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Abstract—A G1 approximation method of conic sections
using Bernstein-Jacobi hybrid polynomial curves of arbitrary
degree is proposed. Based on the method of weighted-sum-of-
objective-function in the multi-objective optimization, the prob-
lem can be converted to a scale optimization. Applying weighted
least-squares, we obtain the resulting curve. Meanwhile, by the
orthogonality of Jacobi polynomials, the inverse of matrix is
avoided. Finally, some examples and figures were offered to
demonstrate the efficiency and the simplicity of our methods.

Index Terms—Conic sections, Geometric continuity, Hybrid
curves, Multi-objective optimization, Least-squares

I. INTRODUCTION

ALTHOUGH rational Bézier curves are the standard in
the Initial Graphics Exchange Specification (IGES),

some Computer Aided Design (CAD) systems only use
polynomial expressions to deal with parametric curves. This
is because rational Bézier curves can’t be differentiated and
integrated easily [1]–[6]. Many research papers have been
published about approximation of conic sections by Bézier
curves since 1980s. Using geometric information such as
point positions, tangents and curvatures, De Boor et al. [7]
first applied Geometric Hermite Interpolation (GHI) method
to accomplish a high accuracy approximation of circular
arcs based on cubic Bézier curves. Floater [8] [9] studied
approximation by quadratic splines and Bézier curves of
odd degree n respectively. Both methods have the optimal
approximation order 2n. Fang [10] presented methods for ap-
proximating conic sections using quintic polynomial curves.
The constructed quintic polynomial curve has G3-continuity
with the conic section at the end points and G1-continuity
at the parametric mid-point. Using the matrix form and the
least squares method, Hu [11] researched G1 approximation
of conic sections by Bézier curves of arbitrary degree in L2

norm, but the method requires to compute matrix inversion.
In this paper, we mainly interested in the G1 approxima-

tion of conic sections by Bézier curves of arbitrary degree. In
order to avoid calculating the inverse of matrix in L2 norm,
we construct a Jacobi-Berenstein hybrid polynomial curve.
With the help of the weighted sum method in multi-objective
optimization [12] [13] [14] and the weighted least squares
method we obtain results.

The rest of the paper is organized as follow. In Section 2,
some basic definitions and properties on conic sections and
Jacobi-Bernstein polynomial curves were given. The problem
of G1-constrained approximation of the conic sections is
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described. In Section 3, using the weighted least-squares
method we introduce an explicit algorithm to solve the
problem. Approximation errors and numerical examples are
presented in Section 4 to confirm the effectiveness of the
method. Finally, in Section 5 we conclude this paper.

II. PRELIMINARIES

A conic section can be represented in the standard rational
Bézier form by

P(t) =
c(t)

ω(t)

=
B2

0(t)p0+B2
1(t)ω1p1+B2

2(t)p2

B2
0(t)+B2

1(t)ω1+B2
2(t)

, t ∈ [0, 1], (1)

where ω1 ∈ R+ is the weight, pi = (xi, yi) are the control
points and Bni (t) =

(
n
i

)
ti(1 − t)n−i are the Bernstein

polynomials.
A Jacobi-Bernstein hybrid curve Q̃(t) of degree n can be

expressed as

Q̃(t) =

r∑
i=0

qiB
n
i (t) + ϕ(t)

N∑
j=0

q̃jJ
(r+1,s+1)
j (u)

+

n∑
i=n−s

qiB
n
i (t), (2)

where N = n−(r+s+2), u = 2t−1, ϕ(t) = tr+1(1−t)s+1,
qi = (x̄i, ȳi) are the control points of the Bézier curves,
q̃i = (x̃i, ỹi) are the control points of the Jacobi curves and
J
(r+1,s+1)
j (u) are the Jacobi polynomials.
Set ρ(t) > 0 is a weight function and F x and F y are the

components of the vector equation

(F x, F y) =

∫ 1

0

ρ(t)
(
P(t)− Q̃(t)

)2

dt.

Based on the method of weighted-sum-of-objective-function,
the problem of G1 approximation of the conic section P(t)
by Bézier curves is to find a Jacobi-Bernstein hybrid curve
Q̃(t) of degree n so that

F
(
λ, η, {q̃i}n−(r+s+2)

i=0

)
=

1

2
(F x + F y) , (3)

is minimized and the control points at the end points satisfy

q0 = p0, qn = p2,

q1 = p0 +
2ω

n
λ∆p0, qn−1 = p2 −

2ω

n
η∆p1, (4)

where λ and η are free parameters.
Next, we review and derive several of mathematical pre-

liminaries on Bernstein polynomials, classical Jacobi poly-
nomials and conic sections which are used in the paper.

