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Abstract—In this paper, the finite generalized Hankel trans-
formation on spaces of generalized functions by developing a
new procedure has been studied. The transformation is used
by application of a generalized function to the kernel function
and is extend to a larger space of generalized functions.

Index Terms—generalized Hankel transformation, distribu-
tional spaces, operator.

I. INTRODUCTION

Malgonde [1] investigated the following generalized Han-
kel transformation
(h1,µ,α,β,νf) (y) = F1 (y)

= νβ y−1−2α+2ν

∞∫
0

Jα,β,ν,µ (xy) f (x) dx, (µ ≥ −1/2)

(I.1)
where Jα,β,ν,µ (x) = xαJµ (βxν), Jµ (x) being the Bessel
function of the first kind of order µ. This transformation has
been studied on distributional spaces by different authors [2],
[3], [4]. Malgonde and Gorty [5] investigated the finite gen-
eralized Hankel-Clifford transformation and now extended
to the variant of the classical modified finite generalized
Hankel-transform type defined by
(~1,α,β,ν,µf) (n) = Fα,β,ν,µ (n)

= ν2β2

a∫
0

x2ν−2α−1Jα,β,ν,µ (λmx) f (x) dx ; m = 1, 2, ..

(I.2)
for a function f (x) defined on the interval (0, 1) is intro-
duced in [6] as where µ ≥ − 1

2 and λ1, λ2, ... represent the
positive zeros of Jα,β,ν,µ (λna) [7] arranged in ascending
order of magnitude.
Here

Jα,β,ν,µ (λnx) = (xλn)
α
Jµ (β(xλn)

ν
) . (I.3)

The inversion theorem for the transformation (I.2) is given
in [5].

Theorem 1.1: Let f (t) be a function defined and abso-
lutely integrable on (0, a) . Assume that µ ≥ − 1

2 and

f (t) =
∞∑
m=1

amJα,β,ν,µ (λmt) (I.4)
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set
am =

2ν

a2ν−2αJ 2
α,β,ν,µ+1 (λma)

a∫
0

t2ν−2α−1Jα,β,ν,µ (λmt)f (t) dt.

(I.5)
If f (t) is of the bounded variation in
(a1, a2) , (0 < a1 < a2 < a) and if t ∈ (a1, a2),

then the series
∞∑
m=1

amJα,β,ν,µ (λmx) converges to
1
2 [f (x+ 0) + f (x− 0)].
Some orthogonal series expansions involving generalized
functions have been discussed by Zemanian and motivated to
this author to introduce the finite generalized Hankel trans-
formation [4]. The same transformation has been extended
to a class of generalized functions by Dube [8] developing
a quiet different technique. Precisely in this paper, the finite
Hankel-type generalized transformation is extended to a class
of generalized functions, following the method investigated
by [5]. D (I) is the space of infinitely differentiable functions
with compact support on . Its dual D′ (I) is the space
of Hankel distributions. E (I) is the space of all infinitely
differentiable functions on I and E′ (I) is the space of
distributions with compact support.
Finally, we will use the operators

∆α,β,ν,µ = x−µν+α+1−2νDx2µν+1Dx−µν−α.

It is expressed as

∆α,β,ν,µ = x2−2νD2+(1− 2α)x1−2νD−x−2ν
{

(µν)
2 − α2

}
(I.6)

and D = d
dx .

The operational formula is easily computable

∆α,β,ν,µ [Jα,β,ν,µ (λmx)] = −(λm)
2ν

(βν)
2Jα,β,ν,µ (λmx) .

(I.7)
In the study the finite generalized Hankel transformation

is defined by:
(~α,β,ν,µf)(n) = Fα,β,ν,µ(n)

= β2ν2
a∫

0

x2ν−2α−1(xy)
αJµ (β(xy)

ν
) f(x)dx. (I.8)

For each real number µ, a function ϕ (x) is in Hµ if and
only if it is defined on 0 < x < 1, it is complex-valued and
smooth, and for each pair of nonnegative integers m and k,

γµm,k (ϕ) , sup
0<x<1

∣∣∣xm(x−1D)k [x−µ−1/2ϕ (x)
]∣∣∣ (I.9)

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_04

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 



exists (i.e., is finite). Hµ is a linear space. Also, γµm,k
each is a seminorm on Hµ. The topology of Hµ is that
generated by

{
γµm,k

}∞
m,k=0

. The Hankel transformation hµ,

is an automorphism on Hµ whenever µ ≥ − 1
2 .

