = 2 t = 3 t = 4
61 1E-2 4.04E-4 5.33E-4 7.77E-4 1.10E-3
121 1E-3 2.39E-5 3.42E-5 4.64E-5 6.26E-5
241 1E-4 1.61E-6 2.23E-6 3.07E-6 4.12E-6

TABLE II
THE GLOBAL RELATIVE ERRORS OF CFDS&POD AT DIFFERENT NODES AND TIMES FOR EXAMPLE 1

node numbers time step
CFDS&POD

t = 1 t = 2 t = 3 t = 4

61 1E-2 4.15E-4 5.44E-4 7.85E-4 1.10E-4

121 1E-3 1.23E-4 1.24E-4 1.33E-4 1.76E-4

241 1E-4 8.17E-5 8.26E-5 8.06E-5 9.28E-5

TABLE III
COMPARE THE COMPUTATIONAL TIME AT t = 4 WITH DIFFERENT NUMBER OF NODES FOR EXAMPLE 1

node numbers time step
computational time(second)

CFDS CFDS&POD

61 1E-2 0.335781 0.185879

121 1E-3 5.78383 1.296004

241 1E-4 192.504437 14.911494

-30 -20 -10 0 10 20 30

x

4

5

6

u
(x

,t
)

t=1

t=2

t=3

t=4

(a) The solutions of the CFDS

-30 -20 -10 0 10 20 30

x

0

0.5

1

1.5

2

a
b

so
lu

te
 e

rr
o

r

10
-3

t=1

t=2

t=3

t=4

(b) The absolute errors of the CFDS

Fig. 1. The solutions and absolute errors of CFDS at t = 1, 2, 3 and 4
with 121 nodes for Example 1.

[3],[5]-[7]
u∗(x, t) = b+ 15

19
√
19

[−3 tanh(κ(x− bt− x0))

+ tanh3(κ(x− bt− x0))]
(40)

-30 -20 -10 0 10 20 30

x

4

5

6

u
(x

,t
)

t=1

t=2

t=3

t=4

(a) The solutions of the CFDS&POD
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x
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2

3

4

a
b

so
lu

te
 e

rr
o

r

10
-3

t=1

t=2

t=3

t=4

(b) The absolute errors of the CFDS&POD

Fig. 2. The solutions and absolute errors of CFDS&POD at t = 1, 2, 3
and 4 with 121 nodes for Example 1.

The following parameters have been used:b = 5, κ = 1
2
√
19

and x0 = −25.
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(a) The solutions of the CFDS
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Fig. 3. The solutions and absolute errors of CFDS at t = 6, 8, 10 and 12
with 101 nodes for Example 2.

In this example, the computational domain is fixed on
the interval [−50, 50] . Similar to the Example 1, we also
consider three different node numbers, that is, 101, 201
and 401 nodes uniformly distributed in the computational
domain. Fig. 3 and Fig. 4 plot the numerical solutions and
point-wise absolute errors of CFDS and CFDS&POD with
30 POD bases at time t = 6, 8, 10 and 12, respectively. It can
be found that the simulating results obtained by both CFDS
and CFDS&POD are in excellent agreement with the exact
solutions after a relatively long period of time of evolution.
Meanwhile, in Tables IV and V the global relative errors of
CFDS and CFDS&POD are recorded at time t = 6, 8, 10
and 12 with different nodes and time steps. It can be seen
that the CFDS&POD is less accurate than the CFDS in this
example. Table VI shows the computational time of CFDS
and CFDS&POD with 30 POD bases at t = 12 and different
nodes. It can be clearly found that the computational time
of CFDS&POD is much less than that of CFDS under the
same number of nodes. Moreover, it also can be seen that
the computational efficiency of CFDS&POD increases as the
number of node increases.

