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Abstract—In the paper, the notion of dual harmonic mixed
quermassintegrals in the classical Brunn-Minkowski theory is
extended to that of Orlicz dual harmonic mixed quermassin-
tegrals in the Orlicz-Brunn-Minkowski theory. The analogs of
the classical dual Cauchy-Kubota formula, the dual Minkowski
isoperimetric inequality and the dual Brunn-Minkowski in-
equality are established for this new dual Orlicz harmonic
mixed quermassintegrals.

Index Terms—Dual Orlicz-Brunn-Minkowski theory, Or-
licz dual harmonic quermassintegral, dual Orlicz Minkowski
isoperimetric inequality, integral geometry, convex geometric
analysis.

I. INTRODUCTION

BEGINNING with the groundbreaking articles [13], [25],
[26] and the very recent work [10], the classical Brunn-

Minkowski theory of convex bodies (see, e.g., [6], [40], [41])
was extended to the Orlicz stage, which is known as the
Orlicz Brunn-Minkowski theory. Analogous to the way that
Orlicz spaces generalize Lp- spaces (see [36]), it represents
a generalization of the Lp-Brunn-Minkowski theory, which
emerged in the early 1960s (see [4]), began largely with
the initial works [19], [20] in the mid 1990s, and expanded
rapidly thereafter (see, e.g., [2], [3], [5], [11], [15], [18], [21],
[22], [23], [24], [30], [31], [33], [34], [35], [37], [39], [42],
[45], [46], [49]).

Lutwak’s dual Brunn-Minkowski theory, introduced in the
1970s, helped achieving a major breakthrough in the solution
of the Busemann-Petty problem in the 1990s. In contrast
to the Brunn-Minkowski theory, in the dual theory, convex
bodies are replaced by star-shaped sets, and projections onto
subspaces are replaced by inter-sections with subspaces. The
machinery of the dual theory includes dual mixed volumes
and important auxiliary bodies known as intersection bodies
(see, e.g., [7], [8], [9], [12], [17], [27], [28], [47]). Recently,
the dual Orlicz-Brunn-Minkowski theory for star bodies was
made by Zhu, Zhou and Xu [48], and later by Gardner,
Hug, Weil and Ye [11]. Then followed by Jin, Yuan and
Leng [16], [32], et al. In some respects, this is more delicate
than the Orlicz-Brunn-Minkowski theory for convex bodies,
partly due to the various flavors of star sets that have to be
considered. Radial Orlicz addition for two or more star sets
is introduced and its basic properties are established. At the
same time, they established two fundamental inequalities, the
dual Orlicz-Minkowski inequality and the dual Orlicz-Brunn-
Minkowski inequality.

As usual, x · y denotes the standard inner product of x
and y in Rn; B = {x ∈ Rn : x · x ≤ 1} and Sn−1 = ∂B
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denote the unit ball and unit sphere in Rn, respectively. The
volume of B is πn/2/Γ(1+n/2), where Γ(·) is the Gamma
function. For a compact set K in Rn which is star shaped
with respect to the origin, define the radial function ρK of K
by ρK(x) = max{λ ≥ 0 : λx ∈ K} for x ∈ Rn\{o}. If ρK
is continuous we shall call K a star body (about the origin).
A star body which is centrally symmetric with respect to the
origin will be called a centered body. We shall use Sn

o , and
Sn
e to denote respectively the set of star bodies (about the

origin) and the set of centered bodies. Two star bodies K and
L are dilates (of one another) if ρK(u)/ρL(u) is independent
of u ∈ Sn−1. Obviously, for K,L ∈ Sn

o ,

K ⊆ L if and only if ρK ≤ ρL. (1)

Hence, a star body is uniquely determined by its radial
function. If c > 0, we have

ρ(cK, x) = cρ(K,x), for x ∈ Rn\{o}. (2)

More generally, from the definition of the radial function it
follows immediately that for T ∈ GL(n) the radial function
of the image TK = {Ty : y ∈ K} of K is given by (see
[40])

ρ(TK, x) = ρ(K,T−1x), for x ∈ Rn\{o}, (3)

where T−1 is the inverse of T .
Lutwak [29] introduced the dual quermassintegrals of star

bodies which is given by

W̃n−i(K) = Ṽn−i(K,B) =
1

n

∫
Sn−1

ρiK(u)dS(u) (4)

for any i ∈ R, where S is the spherical Lebesgue measure on
Sn−1 (i.e., the (n− 1)-dimensional Hausdorff measure) and
W̃0(K) = V (K) is the volume of K, W̃n(K) = V (B) =
ωn = πn/2/Γ(1 + n/2) is the volume of the unit ball B in
Rn.

Denote by voli(·) the i-dimensional volume. The impor-
tance of the dual quermassintegrals lies in the fact that
the (n − i)th dual quermassintegral of a star body K is
proportional to the mean of the i-dimensional volumes of
the slices of K by the i-dimensional subspaces ξ of Rn, that
is (see [27]),

W̃n−i(K) =
ωn

ωi

∫
G(n,i)

voli(K ∩ ξ)dµi(ξ), (5)

i = 0, 1, · · · , n−1, where G(n, i), µi and voli(K∩ξ) denote
the Grassmannian manifold of i-dimensional linear sub-
spaces of Rn, the normalized Haar measure on G(n, i) and
the i-dimensional volume of slice of K by an i−dimensional
subspace ξ ⊂ Rn, respectively. Equation (5) is the well-
known dual Cauchy-Kubota formula.

To study the first variation of dual quermassintegrals is
an effective approach to find new geometric quantities or
measures induced by star bodies.
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For star bodies K,L ∈ Sn
o , i ∈ R, i ̸= n and any ε > 0,

then ith dual mixed quermassintegrals, W̃i(K,L), is defined
by:

W̃i(K,L) =
1

n− i
lim

ε→0+

W̃i(K+̃ε ◦ L)− W̃i(K)

ε

=
1

n

∫
Sn−1

ρn−i−1
K (u)ρL(u)dS(u), (6)

where λ ◦K+̃µ ◦L = {λx+̃µy : x ∈ K, y ∈ L, λ, µ ∈ R+}
denotes the radial Minkowski linear combination, and

ρ(λ ◦K+̃µ ◦ L, ·) = λρ(K, ·) + µρ(L, ·).

Apparently, for K,L ∈ Sn
o and i ∈ R with i ̸= n,

the following integral representation for the ith dual mixed
quermassintegrals, W̃i(K,L), of K,L is obtained from (6):

W̃i(K,L) =
1

n

∫
Sn−1

ρn−i−1
K (u)ρL(u)dS(u).

If K,L ∈ Sn
o , and λ, µ ≥ 0 (not both zero), then for

p > 0, the Lp-radial combination, λ ◦ K+̃pµ ◦ L ∈ Sn
o is

defined by:

ρ(λ ◦K+̃pµ ◦ L, ·)p = λρ(K, ·)p + µρ(L, ·)p.

For K,L ∈ Sn
o , p > 0, real i ̸= n and any ε > 0, the

ith dual Lp-mixed quermassintegrals, W̃p,i(K,L), of K,L
is defined by

W̃p,i(K,L) =
p

n− i
lim

ε→0+

W̃i(K+̃pε ◦ L)− W̃i(K)

ε

=
1

n

∫
Sn−1

ρK(u)n−i−pρL(u)
pdS(u). (7)

Meanwhile, we define

W̃i(K) = W̃0,i(K,L) = lim
p→0+

W̃p,i(K,L).

In particular, for p > 0,

Ṽp(K,L) = W̃p,0(K,L) =
1

n

∫
Sn−1

ρK(u)n−pρL(u)
pdS(u)

is called the dual Lp-mixed volute of star bodies K and L
If K,L ∈ Sn

o , and λ, µ ≥ 0 (not both zero), then for p > 0,
the Lp-harmonic radial combination, λ ⋄K+̃−pµ ⋄ L ∈ Sn

o

is defined by:

ρ(λ ⋄K+̃−pµ ⋄ L, ·)−p = λρ(K, ·)−p + µρ(L, ·)−p. (8)

When p ≥ 1, it is easy to show that the Lp-harmonic
radial combination reduces to Lutwak’s Lp-harmonic radial
combination (see [20]).

For ε > 0, p > 0 and real i ̸= n, the ith dual Lp-harmonic
mixed quermassintegrals of K,L ∈ Sn

o is defined by

W̃−p,i(K,L) =
−p

n− i
lim

ε→0+

W̃i(K+̃−pε ⋄ L)− W̃i(K)

ε

=
1

n

∫
Sn−1

ρK(u)n+p−iρL(u)
−pdS(u).

(9)

In particular, W̃−p,0(K,L) is also denoted by Ṽ−p(K,L),
the dual Lp-harmonic mixed volume of star bodies K and
L. When p ≥ 1, the dual Lp-harmonic mixed quermassinte-
grals reduces to Wang and Leng’s dual Lp-harmonic mixed
quermassintegrals (see [43]).

The aim of this paper is to extend the notion of dual Lp-
harmonic mixed quermassintegrals to the Orlicz setting. The
above cited works [11], [48], and especially the work [10],
make it apparent that the time is ripe.

Throughout this paper, we consider convex (or concave)
function ϕ : [0,∞) → [0,∞), that is strictly increasing
and satisfies ϕ(0) = 0. Let Φ1 be the class of convex and
strictly increasing functions ϕ : [0,∞) → [0,∞) such that
limt→0+ ϕ(t) = 0, limt→∞ ϕ(t) = +∞, and ϕ(0) = 0.
Let Φ2 be the class of concave and strictly increasing
functions ϕ : [0,∞) → [0,∞) such that limt→0+ ϕ(t) =
0, limt→∞ ϕ(t) = +∞, and ϕ(0) = 0.

