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Existence ofSolutions for the Four-point
Fractional Boundary Value Problems Involving the
P-Laplacian Operator

Gaihong Feng and Yitao Yang

Abstract—This paper is concerned with four-point fractional ~ value problems and initial value problems for the fractional
boundary value problems involving the p-Laplacian operator. differential equations. In paper [21], the authors discussed the

By employing the Banach contraction mapping principle, We - ayistance of solutions for the following fractional differential
establish the existence of solutions for the four-point fractional . . L "
equation with multi-point boundary condition

boundary value problems involving the p-Laplacian operator.
-pla—-hl_eag]lfai:riea;tlggeagltgtr.ls fractional differential equation with the CDg+u(t) + f(t,ult), (Ku)(t), (Hu)(t)) =0, te(0,1),

Index Terms—Four-point fractional boundary value prob- aru(0) — b1w(0) = diu(&1), azu(l) + bou'(1) = dau(&2),
lems, P-Laplacian operator, Caputo’s fractional derivative,

. . A <2i .
Banach contraction mapping principle. wherel < ¢ < 2 is a real number

In [20], by applying some standard fixed point theorems,
the authors proved the existence and uniqueness of solutions
|. INTRODUCTION for a four-point nonlocal boundary value problem of nonlin-
T HE aim of this paper is to consider the existence arRfr integro-differential equations of fractional order
uniqueness of solutions for the four-point fractional pay. (1) = (¢, z(t), (2)(t), (¥z)(t)), 0<t<1, 1<q<2,

boundary value problems with the p-Laplacian operator as ,
follows z'(0)+ax(m) =0, bx'(1)+z(n2) =0, 0<m <m2 <1,

(6p(CDu(t))) = f(tu(t)), O0<t<1, O0<a<l, where¢D? is the Caputo’s fraction_al derivative._ _
L On tlhe.other htahnd, tt:g pl—Lap(Ijacllan fop(ra]rat.or llS v;]ndely used
C na _ C nHa _ in analyzing mathematical models of physical phenomena,
¢p(" D7u(0)) = ag, (" Du()), u(l) =bu(m), (2 mechanics, nonlinear dynamics and many other related fields.
where ¢, is a p-Laplacian operator, i.eg,(s) = |s|P~2 - In consequence, the subject of boundary value problems
s, p>1, ()71 = ¢y, Z%+ % =1, D" is the standard with p-Laplacian operator is gaining much importance and
Caputo derivative) < £ <n <1, 0<a<1, b#1, f e attention. For details, see [22-26] and the references therein.
C([0,1] x R, R) is a given nonlinear function. In paper [22], the authors studied the existence of multiple
Fractional differential equations arise in many mathemapositive solutions for Sturm-Liouville-like four-point bound-
ical modeling of systems and processes in the fields afy value problem with p-Laplacian
physics, chemistry, aerodynamics, electrodynamics of com-
plex medium or polymer rheology. In the literature [1-3], (dp(u) (t) + f(t,u(t)) =0, te(0,1),
the derivatives of fractional order are involved. Because the / /
fractional order models are more accurate than integer order u(0) = aw(§) =0, u(l) +fu'(n) =0,
models, many scholars study fractional differential equéy using a fixed-point theorem of operators on a cone.
tions. Furthermore, fractional derivatives provide an excellentHowever, as far as we know, very few papers have com-
instrument for the description of memory and hereditafgined the fractional differential equation with the equation
properies of various materials and processes. This memamyolving the p-Laplacian operator. As we all know, when
term insures the history and its impact to the present atite p passing fromp = 2 to p # 2, difficulties appeared
future, see [4]. In consequence, the subject of fractionahmediately. For the first case, fgr = 2, we can change
differential equations is gaining much importance and attethe differential equation into a equivalent integral equation
tion. For details, see [5-12] and the reference therein. Receasily and therefore, a Green’s function exists, however,
results on fractional differential equations can be seen in tf@r p # 2, it is impossible since the differential operator
literature [13-19]. (¢p(“Du(t)))’ is nonlinear. Inspired by the above men-
Recently, there have appeared a very large number tisined works, in this paper, we study the existence and
papers which study the existence of solutions of boundaspiqueness of solutions for the four-point fractional boundary
value problems with the p-Laplacian operator. To the best
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results thawill be used to prove our main results. The proofSince ¢, (“ D*u(0)) = a¢, (¢ D*u(€)), we deduce that
of our main results are given in section 3. In section 4, we