The generalized functions in the dual H ′µ of Hµ act like
distributions of slow growth as x → ∞. Moreover, H ′µ
is the domain of Hµ the generalized Hankel transformation
hµ, it follows that hµ is an automorphism on H ′µ . This
procedure is reminiscent of Schwartz’s method of extending
the Fourier transformation to distributions of slow growth.
For a real number µ and a positive real number a, they
constructed a testing function space Ja, µ as follows:
Let Ja, µ be a testing function space containing all ϕ (x)
which are defined and smooth on I = (0, 1) and for which
τµ, ak (ϕ)

= sup
x∈I

∣∣∣∣e−axx−µ−1/2(x−µ−1/2Dx2µ+1Dx−µ−1/2
)k

(ϕ)

∣∣∣∣
(I.10)

<∞ for k = 0, 1, 2, · · · . Ja, µ is assigned the topology gen-
erated by the countable multinorm {τµ, ak }∞

k=0
.Ja,µ contains

the kernel xyνJµ (xy) as a function on
0 < x < 1 for each fixed complex y in the strip

Ω = {y : |Im y| < a, y 6= 0 or a negative number}

. Also defined a new testing function space Ma, µ between
Hµ and Ja, µ namely Hµ ⊂ Ma, µ ⊂ Ja, µ, whereby
Ma, µ still contains the kernel function. J ′

a, µ ⊂ M ′a, µ
is thus extended to a larger class of generalized functions.
Many properties of Ma, µ and the countable union Mµ =⋃∞
i=1Mai, µ are also established.

An inversion theorem and a representation for M ′a, µ are the
main results. The Hankel transformation hµ is now defined
on the dual space J ′

a, µ. The behaviours of Jµ near the
origin and the infinity are the following ones:

Jµ(x) = O (xµ) (I.11)

as x→ 0+.

Jµ(x)

≈
(

2

πx

)1/2
[

cos

(
x− 1

2
µπ − 1

4
π

) ∞∑
m=0

(−1)
m

(µ, 2m)

(2x)
2m ]

]

−
(

2

πx

)1/2
[

sin

(
x− 1

2
µπ − 1

4
π

)
(−1)

m
(µ, 2m+ 1)

(2x)
2m+1

]
(I.12)

where (µ, k) is understood as in [9].
The main differentiation formulas for Jµ are

d

dx

{
(λmx)

(µν+ν)Jµ+1 (β(λmx)
ν
)
}

= νβ(λmx)
(µν+2ν)

x−1Jµ (β(λmx)
ν
) . (I.13)

d

dx

{
(λmx)

(−µν)Jµ (β(λmx)
ν
)
}

= −νβ(λmx)
(−µν+ν)

x−1Jµ+1 (β(λmx)
ν
) . (I.14)

for x, y > 0.

II. THE TESTING FUNCTION SPACE Vα,β,ν,µ (I)

For each pair of real numbers α, β, ν and µ, with µ ≥ − 1
2

and Vα,β,ν,µ (I) is the space of all infinitely differentiable
complex-valued functions φ (x) defined on I , such that

γθ,α,β,ν,µk = sup
∣∣∣xθ∆k

α,β,ν,µx
−(−µν+α+1−2ν)φ (x)

∣∣∣ <∞
(II.1)

for each k = 0, 1, 2, · · · .
The topology of the linear space Vα,β,ν,µ (I) is generated
by the collection of seminorms

(
γα,β,ν,µk

)
, k = 0, 1, 2, · · · .