Let K,L ∈ Sn
o with radial functions ρK , ρL, respectively.

For α, β ≥ 0(not both zero) and ϕ ∈ Φ1 or ϕ ∈ Φ2, we define
the Orlicz harmonic radial combination α ⋄K+̃−ϕβ ⋄ L of
K and L by

ρ(α ⋄K+̃−ϕβ ⋄ L, u)−1

= inf

{
λ > 0 : αϕ

(
1

λρK(u)

)
+ βϕ

(
1

λρL(u)

)
≤ ϕ(1)

}
,

u ∈ Sn−1. The rest of this paper is organized as follows.
In Section 2, we list some basic and well-known facts
from Convex Geometry. Some basic properties of the Orlicz
harmonic radial combination will be given in Section 3. In
Section 4, we compute the Orlicz first variations of ith dual
quermassintegrals

−ϕ′
r(1)

n− i
lim

ε→0+

W̃i(K+̃−ϕε ⋄ L)− W̃i(K)

ε

=
1

n

∫
Sn−1

ϕ

(
ρK
ρL

)
ρK(u)n−idS(u),

for i = 0, 1, · · · , n − 1. From this, if i ̸= n is any real,
we introduce the following concept of Orlicz dual harmonic
mixed quermassintegrals.

Definition 1.1. Let K,L ∈ Sn
o and ϕ ∈ Φ1 or ϕ ∈ Φ2. Then

for real i ̸= n,

W̃−ϕ,i(K,L) =
1

n

∫
Sn−1

ϕ

(
ρK
ρL

)
ρK(u)n−idS(u).

The quantity W̃−ϕ,i(K,L) is called the dual Orlicz mixed
quermassintegrals of K and L. If i = 0, then W̃−ϕ,0(K,L) is
just the dual Orlicz mixed volume Ṽ−ϕ(K,L) (see [11]), and
if ϕ(t) = tp with p > 0, then W̃−ϕ,i(K,L) = W̃−p,i(K,L)
is the ith dual Lp-mixed quermassintegrals.

In Section 5, we show the probabilistic essence of dual
Orlicz mixed quermassintegrals from integral geometry (see,
e.g., [36], [38]). The classical dual Cauchy-Kubota formula
has a natural Orlicz extension:

Theorem 1.2. Suppose K,L ∈ Sn
o and ϕ ∈ Φ1 or ϕ ∈ Φ2.

Then for each i = 1, · · · , n− 1,

W̃−ϕ,i(K,L)

=
ωn

ωn−i

∫
G(n,n−i)

Ṽ
(n−i)
−ϕ (K ∩ ξ, L ∩ ξ)dµn−i(ξ),

where Ṽ
(n−i)
−ϕ (K∩ξ, L∩ξ) denotes the dual harmonic Orlicz

mixed volume of the (n− i)-dimensional star bodies K ∩ ξ
and L ∩ ξ in the subspace ξ.
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In Section 6, the dual Lp-Minkowski inequality and the
dual Lp-Brunn-Minkowski inequality for the dual quermass-
integrals are generalized to the Orlicz setting, respectively.

Theorem 1.3. Suppose that K,L ∈ Sn
o and real i ∈ R. If

ϕ ∈ Φ1, then for i < n or n < i < n+ 1,

W̃−ϕ,i(K,L) ≥ W̃i(K)ϕ

((
W̃i(K)

W̃i(L)

) 1
n−i

)
. (10)

If ϕ ∈ Φ2, then for i > n+1, the inequality (10) is reversed.
If ϕ is strictly convex (or strictly concave), the equality holds
in every inequality if and only if K and L are dilates of each
other.

Theorem 1.4. Suppose that K,L ∈ Sn
o and real i ∈ R. If

ϕ ∈ Φ1, then for i < n or n < i < n+ 1,

ϕ

((
W̃i(K+̃−ϕL)

W̃i(K)

) 1
n−i

)
+ ϕ

((
W̃i(K+̃−ϕL)

W̃i(L)

) 1
n−i

)
≤ ϕ(1). (11)

If ϕ ∈ Φ2, then for i > n+1, the inequality (11) is reversed.
If ϕ is strictly convex (or strictly concave), the equality holds
in every inequality if and only if K and L are dilates of each
other.

II. PRELIMINARIES

We say that the sequence {ϕi}, of ϕi ∈ Φ1 (or ϕi ∈ Φ2),
is such that ϕi → ϕ0 ∈ Φ1 (or Φ2) provided

|ϕi − ϕ0|I := max
t∈I

|ϕi(t)− ϕ0(t)| → 0,

for every compact interval I ⊂ R.
We define a metric δ̃ on Sn

o , the radial Hausdorff metric,
as follows: If K,L ∈ Sn

o , then

δ̃(K,L) = sup
u∈Sn−1

|ρK(u)−ρL(u)| := ||ρ(K, ·)−ρ(L, ·)||∞.

A sequence {Ki} of star bodies is said to be convergent to
K if δ̃(Ki,K) → 0, as i → ∞. Therefore, a sequence of
star bodies Ki converges to K if and only if the sequence
of radial functions ρ(Ki, ·) converges uniformly to ρ(K, ·).

For K,L ∈ Sn
o , p ≥ 1, the dual Lp-harmonic mixed

volume Ṽ−p(K,L) of K and L is defined by

Ṽ−p(K,L) =
−p

n
lim

ε→0+

V (K+̃−pε ⋄ L)− V (K)

ε
. (12)

In [20] Lutwak also proved the following integral rep-
resentation for the dual Lp-harmonic mixed volume: For
K,L ∈ Sn

o , and p ≥ 1,

Ṽ−p(K,L) =
1

n

∫
Sn−1

ρK(u)n+pρL(u)
−pdS(u). (13)

Remark 2.1. In fact, the condition p ≥ 1 of inequalities (12)
and (13) can be extended to p > 0.

In [43], Wang and Leng proposed the concept of the
dual Lp-harmonic mixed quermassintegrals, and proved the
following analog of the Minkowski inequality for the dual
Lp-harmonic mixed quermassintegrals: If K,L ∈ Sn

o , p ≥ 1,
then for i < n or n < i < n+ p,

W̃−p,i(K,L) ≥ W̃i(K)
n+p−i
n−i W̃i(L)

−p
n−i , (14)

and for i > n + p, inequality (14) is reversed. The equality
holds in every inequality if and only if K and L are dilates
each other.

Wang and Leng also proved the dual Lp-Brunn-Minkowski
inequality for the dual Lp-harmonic mixed quermassinte-
grals: Suppose K,L ∈ Sn

o , p ≥ 1 and α, β > 0. If real
i < n or n < i < n+ p, then (see [44])

W̃i(α ⋄K+̃−pβ ⋄ L)−p/(n−i)

≥ αW̃i(K)−p/(n−i) + βW̃i(L)
−p/(n−i), (15)

For i > n+ p inequality (15) is reversed. the equality holds
in every inequality if and only if K and L are dilates each
other.

Remark 2.2. In fact, the condition p ≥ 1 in inequalities (14)
and (15) can be extended to p > 0.

The dual cone-quermassintegral measure, W̃K(ω), of the
star body K is a Borel measure on Sn−1 defined for a Borel
set ω ⊆ Sn−1 by

W̃K(ω) =
1

n

∫
ω

ρn−i
K dS.

For K ∈ Sn
o , it will be convenient to use the dual

quermassintegral-normalized conical measure V ∗
n−i(K, ·) de-

fined by

W̃i(K)dV ∗
n−i(K, ·) = 1

n
ρn−i
K dS. (16)

Note that the dual quermassintegral-normalized conical mea-
sure V ∗

n−i(K, ·) is a probability measure on Sn−1.
Suppose that µ is a probability measure on a space X

and f : X → I ⊂ R is a µ-integrable function, where I is
a possibly infinite interval. Jensen’s inequality states that if
ϕ : I → R is a convex function, then∫

X

ϕ
(
f(x)

)
dµ(x) ≥ ϕ

(∫
X

f(x)dµ(x)

)
. (17)

If ϕ : I → R is a concave function, then inequality (17)
is reversed. If ϕ is strictly convex (or strictly concave ),
the equality holds in every inequality if and only if f(x)
is constant for µ-almost all x ∈ X (see [14]).

III. ORLICZ HARMONIC RADIAL COMBINATION

We first define the Orlicz harmonic radial combination.

Definition 3.1. Let K,L ∈ Sn
o with radial functions ρK , ρL,

respectively. For α, β ≥ 0(not both zero) and ϕ ∈ Φ1

or ϕ ∈ Φ2, define the Orlicz harmonic radial combination
α ⋄K+̃−ϕβ ⋄ L of K and L as the star body whose radial
function at u ∈ Sn−1 is given by

ρ(α ⋄K+̃−ϕβ ⋄ L, u)−1

= inf

{
λ > 0 : αϕ

(
1

λρK(u)

)
+ βϕ

(
1

λρL(u)

)
≤ ϕ(1)

}
.

(18)

It is noted that ρ(α ⋄K+̃−ϕβ ⋄ L, u) can be defined for all
u ∈ Sn−1 by the equation

αϕ

(
ρ(α ⋄K+̃−ϕβ ⋄ L, u)

ρK(u)

)
+βϕ

(
ρ(α ⋄K+̃−ϕβ ⋄ L, u)

ρL(u)

)
= ϕ(1).
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If ϕ(t) = tp with 0 < p < ∞, then α ⋄ K+̃−ϕβ ⋄ L =
α ⋄K+̃−pβ ⋄ L.