t
will give an example to ensure our main result. dp(CDYu(t)) = ap,(C Du(€)) +/ y(s)ds.  (9)
0
Il. THE PRELIMINARY LEMMAS We choosé = ¢ in (9), we have
For the convenience of readers, we provide some back- ¢
ground material in this section. 6p(C Du(€)) = ap, (¢ Du(€)) +/ y(s)ds,
Definition 2.1 [20] The Riemann-Liouville fractional in- 0
tegral of ordera for function y is defined as So, )
1
¢ “p~ = / ds. 10
Iay(t) — F(l ) / (tf S)aily(s)ds, a>0. ¢P( u(f)) 1—a 0 y(s) S ( )
@) Jo

Definition 2.2 [20] The Caputo’s derivative for function Hence, from(9), (10), we have the following form

. . 13
is defined as (bp(CDau(t)) __4a / y(s)ds + /t y(s)ds,
0 0

1 by (s)ds 1—a
CDoy(t) = | & n=lo+1,
L(n—a)Jy (t—s)tt-n ] and then

where[a] denotes the integer part of real number “ ¢ t
Lemma 2.1 Let a > 0, then the fractional differential ~ “Du(t) = ¢, [ / y(s)ds+/ y(s)ds] . (11)
0

equation 1=aj
} + z(0)

C na
D%u(t) =0 Using Lemma2.2 to Eq. (11), we can write
has solutions

13 t
a
— J4 -
u(t) = C1+62t+03t2+' . '+Cntn717 Ci S Ra 1= 1a 25 NN = [aj/f_ﬁ—)l ! {¢q ll —a /(; y(S)dS +/(; y(S)dS

1 3 B a €
Lemma 2.2[20] Let a > 0, then — 7/ (t—7)° 1%{ / y(s)ds
0 0

r 1—
I° CDu(t) = u(t) + c1 + cot + c3t? + -+ + et ! (@) “
+ Jo u( ds} dr + x(0).

for somec; € R, i=1,2,---,n,n=[a]+ 1.