Thus Vα,β,ν,µ (I) is a countably multinormed space.
Theorem 2.1: Vα,β,ν,µ (I) is complete and therefore a

Fréchet space.
Proof. It can be proved with an argument similar to the one
used by [4], [10]. Let J denote an arbitrary compact of I .
Let x1 be any fixed point of I and let D−1 be the integration

operator D−1 =
x∫
x
1

· · · dt. Let (φn) be a Cauchy sequence

in Vα,β,ν,µ (I). For each non-negative integer k, it follows
from (II.1) that ∆k

α,β,ν,µx
−(−µν+α+1−2ν)φn (x) converges

uniformly on J as n→∞.
If k = 0, then x φn (x) converges uniformly on J .
If k = 1, we have

x−(−µν+α+1−2ν)∆α,β,ν,µφn (x)

= x−(−µν+α+1−2ν)

×
(
x−µν+α+1−2νDxx

2µν+1Dxx
−µν−αφn (x)

)
= x−(−µν+α+1−2ν)x2−2νDx

2φn (x)

+ x−(−µν+α+1−2ν)(1− 2α)x1−2νDxφn (x)

− x−(−µν+α+1−2ν)x−2ν
{

(µν)
2 − α2

}
φn (x)

x−(−µν+α+1−2ν)∆α,β,ν,µφn (x)

= −x−(−µν+α+1−2ν)(λn)
2ν

(βν)
2
Jα,β,ν,µ(λnx) (II.2)

D−1x−(−µν+α+1−2ν)∆α,β,ν,µφn (x)
= D−1x−(−µν+α+1−2ν)

×
(
x−µν+α+1−2νDxx

2µν+1Dxx
−µν−αφn (x)

)
= x2µν+1Dxx

−µν−αφn (x)− x2µν+1
1 Dx1

x−µν−α1 φn (x1)
(II.3)

And

x−(−µν+α+1−2ν)D−1x−(2µν+1)D−1x−(−µν+α+1−2ν)

×∆α,β,ν,µφn (x)

= x−(−µν+α+1−2ν)
x∫

x1

x−(2µν+1)x2µν+1Dxx
−µν−αφn (x) dx

− x−(−µν+α+1−2ν)
x∫

x1

x2µν+1
1 Dx1

x−µν−α1 φn (x1) dx
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= x−(−µν+α+1−2ν)
x∫

x1

[
Dxx

−µν−αφn (x)
]
dx

− x−(−µν+α+1−2ν)
x∫

x1

(x1
x

)2µν+1

Dx1
x−µν−α1 φn (x1) dx

= x−(−µν+α+1−2ν) [x−µν−αφn (x)− x−µν−α1 φn (x1)
]

− x−(−µν+α+1−2ν)
x∫

x1

(x1
x

)2µν+1

Dx1
x−µν−α1 φn (x1)dx

=

[
φn (x)−

(
x
x1

)2µν−1+2ν

φn (x1)

]
−x−(−µν+α+1−2ν)(x1)

2µν+1
[
x−2µν

2µν −
x1

−2µν

2µν

]
×Dx1

x−µν−α1 φn (x1)

= φn (x)−
(
x
x1

)2µν−1+2ν

φn (x1)

−φx1
(x)
{
x−(−µν+α+1−2ν)(x1)

2µν+1
}

×Dx1x
−µν−α
1 φn (x1)

(II.4)

where we set

φx1
(x) = (2µν)

−1 [
x−2µν − x1−2µν

]
when µ 6= 0 and φx1 (x) = log x

x1
when µ = 0.

The left-hand sides of (II.2), (II.3) and (II.4) converges
uniformly on J as n → ∞. Then, it follows from these
expressions that Dφn (x) and D2φn (x) also converge,
uniformly on J .
A simple inductive process shows that Dkφn (x) converges
uniformly on J as n→∞, for each non-negative integer k.
Thus there exists an infinitely differentiable function φ (x)
defined on I such that Dkφn (x) → Dkφ (x) as n → ∞.
Finally, it is obvious that φ ∈ Vα,β,ν,µ (I) and φ (x) is the
limit of the sequence φn (x) in this space.
V ′α,β,ν,µ (I) is the dual space of Vα,β,ν,µ (I). We assign
to V ′α,β,ν,µ (I) the usual weak convergence. Therefore,
V ′α,β,ν,µ (I) is a complete space. We now list some
properties of these spaces:

(i) D (I) ⊂ Vα,β,ν,µ (I) and the topology of D (I) is
stronger than that induced of it by Vα,β,ν,µ (I). Hence,
the restriction of any f ∈ V ′α,β,ν,µ (I) to D (I) is in
D′ (I). This can be inferred if we note that

∆k
α,β,ν,µ,xφ (x) =

2k∑
j=1

ajx
j−2kDkφ (x) (II.5)

where the constants aj depend only on Vα,β,ν,µ (I).
(ii) Vα,β,ν,µ (I) ⊂ E (I) and E′ (I) is a subspace of

V ′α,β,ν,µ (I).
(iii) For each f ∈ V ′α,β,ν,µ (I) there exists a positive

constant C and a nonnegative integer a such that [4]

|〈f, φ〉| ≤ C max
0≤k≤∞

γα,β,ν,µk (φ) (II.6)

for every φ ∈ Vα,β,ν,µ (I).
(iv) Let f (x) be a function defined on I such that

1∫
0

x2ν−2α−1 |f (x)| dx exists for θ ≥ µ + 1
2 . Then

f (x) generates a regular generalized function in
V ′α,β,ν,µ (I) by

|〈f, φ〉| =
1∫

0

f (x)φ (x) dx, φ ∈ Vα,β,ν,µ (I). (II.7)

(v) For each m = 1, 2, . . . and µ ≥ −1
2 the function

x2ν−2α−1Jα,β,ν,µ (λmx) , 0 < x < 1 is a member
of Vα,β,ν,µ (I). To see this, from (1.3) it follows:

γθ,α,β,ν,µk

[
x(−µν+α+1−2ν)Jα,β,ν,µ(λmx)

]
= sup

I

∣∣∣xθ(λn)
2νk

(βν)
2Jα,β,ν,µ(λmx)

∣∣∣ <∞
(II.8)

for each k = 0, 1, 2, . . . .

III. THE TESTING FUNCTION SPACES AND Ma, µ AND Mµ

Let a ∈ I and µ ∈ R. Define Ma, µ as the space of testing
functions ϕ (x) which are defined and smooth on 0 < x < 1
for which
γ
a, µν+α−1/2
m, k (ϕ)

= sup
x∈I

∣∣∣e−axxm(x1−2νD)k [x−µν−αϕ (x)
]∣∣∣

for m, k = 0, 1, 2, ....
= sup

x∈I
|e−axxm−µν−α [Ak]|

where

Ak = ak0
ϕ (x)

x(1−2ν)k
+ ak1

ϕ(1) (x)

x(1−2ν)k
−1 + · · ·+ akk

ϕ(k) (x)

xk

≤Msup
x∈I

∣∣∣ak0 ϕ(x)
x(1−2ν)k

∣∣∣+Msup
x∈I

∣∣∣ak1 ϕ(1)(x)
x(1−2ν)k−1

∣∣∣+
+ ...+Msup

x∈I

∣∣∣akk ϕ(k)(x)
xk

∣∣∣
<∞.
Thus

γ
a, µν+α−1/2
m, k (ϕ) <∞. (III.1)

Assigned to Ma, µ the topology generated by the countable
multinorm

{
γ
a, µν+α−1/2
m, k

}
. Ma, µ is a Hausdorff space since

γ
a, µν+α−1/2
m, k is a norm.