From (3) and the definition of Orlicz harmonic radial
combination, we have:

Proposition 3.2. Suppose that K,L ∈ Sn
o , and α, β ≥ 0. If

ϕ ∈ Φ1 or ϕ ∈ Φ2, then for T ∈ GL(n),

T (α ⋄K+̃−ϕβ ⋄ L) = α ⋄ TK+̃−ϕβ ⋄ TL.

Proof. For u ∈ Sn−1, by (3) and the Definition 3.1 of Orlicz
harmonic radial combination, we have

ρ(α ⋄ TK+̃−ϕβ ⋄ TL, u)−1

= inf

{
λ > 0 : αϕ

(
1

λρTK(u)

)
+βϕ

(
1

λρTL(u)

)
≤ ϕ(1)

}
= inf

{
λ > 0 : αϕ

(
1

λρK(T−1u)

)
+βϕ

(
1

λρL(T−1u)

)
≤ ϕ(1)

}
= ρ(α ⋄K+̃−ϕβ ⋄ L, T−1u)−1

= ρ(T (α ⋄K+̃−ϕβ ⋄ L), u)−1.

Since K,L ∈ Sn
o , 0 < ρK < ∞ and 0 < ρL < ∞,

then 1
λρK

→ 0 and 1
λρL

→ 0 as λ → ∞. By this and the
assumption that ϕ is strictly increasing in (0,∞), the function

λ 7→ αϕ

(
1

λρK

)
+ βϕ

(
1

λρL

)
is strictly decreasing and continuous in (0,∞). Thus, we
have:

Lemma 3.3. Suppose that K,L ∈ Sn
o and u ∈ Sn−1. If

ϕ ∈ Φ1 or ϕ ∈ Φ2, then

αϕ

(
1

λρK(u)

)
+ βϕ

(
1

λρL(u)

)
= ϕ(1)

if and only if

λ = ρ(α ⋄K+̃−ϕβ ⋄ L, u)−1.

For K ∈ Sn
o , define the real numbers RK and rK by

RK = max
u∈Sn−1

ρK(u) and rK = min
u∈Sn−1

ρK(u).

Note that 0 < rK < RK < ∞, for all K ∈ Sn
o . If K,L ∈

Sn
o , let R = max{RK , RL} and r = min{rK , rL}. For

α, β ≥ 0, let M = max{α, β},m = min{α, β} and c =
α+β. Since ϕ is continuous and strictly increasing in (0,∞),
hence the inverse ϕ−1 is also continuous and increasing in
(0,∞).

Lemma 3.4. Suppose that K,L ∈ Sn
o . Then

(1) If ϕ ∈ Φ1, then for all u ∈ Sn−1,

rϕ−1

(
ϕ(1)

2M

)
≤ ρ(α ⋄K+̃−ϕβ ⋄ L, u) ≤ Rϕ−1

(
ϕ(1)

c

)
.

(2) If ϕ ∈ Φ2, then for all u ∈ Sn−1,

rϕ−1

(
ϕ(1)

c

)
≤ ρ(α ⋄K+̃−ϕβ ⋄ L, u) ≤ Rϕ−1

(
ϕ(1)

2m

)
.

Proof. Since two assertions can be proved similarly, we only
give that the proof of (1). Suppose u ∈ Sn−1 and ρ(α ⋄
K+̃−ϕβ ⋄ L, u)−1 = λ. By Lemma 3.3 and the fact that ϕ
is strictly increasing on (0,∞), we have

ϕ(1) = αϕ

(
1

λρK(u)

)
+ βϕ

(
1

λρL(u)

)
≤ Mϕ

(
1

λrK

)
+Mϕ

(
1

λrL

)
≤ 2Mϕ

(
1
λr

)
.

Since the inverse ϕ−1 of ϕ is strictly increasing on (0,∞),
we have the lower bound for ρ(α ⋄K+̃−ϕβ ⋄ L, u):

1

λ
≥ rϕ−1

(
ϕ(1)

2M

)
.

On the other hand, from Lemma 3.3 and Jensen’s inequal-
ity, together with the convexity and the strictly increasing on
(0,∞) of ϕ, we have

ϕ(1)

α+ β
= α

α+βϕ

(
1

λρK(u)

)
+ β

α+βϕ

(
1

λρL(u)

)
≥ α

α+βϕ

(
1

λRK

)
+ β

α+βϕ

(
1

λRL

)
≥ ϕ

(
α

α+β · 1
λRK

+ β
α+β · 1

λRL

)
≥ ϕ

(
1
λR

)
.

Then we obtain the upper estimate:

1

λ
≤ Rϕ−1

(
ϕ(1)

c

)
.

We now show that the Orlicz harmonic radial combination
of two star bodies is also a star body.

Lemma 3.5. Suppose that ϕ ∈ Φ1 or ϕ ∈ Φ2 and α, β ≥ 0
(not both zero). If K,L ∈ Sn

o , then α ⋄K+̃−ϕβ ⋄ L ∈ Sn
o .

Proof. Let u0 ∈ Sn−1. For any subsequence {ui}i∈N ⊂
Sn−1 such that ui → u0 as i → ∞, we need to show

ρ(α⋄K+̃−ϕβ⋄L, ui) → ρ(α⋄K+̃−ϕβ⋄L, u0), as i → ∞.

Let

ρ(α ⋄K+̃−ϕβ ⋄ L, ui) =
1

λi
:= µi, λi > 0.

Then Lemma 3.4 gives

rϕ−1

(
ϕ(1)

2M

)
≤ µi ≤ Rϕ−1

(
ϕ(1)

c

)
, for ϕ ∈ Φ1,

and

rϕ−1

(
ϕ(1)

c

)
≤ µi ≤ Rϕ−1

(
ϕ(1)

2m

)
, for ϕ ∈ Φ2.

Since K,L ∈ Sn
o , we have 0 < rK ≤ RK < ∞, 0 <

rL ≤ RL < ∞. Thus, there exist a, b such that 0 < a ≤
µi ≤ b < ∞, for all i. To show that the bounded sequence
{µi}i∈N converges to ρ(α ⋄ K+̃−ϕβ ⋄ L, u0), we show
that every convergent subsequence of {µi}i∈N converges
to ρ(α ⋄ K+̃−ϕβ ⋄ L, u0). Denote an arbitrary convergent
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subsequence of {µi}i∈N by {µi}i∈N as well, and suppose
that for this subsequence

µi → µ0 as i → ∞.

It is clear that a ≤ µ0 ≤ b. Lemma 3.3 and the fact
ρ(α ⋄K+̃−ϕβ ⋄ L, ui) = µi show that

αϕ

(
µi

ρK(ui)

)
+ βϕ

(
µi

ρL(ui)

)
= ϕ(1).

Since ρK and ρL are continuous on Sn−1, together with
the continuity of ϕ and µi → µ0, it follows that

αϕ

(
µ0

ρK(u0)

)
+ βϕ

(
µ0

ρL(u0)

)
= ϕ(1).

By Lemma 3.3, we have

µ0 = ρ(α ⋄K+̃−ϕβ ⋄ L, u0).

This shows

ρ(α⋄K+̃−ϕβ⋄L, ui) → ρ(α⋄K+̃−ϕβ⋄L, u0), as i → ∞.

Therefore, the continuity of ρ(α ⋄K+̃−ϕβ ⋄ L, ·) is proved
and α ⋄K+̃−ϕβ ⋄ L ∈ Sn

o .
From the Definition 3.1 of the Orlicz harmonic radial

combination, for c > 0, we have

ρ(α ⋄ (cK)+̃−ϕβ ⋄ (cL), u)−1

= inf

{
λ > 0 : αϕ

(
1

λρcK(u)

)
+βϕ

(
1

λρcL(u)

)
≤ ϕ(1)

}
= c−1 inf

{
cλ > 0 : αϕ

(
1

cλρK(u)

)
+βϕ

(
1

cλρL(u)

)
≤ ϕ(1)

}
= c−1ρ(α ⋄K+̃−ϕβ ⋄ L, u)−1.

This gives that

ρ(α ⋄ (cK)+̃−ϕβ ⋄ (cL), u) = cρ(α ⋄K+̃−ϕβ ⋄ L, u). (19)

Next, we show that the Orlicz harmonic radial combination
+̃−ϕ : Sn

0 → Sn
o is continuous.

Lemma 3.6. Suppose that ϕ ∈ Φ1 or ϕ ∈ Φ2. If Ki, Li ∈ Sn
o

and Ki → K ∈ Sn
o , Li → L ∈ Sn

o , as i → ∞, then

α ⋄Ki+̃−ϕβ ⋄ Li → α ⋄K+̃−ϕβ ⋄ L, as i → ∞

for all α and β.

Proof. Suppose u ∈ Sn−1. We will show that

ρ(α ⋄Ki+̃−ϕβ ⋄ Li, u)

→ ρ(α ⋄K+̃−ϕβ ⋄ L, u), as i → ∞. (20)

Let

ρ(α ⋄Ki+̃−ϕβ ⋄ Li, u) =
1

λi
:= µi, λi > 0,

and write Ri = max{RKi
, RLi

} and ri = min{rKi
, rLi

}.
Then Lemma 3.4 gives

riϕ
−1

(
ϕ(1)

2M

)
≤ µi ≤ Riϕ

−1

(
ϕ(1)

c

)
, for ϕ ∈ Φ1,

and

riϕ
−1

(
ϕ(1)

c

)
≤ µi ≤ Riϕ

−1

(
ϕ(1)

2m

)
, for ϕ ∈ Φ2.