Lemma 2.31If ¢, is a p-Laplacian operator, then it has (12)
the following properties. Then
1) Ifl<p<?2 zy>0,and|z], |y >m >0, then 1 [t ¢
@) p<2 zy ], ly] _Zn u(l) = @/ (1_T)a_1¢q[1 aa/ y(s)ds
[¢p(x) — dp(y)| < (p— DmP "z —y. ®) 0 0
(2 I p>2, |z |yl < M, then +Jo y<5>d8] dr +(0),
|6p(2) = Sp(y)| < (p — YMP 2|z —y. 4) 1 B a /€
Lemma 2.4 Suppose thay € C[0,1], a,b # 1. Then the u(n) = F(a)/o (n=7)""" 9 {1 —a /0 y(s)ds
following four-point fractional boundary value problem [T y(s)ds | dr + (0).
0
(@p(“Du(t)) =y(t), 0<t<l, 0<a<l, (5)
6,(CD*u(0)) = ady (CDu(€)), u(l) = bu(n), (6) By the boundlary conditioru(1) = bu(r ) we can have
is equivalent to the following integral equation: ﬁ/ (1-71) ¢q[ s)ds+
1 t T 0 _
u(t) = ) /Og(t ~ryelg, (/0 h(s)ds Jo y(s)ds | dr + z(0) 5
a b 7
+ })_ u /0 h(S)ds) dr+ — F(a)/ (n— 7—)04—1¢q L i - /O y(s)ds+
Oz 1 T
+W /5 —7)* g </ h(s)ds - Jo y(s)ds_ dr — bz (0) = 0.
+ ;a /0 1h(s)ds dr So, we get n 5
- _ a—1 T o b _ a—1 a
(1-b)I(e) /g (1=7) %a (/0 hs)ds 2(0) = (1 -0 () /0 (n—1) o |:1_ a/o y(s)ds+
a
+t1o a/o h(s)ds) dr. Jo u( dﬂ dr 1 5
f By th ti CD>u(t))) = y(t), 0 - —r)e-t [ d
S e bave OO =, < o Jy 07 e ) v
t + Jo u( ds} dr.
6D u(0) = 0 CD"uO) + [ ylis. (@) 13
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Substituting (13)into (12), it is easy to get that By Lemma 2.3 and the definition of operat®y, for any
1 t a ¢ u,v € E, we have
- _ a—1
u(t) = o) A (_t T) ngqL —(IA y(s)ds
+ Jo y(s)ds|dr Tou(t) — Tyu(t
b i n a— [ a £ d
+(1b)r@/o (n—7) 1%_1&/0 y(s)ds L_a/ fsul ”/ faul ]
+f0T y(s)ds|dr —¢, [1aa/ f(s,v(s))ds+/ f(s,v(s))ds]
1 ! wl1. | a £
B (1—b)F(_a>/o = ¢q_1_a/o A P ‘/ F(s.u(s
+ [Ty(s)ds|dr.
fo y(s) s_ T +f0
The proof is completed.
—fgf(s v(s))
I11. M AIN RESULT R
This section is devoted to give an existence and uniquenessS (g = 1)(5e%)" ( / F(s,u(
of solutions for the four-point fractional boundary value a £
problem (1), (2). 1 . (s, U(s))ds’
To this end, we define the operatdy : C[0,1] — C0,1] . 0
by | 205, uopas = f3 55,0050
3
a
Tyult) ll ° / £(s,u(s))ds + / £(s,u(s ] o <@- 1><ﬂmq2<1_a [ 15(suls) = (s 0(5)) ds
andTy : C[0,1] — C[0,1] by +Jo ’f(s’“(s))ds —fot S’”(S))‘ ds
¢ _o af
i) = £ [ 2o < (0= 102 (2Nl = ol + 8= o
0 ag
A = Nla= D () -l
+m A (77_7-) U(T)dT 1—0/

1 ' a—1
- m/@ (1—7)%  u(r)dr.

LetT = TyoTy, thenT : C0,1] — C[0,1] is a completely
continuous operator. It is clear thatis a solution of the
fractional boundary value problem (1), (2) if and onlyuif ITu(t) — To(t)] = [Ty (Tou)(t) — Tt (Tov) (1))

is a fixed point ofT". 1 a1
r(o%/o (t_77> ((Tou)(7) — (Tov) (7)) dr

Hence,

Let E = C]0, 1] be the Banach space endowed with the usual =
supremum nornj| - ||.

Theorem 3.1Supposey > 2, 0 <a <1, b+#1let +(1 D) /. (n =)~ ((Tou) (1) — (Tov) (7)) dr
T'(A(¢g—2)+2) 1
T= (1+|1 b\+|1 bl)m T / (1= 7)1 ((Tow)(1) = (Tov)(7)) dr
(e et £ )t o DT
|+ ) s ( / Jor- ITMN)( as +T> dr
and thefollowing condition holds: I'(a) Jo l-a
(H,) There exist constant§ > 0, o + A(q — 2) > 0, n i :)F 1 = r)e- A a2) (1@?5 n T> dr
1
0<N< . 1 a
DR < | o 0 (i 7))
such that N(q—1)89~ 2||u H
BMAL < f(t,u), forany (t,u) € [0,1] x R, (14) - ( t"‘ 11— ) tMamD L A2 g
and — )F(a) fo ta=1(1 — 7)a— 1A= M a2y

+
|f(t,u)—f(t,v)] < N|lu—v|, fort € [0,1], and(u,v) € R. +
(15)
Then the fractional boundary value problem (1), (2) has a T 7(1 a)(1-b
+
+

T=o)T(a) b)F(a) fo o= 1(1 7—)&—lnk(q—2)+17_,\(q_2)+1nd7_

a 1 _ T)afln)\(q72)7_)\(q72)nd7_

unique solution. fo (1 _T)a 1-Mg=2)+1 g,
proof By (14), we can get
1 — T)alT)‘(qQ)dT>