Let µ ≥ − 1
2 . For a fixed complex number y belonging to

the strip

Ω = {y : |Im y| < a, y 6= 0 or a negative number} (III.2)

∂m

∂ym
(
νβy−1−2α+2ν(xy)

α
Jµ (β(xy)

ν
)
)
∈Ma, µ. (III.3)

Indeed, it is easily verified that (see [ [5], [9])

∂m

∂ym
(
νβy−1−2α+2ν(xy)

α
Jµ (β(xy)

ν
)
)

=
m∑
j=0

aj (µ) y−1−α+2νyjν−mxα+jνJµ−j (β(xy)
ν
) (III.4)

where aj (µ) are constants depending on µ only.
Considering
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(
x1−2νD

)k [
x−µν−α(xy)

α+jνJµ−j (β(xy)
ν
)
]

= yα+µν
(
x1−2νD

)k [
(xy)

−µν+jνJµ−j (β(xy)
ν
)
]

= yα+µν
(
x1−2νD

)k−1 (
x1−2ν

)
×D

[
(xy)

−µν+jν Jµ−j (β(xy)
ν
)
]

= yα+µν
(
x1−2νD

)k−1 (
x1−2ν

)
×
[
− (νβ) (xy)

−µν+jν+ν
x−1Jµ−j+1 (β(xy)

ν
)
]

= yα+µν+2ν
(
x1−2νD

)k−2 (
x1−2ν

)
(−1) (νβ)

×D
[
(xy)

−µν+jν−νJµ−j+1 (β(xy)
ν
)
]

yα+µν+2ν
(
x1−2νD

)k−2 (
x1−2ν

)
×(−1)

2
(νβ)

2
[
(xy)

−µν+jν
x−1Jµ−j+2 (β(xy)

ν
)
]

= yα+µν+2kν(−1)
k
(νβ)

k

×
[
(xy)

−µν+jν−kνJµ−j+k (β(xy)
ν
)
]

= (−1)
k
(νβ)

k
yα+kν

[
(x)
−µν+jν−kνJµ−j+k (β(xy)

ν
)
]

Thus(
x1−2νD

)k [
x−µν−α(xy)

α+jνJµ−j (β(xy)
ν
)
]

= (−1)
k
(νβ)

k
yα+kν

[
(x)
−µν+jν−kνJµ−j+k (β(xy)

ν
)
]

(III.5)
and[
(xy)

−µν+jν−kνJµ−j+k (β(xy)
ν
)
]

∼ 1

2µν−jν+kνΓ (µν − jν + kν + 1)

as x→ 0+.
And[
(xy)

−µν+jν−kνJµ−j+k (β(xy)
ν
)
]

= O
[
(xy)

−(µν−jν+kν)−1/2
ex|Im y|

]
as x→∞.
Then it follows that

γa, µνm, kν

(
y−1−α+2νxα+jνJµ−j (β(xy)

ν
)
)
<∞. (III.6)

Therefore

γa, µm, k

[
∂m

∂ym
{
νβy−1−2α+2ν(xy)

αJµ (β(xy)
ν
)
}]

≤
m∑
j=0

|aj (µ)| |y|νj−mγa,µm,k
(
y−1−α+2νxα+jνJµ−j (β(xy)

ν
)
)

(III.7)
<∞ for a fixed y ∈ Ω.

IV. FINITE GENERALIZED HANKEL TRANSFORMATION
AND CONTINUOUS LINEAR MAPPING

The differential operator Nµ , x(2µν+1)/2Dx−µν−α is
continuous from Ma, µ into Ma, µ+1.

Theorem 4.1: The operation ϕ → Nµϕ is a continuous
linear mapping of Ma, µ into Ma, µ+1.

Proof. For ϕ ∈Ma, µ,
γ
a, µν+α+1/2
m, k (Nµϕ)

= sup
x∈I

∣∣∣e−axxm(x1−2νD)kx−µν−2ν+1/2xµν+1/2Dx−µν−αϕ (x)
∣∣∣

= sup
x∈I

∣∣∣e−axxm(x1−2νD)k (x1−2νD)x−µν−αϕ (x)
∣∣∣

= sup
x∈I

∣∣∣e−axxm(x1−2νD)k+1
x−µν−αϕ (x)

∣∣∣ .
γ
a, µν+α+1/2
m, k (Nµϕ) = γ

a,µν+α−1/2
m, k+1 (ϕ) .