Since Ki → K ∈ Sn
o and Li → L ∈ Sn

o , as i → ∞,
we have RKi → RK < ∞, RLi → RL < ∞, and rKi →
rK > 0, rLi → rL > 0. By the fact that the functions Ri =
max{RKi , RLi} and ri = min{rKi , rLi} are continuous, we
have Ri → R < ∞, ri → r > 0. Thus, there exist a, b such
that

0 < a ≤ µi ≤ b < ∞, for all i ∈ N. (21)

To show that the bounded sequence {µi}i∈N converges
to ρ(α ⋄ K+̃−ϕβ ⋄ L, u), we show that every convergent
subsequence of {µi}i∈N converges to ρ(α⋄K+̃−ϕβ ⋄L, u).
Denote an arbitrary convergent subsequence of {µi}i∈N by
{µi}i∈N as well, and suppose that for this subsequence we
have

µi → µ0 as i → ∞.

It is clear that a ≤ µ0 ≤ b. Let K̃i = µ−1
i Ki and L̃i =

µ−1
i Li. Since Ki → K,Li → L, and µ−1

i → µ−1
0 , we have

K̃i = µ−1
i Ki → µ−1

0 K and L̃i = µ−1
i Li → µ−1

0 L.
Now (19), and the fact ρ(α⋄Ki+̃−ϕβ ⋄Li, u) = µi, show

that ρ(α ⋄ K̃i+̃−ϕβ ⋄ L̃i, u) = 1. That is,

αϕ

(
1

ρ
K̃i

(u)

)
+ βϕ

(
1

ρ
L̃i
(u)

)
= ϕ(1), for all i ∈ N.

Since K̃i = µ−1
i Ki → µ−1

0 K and L̃i = µ−1
i Li → µ−1

0 L,
together with the continuity of ϕ, and (2), it follows that

αϕ

(
µ0

ρK(u)

)
+ βϕ

(
µ0

ρL(u)

)
= ϕ(1).

By Lemma 3.3, we have

µ0 = ρ(α ⋄K+̃−ϕβ ⋄ L, u).

This shows

ρ(α⋄Ki+̃−ϕβ⋄Li, u) → ρ(α⋄K+̃−ϕβ⋄L, u), as i → ∞.

Now the pointwise convergence (20) has been proved.
We will show that the convergence (20) is uniform for

any u0 ∈ Sn−1. Assume that ρ(α ⋄ Ki+̃−ϕβ ⋄ Li, ·) does
not converge uniformly to ρ(α ⋄K+̃−ϕβ ⋄L, ·). Then, there
exists a ε0 > 0 and an N0 ∈ N such that, for i ≥ N0,

|ρ(α ⋄Ki+̃−ϕβ ⋄ Li, ui)− ρ(α ⋄K+̃−ϕβ ⋄ L, ui)| ≥ ε0. (22)

Since Sn−1 is compact, for some u0 ∈ Sn−1, there exists a
subsequence {ui}i∈N ⊂ Sn−1 such that ui → u0 as i → ∞.

From Lemma 3.4, there exist an N1 ∈ N and positive a, b
such that (21) holds for i ≥ N1. Then for every number
ε > 0, there exists a positive µ′

0 such that

|ρ(α ⋄Ki+̃−ϕβ ⋄ Li, ui)− µ′
0| < ε,

whenever i ≥ N = max{N0, N1}, this means that

ρ(α ⋄Ki+̃−ϕβ ⋄ Li, ui) → µ′
0 as i → ∞.

From (22), we have

|µ′
0 − ρ(α ⋄K+̃−ϕβ ⋄ L, u0)| ≥ ε0.

This implies

µ′
0 ̸= ρ(α ⋄K+̃−ϕβ ⋄ L, u0). (23)
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Let µ′
i = ρ(α ⋄Ki+̃−ϕβ ⋄ Li, ui) and µ′

i → µ′
0 as i → ∞.

By Lemma 3.3, we have

αϕ

(
µ′
i

ρKi(ui)

)
+ βϕ

(
µ′
i

ρLi(ui)

)
= ϕ(1).

Together with the facts that Ki → K,Li → L and µ′
i → µ′

0

as i → ∞, we get that

αϕ

(
µ′
0

ρK(u0)

)
+ βϕ

(
µ′
0

ρL(u0)

)
= ϕ(1).

By Lemma 3.3 again, we have

µ′
0 = ρ(α ⋄K+̃−ϕβ ⋄ L, u0).

Contradicts to (23), we have

ρ(α ⋄Ki+̃−ϕβ ⋄ Li, u) → ρ(α ⋄K+̃−ϕβ ⋄ L, u)

uniformly on Sn−1 and hence

α ⋄Ki+̃−ϕβ ⋄ Li → α ⋄K+̃−ϕβ ⋄ L, as i → ∞.

We will see that the Orlicz harmonic radial combination
+̃−ϕ is continuous in α and β.

Lemma 3.7. Suppose that ϕ ∈ Φ1 or ϕ ∈ Φ2. If αi, βi ≥ 0
and αi → α, βi → β, as i → ∞, then

αi ⋄K+̃−ϕβi ⋄ L → α ⋄K+̃−ϕβ ⋄ L, as i → ∞,

for all K,L ∈ Sn
o .

Proof. Suppose that u ∈ Sn−1 and K,L ∈ Sn
o . Next we will

show that

ρ(αi ⋄K+̃−ϕβi ⋄ L, u)
→ ρ(α ⋄K+̃−ϕβ ⋄ L, u), as i → ∞. (24)

Let
ρ(αi ⋄K+̃−ϕβi ⋄ L, u) = µi.

By Lemma 3.4 we have

rϕ−1

(
ϕ(1)

2Mi

)
≤ µi ≤ Rϕ−1

(
ϕ(1)

ci

)
, for ϕ ∈ Φ1,

and

rϕ−1

(
ϕ(1)

ci

)
≤ µi ≤ Rϕ−1

(
ϕ(1)

2mi

)
, for ϕ ∈ Φ2.

Since αi → α, βi → β as i → ∞ and the facts that the
functions Mi = max{αi, βi},mi = min{αi, βi} and ci =
αi+βi are continuous, we have Mi → M,mi → m and ci →
c, as i → ∞. Since the inverse ϕ−1 of ϕ is also continuous
and increasing in (0,∞), there exist a, b such that 0 < a ≤
µi ≤ b < ∞, for all i. To show that the bound sequence
{µi}i∈N converges to ρ(α ⋄K+̃−ϕβ ⋄ L, u), we show that
every convergent subsequence of {µi}i∈N converges to ρ(α⋄
K+̃−ϕβ⋄L, u). Denote an arbitrary convergent subsequence
of {µi}i∈N by {µi}i∈N as well, and suppose that for this
subsequence we have

µi → µ0 as i → ∞.

It is clear that 0 < a ≤ µ0 ≤ b < ∞. Since ρ(αi ⋄
K+̃−ϕβi ⋄ L, u) = µi, that is,

αϕ

(
µi

ρK(u)

)
+ βϕ

(
µi

ρL(u)

)
= ϕ(1), for all i ∈ N.

Since αi → α and βi → β, together with the continuity of
ϕ, and µi → µ0 as i → ∞, it follows that

αϕ

(
µ0

ρK(u)

)
+ βϕ

(
µ0

ρL(u)

)
= ϕ(1).

By Lemma 3.3, we have

µ0 = ρ(α ⋄K+̃−ϕβ ⋄ L, u).

This shows

ρ(αi⋄K+̃−ϕβi⋄L, u) → ρ(α⋄K+̃−ϕβ⋄L, u), as i → ∞.

Now the pointwise convergence (24) has been proved.
To show the convergence (24) is uniform on Sn−1, we

assume that ρ(αi ⋄ K+̃−ϕβi ⋄ L, ·) does not converge uni-
formly to ρ(α ⋄K+̃−ϕβ ⋄ L, ·). Then, there exist a positive
ε0 and an N0 ∈ N such that, for i ≥ N0,

|ρ(αi⋄K+̃−ϕβi⋄L, ui)−ρ(α⋄K+̃−ϕβ⋄L, ui)| ≥ ε0. (25)

Since Sn−1 is compact, for u0 ∈ Sn−1, there exists a
subsequence {ui}i∈N ⊂ Sn−1 such that ui → u0 as i → ∞.

From Lemma 3.4, there exist an N1 ∈ N and positive a, b
such that, for i ≥ N1,

0 < a ≤ ρ(αi ⋄K+̃−ϕβi ⋄ L, ui) ≤ b < ∞.

Then, for any ε > 0, there exists a positive µ′
0 such that for

all i ≥ N = max{N0, N1},

|ρ(αi ⋄K+̃−ϕβi ⋄ L, ui)− µ′
0| < ε,

this means that

ρ(αi ⋄K+̃−ϕβi ⋄ L, ui) → µ′
0, as i → ∞.

From (25), we have

|µ′
0 − ρ(α ⋄K+̃−ϕβ ⋄ L, u0)| ≥ ε0.

This implies

µ′
0 ̸= ρ(α ⋄K+̃−ϕβ ⋄ L, u0). (26)

Let µ′
i = ρ(αi ∗K+̃−ϕβi ∗ L, ui). By Lemma 3.3, we have

αiϕ

(
µ′
i

ρK(ui)

)
+ βiϕ

(
µ′
i

ρL(ui)

)
= ϕ(1).