1-— b)F(a

___ _af
Bt < /tf(s,u)ds, for any (t,u) € [0,1] x R. (1_(1)(1_?2(&)
~Jo N(g—1)B7?|lu—v|
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2)+2,a)
tetMI=2AB(\(q —2) + 1,0)
PN B (g — 2) + 2, a)
a2 B(\(g —2) +1,a)

1
ta+1+k(q—2)B Mg —

1— a)F(oc)

(1- b)F(a)

+
+

ab§
Tl a)<1 BT (@)
+
+

7(1 pcey | BA@—2) +2,0)
S am - B(A(q—2>+1,a>)N<q—1>ﬂq2||u—v||
< b . 1
1 = b)) (1 -0 ()
B(\(g
abg 5
+(1a1"(a+‘1a(1 BT )F(oz))

9t a))mq—lwq 2||u—v||

((“‘u 51+ |etw ) =

T'(A(q—2)+1)
+ ((1—(1) + ‘ (l—a)(l—b) ’ + ‘(1—a)(1—b) D F()\(q—qQ)+1+a)>
N(g—1)892|lu— v

T'(A(g—2)+2)
T\g-2)+2+a)

proof By (16), fort € [0,1], we have

< / (sl ds < / (o) = H.

(s))ds

From Lemma 2.3 and (17), and for anyv € F, we have

[Tou(t) — Tov

1= d5+/ f(s,u(s 1
~4, [10 / Foalsnas+ [ f<s7v<s>>ds]

<@-1) (%)H . / " s )i
a §

s ))ds — / " (s, ols))ds
f(q‘l)( (1 /fsu
e [ vty + /fsu ds—/tf(s,v(s))ds

= L|ju - vl, g(q—l)( ( / (s, u(s)) = f(s,v(s))| ds
where

. 1+’ 'Jr‘ 1 ‘ T(A(g —2) +2) -ﬁ-fg’f(s,u(s ds—fo (s,v( s))‘ds)

_ _ _ —2
+< e +1’ b abfl b +F(A(q a2) +2 +Da) < -1 (%)q (fgaN”“ ol + N U”)
1-— 1—a)(1-b 1—a)(l-b =2 ([ a
tog—2en” G =N ()" (75 ) el

FAg=2)+1+a) Therefore,
By the condition(H;) of this theorem, we can get that<
L < 1, then [ Tu(t) = Tv(t)] = [Ta(Tou)(t) — T1(Tov) (1)

|Tw = Tl < Liju—v]|. - -L / (t— 7)™ (Tow)(r) — (Tov)(r)) dr
B . . . Ie) Jo

This implies thatT" : E — E is a contraction mapping. In b "

view of the Banach contraction mapping principle, we get
that T" has a unique fixed point i#Z, that is the boundary
value problem (1), (2) has a unique solution. The proof is
completed.

Theorem 3.2Supposel <p <2, 0<a<1, b#1, let
q—2
e = (q_ 1) (115(1)
1

1 b
<F<a> - ‘ EDNOIMIEDRE)

) (a(a+1) +
and thefollowing condition holds:
(Hs2) There exists a nonnegative functiene L[0,1] and
H := [} h(t)dt > 0 such that

|f(t,u)| < h(t), for any (t,u) €

af 1

0,1 xR,  (16)

and there exists a constait with

1
O0<N<—=
< < o)
with
|f(t,u)—f(t,v)] < N|lu—v|, fort € [0,1], and(u,v) € R.

(17)
Then the fractional boundary value problem (1), (2) has a
unique solution.

l-a o

o J, 7 (@)~ Ty e

a0 @) — T ) i

< (o -7 (5
.

(1- 1)F(Oé) 0
+ A=h() fol(l — 7)ol (lafa + T) dT)
Ina-1 )"
[ 1 ot al t*
{F(a) (a(a + 1)@ 11 - a;xg) "
i@ | \Fem Y oa )
1 1 a& 1
+ (1—=b)I(a)| \ et "1 ¢ aﬂ

N(g—1) (%)q_
— N(g—1) (%)H

[lu =

(e lo=ar@| * [o=wra)
o) |(1-0T(a) (1-0)T()
a5 L) vl

= Laflu —vf],
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