Indeed

γ
a, µν+α+1/2
m, k (Nµϕ) = γ

a,µν+α−1/2
m, k+1 (ϕ) . (IV.1)

Thus, ϕ ∈Ma, µ implies that Nµϕ ∈Ma, µ+1.
Also
Nµ (α1ϕ1 + α2ϕ2)
= x(2µν+1)/2Dx−µν−α (α1ϕ1 + α2ϕ2)
= α1x

(2µν+1)/2Dx−µν−αϕ1 + α2x
(2µν+1)/2Dx−µν−αϕ2.

Nµ (α1ϕ1 + α2ϕ2) = α1Nµϕ1 + α2Nµϕ2. (IV.2)

Thus Nµ is linear. Assume {ϕn} converges in the sense of
Ma, µ.
Then

γ
a,µν+α−1/2
m, k+1 (ϕn − ϕ0)→ 0 (IV.3)

as n→∞.
But
γ
a,µν+α−1/2
m, k+1 (ϕn − ϕ0)

= γ
a,µν+α−1/2
m, k+1 (Nµϕn −Nµϕ)→ 0 (ϕ) (IV.4)

as n→∞. Thus Nµ is a continuous linear mapping of Ma, µ

into Ma, µ+1 as in [12].
Note: It is impossible for us to define N−1µ on Ma, µ+1.

Theorem 4.2: The differential operator Mµ ,
x−µν−αDx(2µν+1)/2 is continuous from Ma, µ+1 into
Ma, µ.
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Proof. Indeed,

γµν+2α−1
m,k

(
Mµϕ

)
≤ tm

1∫
0

∥∥∥x−µν−αx−µν−αDx(µν+1/2)ϕ (x)
∥∥∥dx

≤
1∫

0

∥∥∥xmx−2µν−2αDx(µν+1/2)ϕ (x)
∥∥∥ dx

≤
1∫

0

∥∥∥xmx−2µν−2αDx(2µν+2α+1)x−µν−2α−1/2ϕ (x)
∥∥∥ dx

≤
1∫

0

∥∥∥xm (2µν + 2α+ 1 + 2νk)x−µν−2α−1/2ϕ (x)
∥∥∥ dx

+

1∫
0

∥∥∥xm+2νx−µν−2α−1/2ϕ (x)
∥∥∥ dx

≤ (2µν + 2α+ 1 + 2νk) γµν+2α
m, k + γµν+2α

m+2ν, 1.

This implies
γµν+2α−1
m, k

(
Mµϕ

)
≤ (2µν + 2α+ 1 + 2νk) γa, µν+2α

m, k + γa, µν+2α
m+2ν, k+1. (IV.5)

Thus Mµϕ ∈ Ma, µ for every ϕ ∈ Ma, µ+1. But if {ϕn}
converges in the sense of Ma, µ+1, then Mµϕn ∈Ma, µ for
every n and
γa, µν+2α−1
m, k

(
Mµϕn −Mµϕ0

)
≤ (2µν + 2α+ 1 + 2νk) γa, µν+2α

m, k (ϕn − ϕ0)

+γa, µν+2α
m+2ν, k+1 (ϕn − ϕ0) . (IV.6){

Mµϕn
}

converges in the sense of Ma, µ and Mµ is
continuous.

V. SOME OPERATIONAL FORMULAE

Lemma 1: For each real number µ, a function ϕ (x) is in
Hµ, k is a positive integer and k ≥ −µ− 1

2 . Then for every
ϕ ∈ Hµ (A) ,

hµ+1,k (Nµϕ) = −xhµ,k (ϕ) . (V.1)

Proof. By definition

x−k+νk+ν−1−µν+1/2Nµν−(1−2ν)(k−1)...Nµν−(1−2ν)

×Nµν−(1−2ν)(k−k+1)Nµν−(1−2ν+1)ϕ (x)

= Dk+1x−µν−αϕ (x) .