Example 3 In this example, we consider the GKS equation
with α = γ = 1 and β = 4 . The exact solution of the
problem is given by [6], [7]

u∗(x, t) = b+ 9− 15[tanh(κ(x− bt− x0))+

tanh2(κ(x− bt− x0)) + tanh3(κ(x− bt− x0))]
(41)
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Fig. 4. The solutions and absolute errors of CFDS&POD at t = 6, 8, 10
and 12 with 101 nodes for Example 2.

where b = 6, κ = 0.5 and x0 = −10. Similar to the previous
examples, the initial condition and boundary condition are
taken from the exact solution.

For comparison purposes, we also plot the numerical
solutions and point-wise absolute errors of CFDS and
CFDS&POD with 40 POD bases at time t = 1, 2, 3 and
4 in Figs. 5 and 6, respectively. It can be seen that the
CFDS&POD scheme is slightly less accurate than that of
CFDS scheme. Meanwhile, the global relative error for the
solutions of GKS equation at different times and nodes can
be found in Tables VII and VIII. It can be seen that the
order of accuracy of the CFDS&POD is the same as that
of the CFDS under the same number of nodes and time
step. Table IX reports the computational time of CFDS and
CFDS&POD with 40 POD bases at t = 4 with different
number of nodes and time steps. It can be obviously seen
that compared with CFDS, the CFDS&POD greatly saved
the time-consuming and vastly improved the computational
efficiency as the number of nodes increases.

Example 4 In this example, we consider the following
equation with α = 1, γ = 0.5 and β = 0 . The exact solution
of the problem is taken from [3]

u∗(x, t) = − 1
κ + 60

19κ(−38γκ2 + α)tanhθ

+120γκ3tanh3θ
(42)

where θ = κx + t and κ = (1/2)
√

11α/19γ. Again,
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TABLE IV
THE GLOBAL RELATIVE ERRORS OF CFDS AT DIFFERENT NODES AND TIMES FOR EXAMPLE 2

node numbers time step
CFDS

t = 6 t = 8 t = 10 t = 12

101 1E-2 7.79E-8 8.28E-8 8.55E-8 1.04E-7

201 1E-3 4.89E-8 4.85E-8 6.27E-8 1.37E-8

401 1E-4 3.34E-8 3.30E-8 4.33E-8 9.88E-8

TABLE V
THE GLOBAL RELATIVE ERRORS OF CFDS&POD AT DIFFERENT NODES AND TIMES FOR EXAMPLE 2

node numbers time step
CFDS&POD

t = 6 t = 8 t = 10 t = 12

101 1E-2 4.59E-7 5.52E-7 6.38E-7 7.12E-7

201 1E-3 4.40E-7 5.48E-7 6.52E-7 7.58E-7

401 1E-4 4.56E-7 5.76E-7 6.92E-7 8.07E-7

TABLE VI
COMPARE THE COMPUTATIONAL TIME AT t = 12 WITH DIFFERENT NUMBER OF NODES FOR EXAMPLE 2

node numbers time step
computational time(second)

CFDS CFDS&POD

101 1E-2 1.700317 0.465633

201 1E-3 43.676295 4.160707

401 1E-4 2638.773898 76.513533

TABLE VII
THE GLOBAL RELATIVE ERRORS OF CFDS AT DIFFERENT NODES AND TIMES FOR EXAMPLE 3

node numbers time step
CFDS

t = 1 t = 2 t = 3 t = 4

61 1E-2 2.63E-2 3.39E-2 3.71E-2 3.64E-2

121 1E-3 1.60E-3 1.70E-3 2.60E-3 5.10E-3

241 1E-4 1.04E-4 1.07E-4 1.67E-4 3.22E-4

TABLE VIII
THE GLOBAL RELATIVE ERRORS OF CFDS&POD AT DIFFERENT NODES AND TIMES FOR EXAMPLE 3

node numbers time step
CFDS&POD

t = 1 t = 2 t = 3 t = 4

61 1E-2 2.72E-2 1.30E-2 1.26E-2 1.50E-2

121 1E-3 1.30E-3 1.20E-3 2.10E-3 4.50E-3

241 1E-4 2.49E-4 2.30E-4 3.44E-4 5.72E-4

TABLE IX
COMPARE THE COMPUTATIONAL TIME AT t = 4 WITH DIFFERENT NUMBER OF NODES FOR EXAMPLE 3

node numbers time step
computational time(second)

CFDS CFDS&POD

61 1E-2 0.364877 0.21566

121 1E-3 6.741534 2.047361

241 1E-4 227.451492 23.850858

the boundary and initial conditions are given by the exact
solution on the interval [−30, 20].