Lemma 1. Setting B
nj
ij

(t) be a Bernstein polynomial of
degree nj , multiplication of m Bernstein polynomials satisfy
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the following equation [6],
m∏
j=1

B
nj
ij

(t) =
M(
N
J

)BNJ (t), (5)

and the corresponding definite integral can be written as∫ 1

0

m∏
j=1

B
nj
ij

(t)dt =
M

(N + 1)
(
N
J

) , (6)

where M =
∏m
j=1

(
nj
ij

)
, N =

∑m
j=1 nj and J =

∑m
j=1 ij .

Lemma 2. Given two Bézier curves X(t) =
n∑
j=0

xnjB
n
j (t)

of degree n and Y(t) =
m∑
k=0

ymk B
m
k (t) of degree m, we have

[15]

X(t)Y(t) =

m+n∑
i=0

Ci(ymk , x
n
j )Bm+n

i (t), (7)

where

Ci(ymk , x
n
j ) =

min(m,i)∑
l=max(0,i−n)

(
m
l

)(
n
i−l

)(
m+n
i

) yml xni−l. (8)

Lemma 3. A Jacobi polynomial can be represented by
Bernstein polynomials as follows [16]

J
(r+1,s+1)
j (u) =

j∑
i=0

ajiB
j
i (t), (9)

where

aji := (−1)(i+j)

(
j+r+1
i

)(
j+s+1
j−i

)(
j
i

) . (10)

Furthermore, using (7), (9) and (10), we obtain

Ḡα,βi,j (α, β, i, j)

=

∫ 1

0

tα(1− t)βJ(r+1,s+1)
i (u)J

(r+1,s+1)
j (u)dt

=

∫ 1

0

Bαα(t)Bβ0 (t)

i∑
m=0

aimB
i
m(t)

j∑
l=0

ajlB
j
l (t)dt

=

i+j∑
l=0

Cl(a
i
m, a

j
l )

∫ 1

0

Bαα(t)Bβ0 (t)Bi+jl (t)dt

=
1

α+ β + i+ j + 1

i+j∑
l=0

(
i+j
l

)(
α+β+i+j
α+l

)Cl(aim, ajl ), (11)

where Cl(aim, a
j
l ) are scale forms of (8).

Moreover, when α = s + 1 and β = r + 1, the equation
Ḡα,βi,j (α, β, i, j) has the orthogonality, that is

γ
(s+1,r+1)
i = Ḡα,βi,j (s+ 1, r + 1, i, j)

=

 1
2i+r+s+3

(i+s+1
s+1 )

(i+r+s+2
s+1 )

i = j,

0 i 6= j.
(12)

Similarly, given a Jacobi polynomial J (r+1,s+1)
j (u) and a

Bernstein polynomial Bnk (t), we have

Gα,βi,j (α, β, k, j) =

∫ 1

0

tα(1− t)βBnk (t)J
(r+1,s+1)
j (u)dt

=
1

α+ β + n+ j + 1

j∑
i=0

(−1)(i+j)

(
n
k

)(
j+r+1
i

)(
j+s+1
j−i

)(
α+β+n+j
α+k+i

) .

(13)

Lemma 4. Let X(t) =
n∑
i=0

xni B
n
i (t) be a Bézier curve of

degree n and P(t) be a conic section given by equation (1),
we have

ξ(n,xni ) =

∫ 1

0

X(t)P(t)dt

=

n+2∑
i=2

i−1∑
s=1

(
n+ 2

i

)
aas∆

icn+2
0

i− s + aA

×


4√

4a−1
arctan 1√

4a−1
, a > 1

4
,

2√
1−4a

ln
∣∣∣ 1−√1−4a

1+
√

1−4a

∣∣∣ , a < 1
4
,

−4, a = 1
4
,

(14)

where
a = 1

2(1−ω1)
,

ai = 2−(i−1)
[(i−1)/2]∑
s=0

(
i

2s+1

)
(1− 4a)s, i 6 n+ 2,

an+3 = 2−(n−2)a
[n/2]∑
s=0

(
n−1
2s+1

)
(1− 4a)s,

and
A = cn+2

0 +
(n+2)∆cn+2

0
2

+
(an+2

2
+ an+3

) n+2∑
i=2

(
n+2
i

)
∆icn+2

0 .

Finally, for a Jacobi polynomial J (r+1,s+1)
j (u) and a conic

section P(t), by (14), it yields

ξ(r + s+ j + 2, ck)

=

∫ 1

0

tr+1(1− t)s+1J
(r+1,s+1)
j (u)P(t)dt

=

∫ 1

0

P(t)

j∑
i=0

(−1)(i+j)

(
j+r+1
i

)(
j+s+1
j−i

)(
r+s+j+2
r+i+1

) Br+s+j+2
r+i+1 (t)dt

=

∫ 1

0

P(t)

r+j+1∑
k=r+1

ckB
r+s+j+2
k (t)dt

=

∫ 1

0

P(t)

r+s+j+2∑
k=0

ckB
r+s+j+2
k (t)dt

where

ck=

 (−1)(k−r−1+j) (j+r+1
k−r−1)(

j+s+1
j−k+r+1)

(r+s+j+2
k )

, k = r+1, ..., r+j+1,

0, others.