This, together with the facts that αi → α, βi → β, µ′
i → µ′

0

and the continuity of ϕ, gives

αϕ

(
µ′
0

ρK(u0)

)
+ βϕ

(
µ′
0

ρL(u0)

)
= ϕ(1).

By Lemma 3.3 again, we have

µ′
0 = ρ(α ⋄K+̃−ϕβ ⋄ L, u0).

This contradicts to (26). Therefore,

ρ(αi⋄K+̃−ϕβi⋄L, u) → ρ(α⋄K+̃−ϕβ⋄L, u), as i → ∞.

uniformly on Sn−1, and

αi ⋄K+̃−ϕβi ⋄ L → α ⋄K+̃−ϕβ ⋄ L, as i → ∞.

The following lemma shows that the Orlicz harmonic
radial combination and the L1-harmonic radial combination
are closely related.
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Lemma 3.8. Let K,L ∈ Sn
o and 0 < α < 1. If ϕ ∈ Φ1, then

(1− α) ⋄K+̃−ϕα ⋄ L ⊆ (1− α) ⋄K+̃−1α ⋄ L. (27)

If ϕ ∈ Φ2, then

(1− α) ⋄K+̃−ϕα ⋄ L ⊇ (1− α) ⋄K+̃−1α ⋄ L.

If ϕ is strictly convex (strictly concave), the equality holds
in every inequality if and only if K and L are dilates of each
other.

Proof. Since two assertions can be proved similarly, we only
give the proof of (27). Let Kα = (1−α) ⋄K+̃−ϕα ⋄L. By
Lemma 3.3 and convexity of ϕ, we have

ϕ(1) = (1− α)ϕ

(
ρKα

ρK(u)

)
+ αϕ

(
ρKα

ρL(u)

)
≥ ϕ

(
(1− α)ρ−1

K (u) + αρ−1
L (u)

ρ−1
Kα

(u)

)
= ϕ

(
ρ((1− α) ⋄K+̃−1α ⋄ L, u)−1

ρ−1
Kα

(u)

)
.

Since ϕ is strictly increasing on (0,∞), then we have

ρ(Kα, u)
−1 ≥ ρ((1− α) ⋄K+̃−1α ⋄ L, u)−1.

This is,

ρ((1− α) ⋄K+̃−1α ⋄ L, u) ≥ ρ(Kα, u).

By (1), we obtain the desired inclusion. From the equality
condition in Jensen’s inequality (17), if ϕ is strictly convex,
then equation holds in (27) if and only if K and L are dilates
of each other.

IV. DUAL ORLICZ HARMONIC MIXED
QUERMASSINTEGRALS

We denote the right derivative of a real-valued function f
by f ′

r. For ϕ ∈ Φ1 (or ϕ ∈ Φ2), there is ϕ′
r(1) > 0 because

ϕ is convex (or concave) and strictly increasing.

Lemma 4.1. Let K,L ∈ Sn
o and ϕ ∈ Φ1 or ϕ ∈ Φ2. Then

the convergence in

lim
ε→0+

ρ
K+̃−ϕε⋄L

(u)− ρK(u)

ε

= −ρK(u)

ϕ′
r(1)

ϕ

(
ρK(u)

ρL(u)

)
(28)

is uniform on Sn−1.

Proof. Suppose that ε > 0,K, L ∈ Sn
o , and u ∈ Sn−1. Let

ρKε = ρ
K+̃−ϕε⋄L

(u) = ρ(ε, u).

Then, by Lemma 3.7, we have

ρKε → ρK(u) as ε → 0.

By Lemma 3.3, we have

ϕ

(
ρKε

ρK(u)

)
+ εϕ

(
ρKε

ρL(u)

)
= ϕ(1).

Then
ρKε

ρK(u)
= ϕ−1

(
ϕ(1)− εϕ

(
ρKε

ρL(u)

))
.

Let

t = ϕ−1

(
ϕ(1)− εϕ

(
ρKε

ρL(u)

))
(29)

and note that t → 1+ as ε → 0+. Thus

ρ−1
Kε

(u)− ρ−1
K (u)

ρ−1
Kε

(u)
= 1−

ρ−1
K (u)

ρ−1
Kε

(u)
= 1− t. (30)

Together with (30) and Lemma 3.7, we obtain

lim
ε→0+

ρ−1(ε, u)− ρ−1
K (u)

ε

= lim
ε→0+

ρ−1
Kε

(u)

ε
·
ρ−1(ε, u)− ρ−1

K (u)

ρ−1
Kε

(u)

= lim
ε→0+

ρ−1
Kε

(u) · ϕ
(
ρKε(u)

ρL(u)

)

×

ρ−1(ε,u)−ρ−1
K

(u)

ρ−1
Kε

(u)

ϕ(1)−
(
ϕ(1)− εϕ

(ρKε (u)
ρL(u)

))
= ρ−1

K (u) · ϕ
(
ρK(u)

ρL(u)

)
· lim
t→1+

1− t

ϕ(1)− ϕ(t)

=
ρ−1
K (u)

ϕ′
r(1)

ϕ

(
ρK(u)

ρL(u)

)
.

From this and Lemma 3.7, it follows that

lim
ε→0+

ρ(ε, u)− ρK(u)

ε
= −ρK(u)

ϕ′
r(1)

ϕ

(
ρK(u)

ρL(u)

)
. (31)

Then the pointwise limit (28) has been proved.
Moreover, the convergence is uniform for any u ∈ Sn−1.

Indeed, by (29) and (31), it suffices to recall that by Lemma
3.7,

lim
ε→0+

ρ
K+̃−ϕε⋄L

(u) = ρK(u),

uniformly for u ∈ Sn−1.

We are ready to derive the variational formula of dual
quermassintegral for the Orlicz harmonic radial combination.

Theorem 4.2. Let K,L ∈ Sn
o , ϕ ∈ Φ1 or ϕ ∈ Φ2, and

i = 0, 1, · · · , n− 1. Then

−ϕ′
r(1)

n− i
lim

ε→0+

W̃i(K+̃−ϕε ⋄ L)− W̃i(K)

ε

=
1

n

∫
Sn−1

ϕ

(
ρK(u)

ρL(u)

)
ρK(u)n−idS(u).

Proof. Suppose that K,L ∈ Sn
o , ε > 0, and u ∈ Sn−1. By

Lemma 3.7 and Lemma 4.1, it follows that

lim
ε→0+

∫
Sn−1

ρKε(u)
n−i − ρK(u)n−i

ε
dS(u)

= lim
ε→0+

∫
Sn−1

ρKε(u)− ρK(u)

ε

×
( n−i−1∑

j=0

ρKε(u)
jρK(u)n−i−j−1

)
dS(u)

=

∫
Sn−1

lim
ε→0+

ρKε(u)− ρK(u)

ε

× lim
ε→0+

( n−i−1∑
j=0

ρKε(u)
jρK(u)n−i−j−1

)
dS(u)
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= (n− i)

∫
Sn−1

lim
ε→0+

ρKε(u)− ρK(u)

ε

×ρK(u)n−i−1dS(u)

=
−(n− i)

ϕ′
r(1)

∫
Sn−1

ϕ

(
ρK(u)

ρL(u)

)
ρK(u)n−idS(u).

Hence

−ϕ′
r(1)

n− i
lim

ε→0+

W̃i(K+̃−ϕε ⋄ L)− W̃i(K)

ε

=
−ϕ′

r(1)

(n− i)n
lim

ε→0+

∫
Sn−1

ρKε(u)
n−i − ρK(u)n−i

ε
dS(u)

=
1

n

∫
Sn−1

ϕ

(
ρK(u)

ρL(u)

)
ρK(u)n−idS(u).

We complete the proof of Theorem 4.2.
From this, if i ̸= n is any real, we can define the dual

Orlicz harmonic mixed quermassintegrals.

Definition 4.3. Let K,L ∈ Sn
o , ϕ ∈ Φ1 or ϕ ∈ Φ2 and any

real i ̸= n. The geometric quantity

W̃−ϕ,i(K,L) =

∫
Sn−1

ϕ

(
ρK(u)

ρL(u)

)
dW̃K(u)

is called the dual Orlicz harmonic mixed quermassintegral of
K and L regarding ϕ. The normalized dual Orlicz harmonic
mixed quermassintegral W−ϕ(K,L), of K and L regarding
ϕ, is defined by

W−ϕ,i(K,L) = ϕ−1

(
W̃−ϕ,i(K,L)

W̃i(K)

)
= ϕ−1

(∫
Sn−1

ϕ

(
ρK(u)

ρL(u)

)
dV ∗

n−i(K,u)

)
.

When ϕ(t) = tp, with p ≥ 1. The dual Orlicz harmonic
mixed quermassintegral reduces to Wang and Leng’s dual
Lp-harmonic mixed quermassintegral (see [43]):

W̃−p,i(K,L) =
1

n

∫
Sn−1

ρn+p−i
K (u)ρ−p

L (u)dS(u),

for all K,L ∈ Sn
o . Where real i ̸= n, n+ p.