Similar to the examples above, the numerical solutions and
point-wise absolute errors of CFDS and CFDS&POD with
40 POD bases at time t = 1, 2, 3 and 4 are depicted in Figs.
7 and 8 , respectively. It can be seen that the CFDS&POD
scheme is slightly less accurate than that of CFDS scheme.
Meanwhile, Tables X and XI show the global relative errors
of CFDS and CFDS&POD at different times and nodes,
respectively. Table XII presents the computational time of

CFDS and CFDS&POD with 40 POD bases at t = 4 with
different number of nodes and time steps. From Tables X to
XII, it can be also seen that the CFDS&POD greatly saves
compuational time and gets the same compuational accuracy
compared with the CFDS.

IV. CONCLUSION

In this paper, the CFDS&POD method is presented and
applied to solve GKS equation. In this algorithm, the numer-
ical simulation results or experiment data are firstly collected
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TABLE X
THE GLOBAL RELATIVE ERRORS OF CFDS AT DIFFERENT NODES AND TIMES FOR EXAMPLE 4

node numbers time step
CFDS

t = 1 t = 2 t = 3 t = 4

76 1E-2 1.20E-3 2.20E-3 3.60E-3 5.40E-3

151 1E-3 7.81E-5 1.41E-4 2.27E-4 3.40E-4

301 1E-4 4.919E-6 8.89E-6 1.43E-5 2.13E-5

TABLE XI
THE GLOBAL RELATIVE ERRORS OF CFDS&POD AT DIFFERENT NODES AND TIMES FOR EXAMPLE 4

node numbers time step
CFDS&POD

t = 1 t = 2 t = 3 t = 4

76 1E-2 1.20E-3 2.20E-3 3.90E-3 5.60E-3

151 1E-3 7.86E-5 1.58E-4 2.39E-4 3.68E-4

301 1E-4 4.64E-6 1.07E-5 3.53E-5 3.04E-4

TABLE XII
COMPARE THE COMPUTATIONAL TIME AT t = 4 WITH DIFFERENT NUMBER OF NODES FOR EXAMPLE 4

node numbers time step
computational time(second)

CFDS CFDS&POD

76 1E-2 0.498469 0.278459

151 1E-3 10.66866 2.278924

301 1E-4 367.119599 26.274226
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Fig. 5. The solutions and absolute errors of CFDS at t = 1, 2, 3 and 4
with 121 nodes for Example 3.
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Fig. 6. The solutions and absolute errors of CFDS&POD at t = 1, 2, 3
and 4 with 121 nodes for Example 3.
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Fig. 7. The solutions and absolute errors of CFDS at t = 1, 2, 3 and 4
with 151 nodes for Example 4.

as snapshots, then the optimal POD basis is obtained by
SVD, finally POD in conjunction with the implicit high-order
CFDS is applied to generate the reduced model.

To the best of our knowledge, this is the first time for
CFDS&POD method to be used for solving GKS equation.
The efficient and accuracy of the proposed algorithm were
examined by four test examples, the findings can be summa-
rized as follows:

(1) the numerical results obtained by CFDS&POD are
found to be in very good agreement with the exact solutions
and the corresponding CFDS solutions, but compared with
the CFDS, the accuracy of CFDS&POD is more or less
reduced in some examples.

(2) as far as the computational time is concerned, it can be
found that compared with the corresponding CFDS method,
the CFDS&POD method can bring significant computational
time saving for solving GKS equation, especially for larger
number of nodes and smaller time step cases.

(3) as the same as CFDS, the approximate process of
CFDS&POD needs not any transformation or linearization,
thus it is easy to implement to a nonlinear equation and easy
to program.
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