III. G1 POLYNOMIAL APPROXIMATION OF CONIC
SECTIONS

The G1 approximation of conic sections means r = s =
1. According to the method of weighted least squares [16],
derivatives of F (·) with respective to points q̃k must be zero,
so we have∫ 1

0

ρ(t)ϕ(t)
(
P(t)− Q̃(t)

)
J

(2,2)
k (2t− 1)dt = 0.

Letting ρ(t) = 1
ϕ(t) and substituting (3), (12) and (13) into

the above equation, we obtain

q̃k =
1

γ
(2,2)
k

{∫ 1

0

[
P(t)−

(
1∑
i=0

Bni (t)p0 +

n∑
i=n−1

Bni (t)p2

)

−2ω

n
(λBn1 (t)∆p0 − ηBnn−1(t)∆p1)

]
J

(2,2)
k (u)dt

}
=

1

γ
(2,2)
k

[
ξ(k, aki )−

1∑
i=0

p0G
0,0
i,k−

n∑
i=n−1

p2G
0,0
i,k

−2ω

n

(
λ∆p0G

0,0
1,k − η∆p1G

0,0
n−1,k

)]
.
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Setting

Ak =
1

γ
(2,2)
k

[
ξ(k, aki )−

1∑
i=0

p0G
0,0
i,k −

n∑
i=n−1

p2G
0,0
i,k

]
,

Bk =
2ω∆p0G

0,0
1,k

nγ
(2,2)
k

and Ck =
2ω∆p1G

0,0
n−1,k

nγ
(2,2)
k

,

q̃k can be rewritten as

q̃k = Ak − λBk + ηCk. (15)

From now on, we can calculate all the control points of
the approximation curve Q̃(t) by equation (15). In order to
obtain the values of λ and η, we substituting (15) into the
objective function (3) and letting ρ(t) = 1 yield{

∂Fx

∂λ
+ ∂Fy

∂λ
= 0

∂Fx

∂η
+ ∂Fy

∂η
= 0

(16)

and
∂(Fx, Fy)

∂λ
= λΠ1 − ηΠ2 −Π3,

∂(Fx, Fy)

∂η
= λΠ4 − ηΠ5 −Π6,

where

Π1 =

∫ 1

0

(
2ω

n
∆p0B

n
1 (t)− ϕ(t)

n−4∑
j=0

BjJ
(2,2)
j (u)

)2

dt

=
(2ω∆p0)2

n(4n2 − 1)
− 4ω∆p0

n

n−4∑
j=0

BjG
2,2
1,j+

n−4∑
j=0

n−4∑
k=0

BjBkḠ
4,4
j,k ,

Π2 =Π4

=

∫ 1

0

(
2ω

n
∆p1B

n
n−1(t)− φ(t)

n−4∑
j=0

CjJ
(2,2)
j (u)

)

×

(
2ω

n
∆p0B

n
1 (t)− φ(t)

n−4∑
j=0

BjJ
(2,2)
j (u)

)
dt

=
(2ω)2 ∆p0∆p1

(2n+ 1)
(

2n
n

) +

n−4∑
j=0

n−4∑
k=0

CjBkḠ
4,4
j,k

− 2ω

n

n−4∑
j=0

(
∆p0CjG

2,2
1,j + ∆p1BjG

2,2
n−1,j

)
,

Π3 =

∫ 1

0

(
2ω

n
∆p0B

n
1 (t)− φ(t)

n−4∑
j=0

BjJ
(2,2)
j (u)

)

×

(
P(t)−

1∑
i=0

Bni (t)p0 −
n∑

i=n−1

Bni (t)p2

−ϕ(t)

n−4∑
j=0

AjJ
(2,2)
j (u)

)
dt

=
2ω∆p0

n

[
ξ(n, uλi )− n

2n+ 1

(
1∑
i=0

(
n
i

)
p0(

2n
i+1

) +

n∑
i=n−1

(
n
i

)
p2(

2n
i+1

) )

−
n−4∑
j=0

AjG
2,2
1,j

]
−
n−4∑
j=0

Bj

(
ξ(j + 4, ck)−

1∑
i=0

p0G
2,2
i,j

−
n∑

i=n−1

p2G
2,2
i,j −

n−4∑
i=0

AiḠ
4,4
i,j

)
,

Π5 =

∫ 1

0

(
2ω

n
∆p1B

n
n−1(t)−ϕ(t)

n−4∑
j=0

CjJ
(2,2)
j (u)