From Definition 4.3 and the variational formula of The-
orem 4.2, we can define that for K,L ∈ Sn

o , ϕ ∈ Φ1 or
ϕ ∈ Φ2, and i ∈ R with i ̸= n, the dual Orlicz harmonic
mixed quermassintegral, W̃−ϕ,i(K,L), of K,L is

W̃−ϕ,i(K,L)

=
−ϕ′

r(1)

n− i
lim

ε→0+

W̃i(K+̃−ϕε ⋄ L)− W̃i(K)

ε
. (32)

In particular, take i = 0 in (32), then the above formula
of the dual Orlicz harmonic mixed quermassintegral reduces
to the following formula of the dual Orlicz harmonic mixed
volume:

Ṽ−ϕ(K,L) =
−ϕ′

r(1)

n
lim

ε→0+

V (K+̃−ϕε ⋄ L)− V (K)

ε
. (33)

Some basic facts are observed for W̃−ϕ,i(K,L):

Proposition 4.4. Let K,L,L1, L2 ∈ Sn
o and ϕ ∈ Φ1 or

ϕ ∈ Φ2.
(1) W̃−ϕ,i(K,K) = ϕ(1)W̃i(K).
(2) W̃−ϕ,0(K,L) = Ṽ−ϕ(K,L).
(3) If ϕ(t) = tp and p > 0, then W̃−ϕ,i(K,L) =

W̃−p,i(K,L).

(4) W̃−ϕ,i(TK, TL) = W̃−ϕ,i(K,L), for all T ∈ O(n).
where O(n) denote orthogonal transformation group in Rn.

(5) If L1 ⊆ L2, then W̃−ϕ,i(K,L1) ≥ W̃−ϕ,i(K,L2).

Proof. We only give the proof of (4), and proof will be not
given for (1), (2), (3) and (5).

From Proposition 3.2 and (32), we have, for T ∈ O(n),

W̃−ϕ,i(TK, TL)

=
−ϕ′

r(1)

n− i
lim

ε→0+

W̃i(TK+̃−ϕε ⋄ TL)− W̃i(TK)

ε

=
−ϕ′

r(1)

n− i
lim

ε→0+

W̃i(T (K+̃−ϕε ⋄ L))− W̃i(K)

ε

=
−ϕ′

r(1)

n− i
lim

ε→0+

W̃i(K+̃−ϕε ⋄ L)− W̃i(K)

ε

= W̃−ϕ,i(K,L).

The next lemma shows the continuity of dual Orlicz
harmonic mixed quermassintegrals.

Lemma 4.5. Let Kj , Lk,K, L ∈ Sn
o and j, k ∈ N.

(1) If Kj → K,Lk → L as j, k → ∞, then
W̃−ϕ,i(Kj , Lk) → W̃−ϕ,i(K,L).

(2) Let ϕj , ϕ ∈ Φ1 or ϕj , ϕ ∈ Φ2. If ϕj → ϕ as j → ∞,
then W̃−ϕj ,i(K,L) → W̃−ϕ,i(K,L).

Proof. Note that Kj → K,Lk → L implies

ρKj → ρK and ρLk
→ ρL

is uniform on Sn−1. In addition, from the continuity of ϕ,
the convergence in

ϕ

(
ρKj

ρLk

)
→ ϕ

(
ρK
ρL

)
is uniform on Sn−1. Thus, we derive (1) immediately.

Take

rM = max
u∈Sn−1

ρK(u)

ρL(u)
and rm = min

u∈Sn−1

ρK(u)

ρL(u)
.

Note that ϕj → ϕ implies ϕj |[rm,rM ] → ϕ|[rm,rM ] uniformly.
Therefore, ϕj

(
ρK

ρL

)
→ ϕ

(
ρK

ρL

)
uniformly on Sn−1, which

implies (2).
From the definition of W−ϕ,i(K,L), (1) of Proposition

4.4, and together with the face that ϕ and ϕ−1 are strictly
increasing on (0,∞), we have as follows:

Proposition 4.6. Let K,L ∈ Sn
o and ϕ, ϕ1, ϕ2 ∈ Φ1 or Φ2.

(1) W−ϕ,i(K,K) = 1.
(2) If ϕ1 ≤ ϕ2, then W−ϕ1,i(K,L) ≤ W−ϕ2,i(K,L).

V. THE GENERALIZED DUAL CAUCHY-KUBOTA
FORMULA

In this section, we show the probabilistic essence of dual
Orlicz harmonic mixed quermassintegrals. The starting point
is the dual Cauchy-Kubota formula.

Recall that for a star body K ∈ Sn
o ,

W̃i(K) =
ωn

ωn−i

∫
G(n,n−i)

voln−i(K ∩ ξ)dµn−i(ξ), (34)

where i = 1, · · · , n− 1.
We generalize this formula to the Orlicz setting. For this

aim, the next lemma is needed.
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Lemma 5.1. Let K,L ∈ Sn
o , ϕ ∈ Φ1 (or ϕ ∈ Φ2), and

i = 1, · · · , n− 1. Then for each ξ ∈ G(n, i) and ε > 0,

(K+̃−ϕε ⋄ L) ∩ ξ = (K ∩ ξ)+̃−ϕε ⋄ (L ∩ ξ).

Proof. Let ξ ∈ G(n, i) be arbitrary but fixed, and let

Si−1 = Sn−1 ∩ ξ.

For any u ∈ Si−1 and Q ∈ Sn
o , it follows that

ρQ(u) = ρQ∩ξ(u).

Thus, applying the definition of K+̃−ϕε ⋄L to u ∈ Si−1,
it gives

ϕ

(
ρ((K+̃−ϕε ⋄ L) ∩ ξ, u)

ρK∩ξ(u)

)
+ εϕ

(
ρ((K+̃−ϕε ⋄ L) ∩ ξ, u)

ρL∩ξ(u)

)
= ϕ(1).

On the other hand, from the definition of (K ∩ ξ)+̃−ϕε ⋄
(L ∩ ξ) defined in ξ, it gives

ϕ

(
ρ((K ∩ ξ)+̃−ϕε ⋄ (L ∩ ξ), u)

ρK∩ξ(u)

)
+εϕ

(
ρ((K ∩ ξ)+̃−ϕε ⋄ (L ∩ ξ), u)

ρL∩ξ(u)

)
= ϕ(1).

Hence, (K+̃−ϕε ⋄ L) ∩ ξ and (K ∩ ξ)+̃−ϕε ⋄ (L ∩ ξ) is a
same star body in ξ.

Theorem 5.2 provides a probabilistic approach to define
dual Orlicz harmonic mixed quermassintegrals.

Theorem 5.2. Suppose that K,L ∈ Sn
o and ϕ ∈ Φ1 or

ϕ ∈ Φ2. Then for each i = 1, · · · , n− 1,

W̃−ϕ,i(K,L) =
ωn

ωn−i

∫
G(n,n−i)

Ṽ
(n−i)
−ϕ (K∩ξ, L∩ξ)dµn−i(ξ),

where Ṽ
(n−i)
−ϕ (K∩ξ, L∩ξ) denotes the dual Orlicz harmonic

mixed volume of the (n− i)-dimensional star bodies K ∩ ξ
and L ∩ ξ in the subspace ξ.

Proof. From (32), the dual Cauchy-Kubota formula (34) and
Lemma 5.1, it follows that

W̃−ϕ,i(K,L)

=
−ϕ′

r(1)

n− i
lim

ε→0+

W̃i(K+̃−ϕε ⋄ L)− W̃i(K)

ε

=
−ϕ′

r(1)

n− i
· ωn

ωn−i

∫
G(n,n−i)

× lim
ε→0+

voln−i((K+̃−ϕε ⋄ L) ∩ ξ)− voln−i(K ∩ ξ)

ε
× dµn−i(u)

=
−ϕ′

r(1)

n− i
· ωn

ωn−i

∫
G(n,n−i)

× lim
ε→0+

voln−i((K ∩ ξ)+̃−ϕε ⋄ (L ∩ ξ))− voln−i(K ∩ ξ)

ε
× dµn−i(u).

By (33) and the above integrand depends smoothly on ε (for
small ε). Hence, it gives

W̃−ϕ,i(K,L)

=
ωn

ωn−i

∫
G(n,n−i)

Ṽ
(n−i)
−ϕ (K ∩ ξ, L ∩ ξ)dµn−i(ξ),

as desired.
Up to a constant, the quantity W̃−ϕ,i(K,L) is the expec-

tation of the random variable

Ṽ
(n−i)
−ϕ (K ∩ ·, L ∩ ·) : G(n, n− i) → (0,∞),

ξ 7→ Ṽ
(n−i)
−ϕ (K ∩ ξ, L ∩ ξ),

which is defined on the probability space (G(n, n −
i),B, µn−i) (where B is the Borel sigma-algebra on G(n, n−
i)).

Letting ϕ(t) = tp with p > 0 in Theorem V, it yields the
formula

W̃−p,i(K,L)

=
ωn

ωn−i

∫
G(n,n−i)

Ṽ
(n−i)
−p (K ∩ ξ, L ∩ ξ)dµn−i(ξ).

Remark 5.3. We generalize the dual Cauchy-Kubota formula
to 1 ≤ q ≤ i < n states that for a star body K ∈ Sn

o and
1 ≤ q ≤ i < n,

W̃i(K) =
ωn

ωn−q

∫
G(n,n−q)

W̃
(n−q)
i−q (K ∩ ξ)dµn−q(ξ), (35)

where W̃
(n−q)
i−q denotes the (i-q)th dual harmonic quermass-

integral in the subspace ξ.
From (35), (32), and using an argument similar to that in

Theorem 5.2, we can obtain the following theorem.

Theorem 5.4. Suppose that K,L ∈ Sn
o and ϕ ∈ Φ1 or

ϕ ∈ Φ2. Then for 1 ≤ q ≤ i < n,

W̃−ϕ,i(K,L)

=
ωn

ωn−q

∫
G(n,n−q)

W̃
(n−q)
−ϕ,i−q(K ∩ ξ, L ∩ ξ)dµn−q(ξ),

(36)

where W̃
(n−q)
−ϕ,i−q(K ∩ ξ, L ∩ ξ) denotes the dual Orlicz

harmonic mixed quermassintegral of the (n-q)-dimensional
star bodies K ∩ ξ and L ∩ ξ in the subspace ξ.

VI. DUAL ORLICZ-BRUNN-MINKOWSKI INEQUALITIES

We now establish the following dual Orlicz-Minkowski
inequality:

Theorem 6.1. Suppose that K,L ∈ Sn
o . If ϕ ∈ Φ1, then for

real i < n or n < i < n+ 1, we have

W̃−ϕ,i(K,L) ≥ W̃i(K)ϕ

((
W̃i(K)

W̃i(L)

) 1
n−i

)
. (37)

If ϕ ∈ Φ2, then for real i > n+ 1, we have

W̃−ϕ,i(K,L) ≤ W̃i(K)ϕ

((
W̃i(K)

W̃i(L)

) 1
n−i

)
. (38)

If ϕ is strictly convex (or strictly concave), the equality holds
in every inequality if and only if K and L are dilates of each
other.

Proof. Since two assertions can be proved similarly, we only
give the proof of (37).

Since the dual quermassintegral-normalized conical mea-
sure V ∗

n−i(K, ·) defined by (16) is a probability measure on
Sn−1, then by Jensen’s inequality (17), the integral formulas
of dual harmonic mixed quermassintegral (9), the Lp-dual
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Minkowski inequality (14), and the fact that ϕ ∈ Φ1 is
increasing on (0,∞), we obtain

W̃−ϕ,i(K,L)

W̃i(K)

=
1

nW̃i(K)

∫
Sn−1

ϕ

(
ρK(u)

ρL(u)

)
ρK(u)n−idS(u)

≥ ϕ

(
1

nW̃i(K)

∫
Sn−1

ρK(u)

ρL(u)
· ρK(u)n−idS(u)

)
= ϕ

(
W̃−1,i(K,L)

W̃i(K)

)
≥ ϕ

(
W̃i(K)

n+1−i
n−i W̃i((L)

−1
n−i

W̃i(K)

)
= ϕ

((
W̃i(K)

W̃i(L)

) 1
n−i

)
.

This gives the desired inequality.
Suppose that equality holds in (37). Since ϕ is strictly

increasing, we have equality in the Lp-dual Minkowski
inequality. So there is c > 0 such that L = cK and hence

ρL(u) = cρK(u),

for all u ∈ Sn−1.
Conversely, when L = cK, by Definition 4.3, we have

W̃−ϕ,i(K,L) = W̃i(K)ϕ(1/c)

= W̃i(K)ϕ

((
W̃i(K)

W̃i(L)

) 1
n−i

)
.

When ϕ(t) = tp with p > 0. The dual Orlicz-Minkowski
inequality (37) and (38) reduces to dual Lp-Minkowski
inequality for the dual harmonic Lp-mixed quermassintegral:
If p ≥ 1, then for i < n or n < i < n+ 1,

W̃−p,i(K,L) ≥ W̃i(K)
n+p−i
n−i W̃i(L)

−p
n−i . (39)

If 0 < p < 1, then for i > n+1, inequality (39) is reversed.
The equality holds in every inequality if and only if K and
L are dilates each other.

Remark 6.2. By comparing (14) and (39), we see that
inequality (39) is different from Wang and Leng’s inequality
(14) (see [43]).

The following uniqueness is a direct consequence of the
dual Orlicz-Minkowski inequality (37) (or (38)).

Corollary 6.3. Suppose that ϕ ∈ Φ1 or ϕ ∈ Φ2, and M ⊂
Sn
o such that K,L ∈ M. If

W̃−ϕ,i(M,K) = W̃−ϕ,i(M,L), for all M ∈ M, (40)

or

W̃−ϕ,i(K,M)

W̃i(K)
=

W̃−ϕ,i(L,M)

W̃i(L)
, for all M ∈ M, (41)

then K = L

Proof. We only prove the case of ϕ ∈ Φ1.
Suppose that (40) holds. If we take K for M , then from

Definition 4.3 and (1) of Proposition 4.4, we obtain

ϕ(1)W̃i(K) = W̃−ϕ,i(K,K) = W̃−ϕ,i(K,L).

Hence, from the dual Orlicz-Minkowski inequality (37) we
have

ϕ(1) ≥ ϕ

((
W̃i(K)

W̃i(L)

) 1
n−i

)
.

with equality if and only if K and L are dilates of each other.
Since ϕ is strictly increasing on (0,∞), we have

W̃i(L) ≥ W̃i(K),

with equality if and only if K and L are dilates of each
other. If taking L for M we similarly have W̃i(L) ≤ W̃i(K).
Hence, W̃i(K) = W̃i(L) and from the equality conditions
we can conclude that K and L are dilates of each other.
However, since they have the same dual quermassintegral
they must be equal.

Next, suppose (41) holds. If we take K for M , then from
Definition 4.3 and (1) of Proposition 4.4, we obtain

ϕ(1) =
W̃−ϕ,i(K,K)

W̃i(K)
=

W̃−ϕ,i(L,K)

W̃i(L)
.

Then, from the dual Orlicz-Minkowski inequality (37) we
have

ϕ(1) ≥
((

W̃i(L)

W̃i(K)

) 1
n−i

)
,

with equality if and only if K and L are dilates of each other.
Since ϕ is strictly increasing on (0,∞), we have

W̃i(K) ≥ W̃i(L),

with equality if and only if K and L are dilates of each other.
If we take L for M we similarly have W̃i(K) ≤ W̃i(L).
Hence, W̃i(K) = W̃i(L) and from the equality conditions
we can conclude that K and L are dilates of each other.
However, since they have the same dual quermassintegral
they must be equal.

Lemma 6.4. Suppose that ϕ ∈ Φ1 or ϕ ∈ Φ2, and K,L ∈
Sn
o .
(1) If K and L are dilates, then for each α, β > 0, K and

α ⋄K+̃−ϕβ ⋄ L are dilates.
(2) Suppose α, β > 0. If K and α⋄K+̃−ϕβ⋄L are dilates,

then K and L are dilates.

Proof. To prove (1), assume that L = εK for some constant
ε > 0. Let C̃S denote the class

{ρK |Sn−1 : K ∈ Sn
o }.

The definition of Orlicz harmonic radial combination implies
that the function ρ(α ⋄K+̃−ϕβ ⋄L, ·) is the unique solution
to the equation

αϕ

(
f

ρK

)
+ βϕ

(
f

ερK

)
= ϕ(1), f ∈ C̃S .

On the other hand, it is obvious to prove that there exists
a unique δ > 0 such that

αϕ(δ) + βϕ

(
δ

ε

)
= ϕ(1),

which immediately implies

αϕ

(
ρδK
ρK

)
+ βϕ

(
ρδK
ερK

)
= ϕ(1).
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Hence, α ⋄K+̃−ϕβ ⋄ L = δK, which concludes (1).
To prove (2), assume α ⋄ K+̃−ϕβ ⋄ L = λK for some

constant λ > 0. Then for arbitrary u ∈ Sn−1,

αϕ(λ) + βϕ

(
ρ(α ⋄K+̃−ϕβ ⋄ L, u)

ρL(u)

)
= ϕ(1),

which implies that

ϕ

(
ρ(α ⋄K+̃−ϕβ ⋄ L, u)

ρL(u)

)
is constant for all u ∈ Sn−1. This and the injectivity of ϕ
show that α ⋄K+̃−ϕβ ⋄ L and L are dilates.

We derive the dual Orlicz-Brunn-Minkowski inequality for
dual Orlicz harmonic mixed quermassintegrals as follows:

Theorem 6.5. Suppose K,L ∈ Sn
o , and α, β > 0. If ϕ ∈ Φ1,

then for i < n or n < i < n+ 1, we have

αϕ

((
W̃i(α ⋄K+̃−ϕβ ⋄ L)

W̃i(K)

) 1
n−i

)
+ βϕ

((
W̃i(α ⋄K+̃−ϕβ ⋄ L)

W̃i(L)

) 1
n−i

)
≤ ϕ(1). (42)

If ϕ ∈ Φ2, then for i > n+ 1, we have

αϕ

((
W̃i(α ⋄K+̃−ϕβ ⋄ L)

W̃i(K)

) 1
n−i

)
+ βϕ

((
W̃i(α ⋄K+̃−ϕβ ⋄ L)

W̃i(L)

) 1
n−i

)
≥ ϕ(1). (43)

If ϕ is strictly convex (or strictly concave), the equality holds
in every inequality if and only if K and L are dilates of each
other.

Proof. Since two assertions can be proved similarly, we only
give the proof of (42).

Let Kϕ = α⋄K+̃−ϕβ ⋄L. From the formulas (4), Lemma
3.3 and the dual Orlicz-Minkowski inequality (37), it follows
that

ϕ(1)

=
1

nW̃i(Kϕ)

∫
Sn−1

ϕ(1)ρn−i
Kϕ

(u)dS(u)

=
1

nW̃i(Kϕ)

∫
Sn−1

[
αϕ

(
ρKϕ

(u)

ρK(u)
+ βϕ

(
ρKϕ

(u)

ρL(u)

)]
×ρn−i

Kϕ
(u)dS(u)

=
α

W̃i(Kϕ)
W̃−ϕ,i(Kϕ,K) +

β

W̃i(Kϕ)
W̃−ϕ,i(Kϕ, L)

≥ αϕ

((
W̃i(Kϕ)

W̃i(K)

) 1
n−i

)
+ βϕ

((
W̃i(Kϕ)

W̃i(L)

) 1
n−i

)
.