)2

dt

=
(2ω∆p1)2

n(4n2 − 1)
− 4ω∆p1

n

n−4∑
j=0

CjG
2,2
n−1,j+

n−4∑
j=0

n−4∑
k=0

CjCkḠ
4,4
j,k

and

Π6 =

∫ 1

0

(
P(t)−

1∑
i=0

p0B
n
i (t)−

n∑
i=n−1

p2B
n
i (t)

−φ(t)

n−4∑
j=0

CjJ
(2,2)
j (u)

)
×
(

2ω

n
∆p1B

n
n−1(t)

−φ(t)

n−4∑
j=0

CjJ
(2,2)
j (u)

)
dt

=
2ω∆p1

n
× [ξ(n, uηi ) − n

(2n+ 1)

(
1∑
i=0

(
n
i

)
p0(

2n
n+i−1

)
+

n∑
i=n−1

(
n
i

)
p2(

2n
n+i−1

))− n−4∑
j=0

AjG
2,2
n−1,j

]

−
n−4∑
j=0

Cj

(
ξ(j + 4, ck)−

1∑
i=0

p0G
2,2
i,j

−
1∑
i=0

p2G
2,2
i,j −

n−4∑
k=0

AkḠ
4,4
j,k

)
,

where

uλi =

{
1 i=1

0 Others

and

uηi =

{
1 i=n-1

0 Others
.

Finally, we can obtain control points q̃i of equation (2) from
the system of linear equations (16).

IV. NUMERICAL EXAMPLES

In this section, we provide two examples to show the
effective of our method. For each example, we use discrete
Hausdorff distances to express approximation error.

Example 1 (Also Example 1. in [11]) Given a conic
section P(t) with control points (0, 0), (1.2, 1.5), (1, 0) and
the weight ω1 = 3. Table I lists λ, η and error obtained by
Hu’s method and ours method, respectively. The resulting
curves of degree n = 4 are shown in the left-hand side
of Fig. 1 and the corresponding error distance curves are
illustrated in the right-hand side of Fig. 1. Fig. 2 shows the
resulting curves with degree n = 6 and corresponding error
distance curves.

TABLE I
APPROXIMATION OF CONIC SECTIONS WITH POLYNOMIALS OF DEGREE

4 AND 6

n Hu’s method Our method

λ η ε λ η ε

4 0.8091 0.8273 2.14 × 10−2 0.8168 0.8368 1.94 × 10−2

6 0.9438 0.9507 5.1 × 10−3 0.9503 0.9524 5.1 × 10−3

Example 2 (Also Example 2. in [11]) Given a conic
section P(t) with control points (0, 0), (0.2, 0.8), (1, 0) and
the weight ω1 = 0.2 and ω1 = −0.2, respectively. Table
II lists λ, η and error obtained by Hu’s method and ours
method, respectively. The resulting curves are shown in (a) of
Fig. 3 , the corresponding error distance curves for ω1 = 0.2
are illustrated in (b) of Fig. 3 and the corresponding error
distance curves for ω1 = 0.2 are illustrated in (c) of Fig. 3.
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Fig. 1. (a) The conic section. (b) The resulting curve of degree 4 using Hu’s method. (c) The resulting curve of degree 4 using ours method (d) The
corresponding error distance curves. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

TABLE II
APPROXIMATION OF CONIC SECTIONS WITH POLYNOMIALS OF DEGREE

5

ω1 Hu’s method Our method

λ η ε λ η ε

0.2 0.8458 0.9221 2.7 × 10−3 0.8634 0.9415 2.4 × 10−3

-0.2 0.3185 0.1163 9.2 × 10−3 0.3223 0.1261 7.2 × 10−3

V. CONCLUSION

In this paper, we have studied G1-constrained approx-
imation of conic section with arbitrary degree Bernstein-
Jacobi hybrid polynomial curves. As [11] explained our
method is to minimize the L2-error distance rather than to

minimize the bound on the Hausdorff error distance, So
Hausdorff error distance is larger than that by the method
[18], [19] for the quartic Bézier curves. One of our work is
to generalize our method to conic section approximated by
the quartic Bernstein-Jacobi hybrid polynomial curves based
on the bound on the Hausdorff error distance.
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curves of arbitrary degree,” Journal of Computational and Applied
Mathematics, vol. 292, pp. 505-512, 2016.

[12] K. Deb, ”Multi-Objective Optimization using Evolutionary Algorithm-
s,” John Wiley & Sons LTD, 2001.

[13] M. Shi, B. S. Kang, ”Degree Reduction for Bézier Curve Based on
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