We get the desired dual Orlicz-Brunn-Minkowski inequal-
ity (42). From Theorem 6.1 and Lemma 6.4, the equality
conditions can be obtained immediately.

When ϕ(t) = tp with p > 0. the dual Orlicz-Brunn-
Minkowski inequality reduces to dual Lp-Brunn-Minkowski
inequality: If p ≥ 1, then for i < n or n < i < n+ 1,

W̃i(α ⋄K+̃−pβ ⋄ L)−
p

n−i

≥ αW̃i(K)−
p

n−i + βW̃i(L)
− p

n−i . (44)

If 0 < p < 1, then for i > n+1, inequality (44) is reversed.
The equality holds in every inequality if and only if K and
L are dilates of each other.

Remark 6.6. By comparing (15) and (44), we see that
inequality (44) is different from Wang and Leng’s inequality
(15) (see [44]).

The next corollary is a weaker version of Theorem 6.5.

Corollary 6.7. Suppose that K,L ∈ Sn
o and 0 < α < 1. If

ϕ ∈ Φ1, then for real i < n or n < i < n+ 1,

W̃i(α ⋄K+̃−ϕ(1− α) ⋄ L) ≤ W̃i(K)αW̃i(L)
1−α, (45)

with equality if and only if K = L.

Proof. For brevity, let

Kα = α ⋄K+̃−ϕ(1− α) ⋄ L.

Since ϕ ∈ Φ1 is strictly increasing and convex on (0,∞),
by (42) of Theorem 6.5 and the weighted arithmetic mean-
geometric mean inequality, we have

ϕ(1)

≥ αϕ

((
W̃i(Kα)

W̃i(K)

) 1
n−i

)
+(1− α)ϕ

((
W̃i(Kα)

W̃i(L)

) 1
n−i

)
≥ ϕ

(
α

(
W̃i(Kα)

W̃i(K)

) 1
n−i

+ (1− α)

(
W̃i(Kα)

W̃i(L)

) 1
n−i

)
≥ ϕ

(
W̃i(Kα)

1
n−i

W̃i(K)
α

n−i W̃i(L)
1−α
n−i

)
.

Therefore,

W̃i(Kα) ≤ W̃i(K)αW̃i(L)
1−α.

According to the condition of equality holds in inequality
(42) and the weighted arithmetic mean-geometric mean in-
equality, we know that the equality holds in inequality (45)
if and only if K = L.

If ϕ(t) = tp with p ≥ 1, then the above corollary gives
that for each 0 < α < 1 and i < n or n < i < n+ 1,

W̃i(α ⋄K+̃−p(1− α) ⋄ L) ≤ W̃i(K)αW̃i(L)
1−α,

with equality if and only if K = L.

Theorem 6.8. With the same assumptions of Theorem 6.1.
The dual Orlicz-Minkowski inequality (37) (or (38)) ⇐⇒the
dual Orlicz-Brunn-Minkowski inequality (42) (or (43)).

Proof. We have proved the dual Orlicz-Brunn-Minkowski
inequality (42) (or (43)) by the dual Orlicz-Minkowski in-
equality (37) (or (38)). Thus, we only need to prove the dual
Orlicz-Minkowski inequality (37) by the dual Orlicz-Brunn-
Minkowski inequality (42), the remainder of the argument is
analogous to that in the first part and is left to the reader.

For ε ≥ 0, let Kε = K+̃−ϕε ⋄ L. By the dual Orlicz-
Brunn-Minkowski inequality, the following function

F (ε) = ϕ

((
W̃i(K)

W̃i(Kε)

)− 1
n−i

)
+εϕ

((
W̃i(L)

W̃i(Kε)

)− 1
n−i

)
− ϕ(1) (46)
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is non-positive. Then by Lemma 3.7 and (46),

lim
ε→0+

F (ε)− F (0)

ε

= lim
ε→0+

ϕ
((

W̃i(K)

W̃i(Kε)

)− 1
n−i

)
+ εϕ

((
W̃i(L)

W̃i(Kε)

)− 1
n−i

)
− ϕ(1)

ε

= lim
ε→0+

ϕ
((

W̃i(K)

W̃i(Kε)

)− 1
n−i

)
− ϕ(1)

ε
+ ϕ

(( W̃i(L)

W̃i(K)

)− 1
n−i

)

= lim
ε→0+

ϕ
((

W̃i(K)

W̃i(Kε)

)− 1
n−i

)
− ϕ(1)(

W̃i(K)

W̃i(Kε)

)− 1
n−i − 1

× lim
ε→0+

(
W̃i(K)

W̃i(Kε)

)− 1
n−i − 1

ε
+ ϕ

(( W̃i(L)

W̃i(K)

)− 1
n−i

)
. (47)

Let η =
(

W̃i(K)

W̃i(Kε)

)− 1
n−i

and note that η → 1+ as ε → 0+.
Consequently,

lim
ε→0+

ϕ
((

W̃i(K)

W̃i(Kε)

)− 1
n−i

)
− ϕ(1)(

W̃i(K)

W̃i(Kε)

)− 1
n−i − 1

= lim
η→1+

ϕ(η)− ϕ(1)

η − 1

= ϕ′
r(1). (48)

By Lemma 3.7 and (32), we have

lim
ε→0+

(
W̃i(K)

W̃i(Kε)

)− 1
n−i − 1

ε
(49)

= W̃i(K)−
1

n−i lim
ε→0+

W̃i(Kε)
1

n−i − W̃i(K)
1

n−i

ε

=
1

(n− i)W̃i(K)
lim

ε→0+

W̃i(Kε)− W̃i(K)

ε

= − 1

ϕ′
r(1)

· W̃−ϕ,i(K,L)

W̃i(K)
. (50)

From (48), (49), (50) and F (ε) is non-positive, it follows
that

lim
ε→0+

F (ε)− F (0)

ε

= −W̃−ϕ,i(K,L)

W̃i(K)
+ ϕ

((
W̃i(K)

W̃i(L)

) 1
n−i

)
≤ 0. (51)

From the definition of function F (ε), we have F (0) =
0. Therefore, the equality holds in (51) if and only if
F (ε) = F (0) = 0, this implies that equality can be obtained
from the equality condition of dual Orlicz-Brunn-Minkowski
inequality.

Along with dual Orlicz harmonic mixed quermassintegrals,
we introduce the following quantity.
Definition 6.9. For star bodies K,L ∈ Sn

o and ϕ ∈ Φ1 or

ϕ ∈ Φ2, define

Ŵ−ϕ,i(K,L)

= inf

{
λ > 0 :

∫
Sn−1

ϕ

(
ρK(u)

λρL(u)

)
dV ∗

n−i(K,u)

≤ ϕ(1)

}
. (52)

It can be checked that if ϕ(t) = tp with p > 0, then

Ŵ−p,i(K,L) =
(
W̃−p,i(K,L)/W̃i(K)

) 1
p .

From Definition VI and Definition IV, we have

W−ϕ,i

(
K, Ŵ−ϕ,i(K,L)L

)
= 1 (53)

and

W̃−ϕ,i

(
K, Ŵ−ϕ,i(K,L)L

)
= ϕ(1)W̃i(K). (54)

The quantity Ŵ−ϕ,i(K,L) provides an approach to ex-
tend dual Minkowski’s isoperimetric inequality to the Orlicz
setting.

Theorem 6.10. Suppose that K,L ∈ Sn
o . If ϕ ∈ Φ1, then for

each i < n or n < i < n+ 1,

Ŵ−ϕ,i(K,L) ≥
(
W̃i(K)

W̃i(L)

) 1
n−i

, (55)

while if ϕ ∈ Φ2, the inequality is reversed. If ϕ is strictly
convex (or concave), the equality holds in every inequalities
if and only if K and L are dilates.

Proof. Since two assertions can be proved similarly, we only
give the proof of (55).

From (54), (37) of Theorem 6.1 and the fact that

W̃i(αK) = αn−iW̃i(K), α > 0,

it follows that

ϕ(1) =
W̃−ϕ,i(K, Ŵ−ϕ,i(K,L)L)

W̃i(K)

≥ ϕ

((
W̃i(K)/W̃i(Ŵ−ϕ,i(K,L)L)

) 1
n−i

)

= ϕ

((
W̃i(K)/W̃i(L)

) 1
n−i

Ŵ−ϕ,i(K,L)

)
.

Note that ϕ is strictly increasing on (0,∞). Hence, the
desired inequality is obtained. If ϕ is strictly convex, by
Theorem 6.1 again, the equality holds if and only if K and
Ŵ−ϕ,i(K,L)L are dilates.

The inequality in Theorem 6.1 and Definition 4.3 can be
rewritten as

Corollary 6.11. Suppose that K ∈ Sn
o , i ∈ R. If ϕ ∈ Φ1,

then for i < n or n < i < n+ 1,

W−ϕ,i(K,L) ≥
(
W̃i(K)

W̃i(L)

) 1
n−i

,

while if ϕ ∈ Φ2, the inequality is reversed. If ϕ is strictly
convex (or concave), each equality holds if and only if K
and L are dilates.
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In particular, W−ϕ,0(K,L) is V −ϕ(K,L), which is the
normalized dual Orlicz harmonic mixed volume of K and
L. That is,

V −ϕ(K,L) = ϕ−1

(∫
Sn−1

ϕ

(
ρK(u)

ρL(u)

)
dV ∗

n (K,u)

)
.

Correspondingly, there is the inequality

V −ϕ(K,L) ≥
(
V (K)

V (L)

) 1
n

, for ϕ ∈ Φ1.
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