γa, µν+2α−1
m, k

(
Mµϕ

)
= sup

x∈I

∥∥∥e−axxm(x1−2νD)k [x−2µν−2αDx(µν+1/2)ϕ (x)
]∥∥∥

= sup
x∈I
‖ψ(x)‖

where ψ(x) is given by
= e−axxm

(
x1−2νD

)k
×x−2µν−2α (2µν + 2α+ 1)x(2µν+2α)x−µν−2α−1/2ϕ (x)
+xDx−µν−2α−1/2ϕ (x)
which is given as
= sup

x∈I
‖ψ1(x)‖

where ψ1(x) is given by
= e−axxm

(
x1−2νD

)k
(2µν + 2α+ 1)x−µν−2α−1/2ϕ (x)

+
(
x2ν
)
x1−2νDx−µν−2α−1/2ϕ (x)

≤ (2µν + 2α+ 1 + 2νk) γa, µν+2α
m, k + γa, µν+2α

m+2ν, k+1.

This implies
γa, µν+2α−1
m, k

(
Mµϕ

)
≤ (2µν + 2α+ 1 + 2νk) γa, µν+2α

m, k + γa, µν+2α
m+2ν, k+1 (V.2)

Also noted that(
x1−2νD

)k [
x−µν−α(xy)

α+jνJµ−j (β(xy)
ν
)
]

= yα+µν
(
x1−2νD

)k [
(xy)

−µν+jνJµ−j (β(xy)
ν
)
]

= yα+µν
(
x1−2νD

)k−1 (
x1−2ν

)
×D

[
(xy)

−µν+jν Jµ−j (β(xy)
ν
)
]

= yα+µν
(
x1−2νD

)k−1 (
x1−2ν

)
×
[
− (νβ) (xy)

−µν+jν+ν
x−1Jµ−j+1 (β(xy)

ν
)
]
.

= yα+µν+2ν
(
x1−2νD

)k−1 (
x1−1

)
(−1) (νβ)

×
[
(xy)

−µν+jν−νJµ−j+1 (β(xy)
ν
)
]

= yα+µν+2ν
(
x1−2νD

)k−2 (
x1−2νD

)
(−1) (νβ)

×
[
(xy)

−µν+jν−νJµ−j+1 (β(xy)
ν
)
]

= yα+µν+2ν
(
x1−2νD

)k−2 (
x1−2ν

)
(−1) (νβ)

×D
[
(xy)

−µν+jν−νJµ−j+1 (β(xy)
ν
)
]

= yα+µν+2ν
(
x1−2νD

)k−2 (
x1−2ν

)
(−1)

2
(νβ)

2

×
[
(xy)

−µν+jν
x−1Jµ−j+2 (β(xy)

ν
)
]

= yα+µν+2ν
(
x1−2ν ×D

)k−3 (
x1−2ν

)
(−1)

2
(νβ)

2

×D
[
(xy)

−µν+jν−2νJµ−j+2 (β(xy)
ν
)
]

= yα+µν+4ν
(
x1−2νD

)k−3
(−1)

3
(νβ)

3[
(xy)

−µν+jν−3νJµ−j+3 (β(xy)
ν
)
]

= yα+µν+4ν
(
x1−2νD

)k−3
(−1)

3
(νβ)

3

×
[
(xy)

−µν+jν−3νJµ−j+3 (β(xy)
ν
)
]

= yα+µν+2kν(−1)
k
(νβ)

k
[
(xy)

−µν+jν−kνJµ−j+k (β(xy)
ν
)
]

= (−1)
k
(νβ)

k
yα+kν

[
(x)
−µν+jν−kνJµ−j+k (β(xy)

ν
)
]
.

Lemma 2: Let µ be a fixed real number and k be a positive
integer ≥ − 1

2 . Then for every ϕ ∈ Hµ+1 (A), then

hµ,k (Mµϕ) = xνhµ+1,k (ϕ) . (V.3)

Proof. Using

Nµν−(1−2ν)(k−1)...Nµν−(1−2ν)Nµν+2νϕ (x)
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= xµν+νk+ν−1/2
(
x1−2νD

)k+1
x−µν−αϕ (x) .

(V.4)

hµ,k (Mµϕ)

= (−1)
k
(νβ)

2k
x2ν−2α−1

−kν

1∫
0

(2µν + 2νk + 2ν) y2µν+2νk+2ν−1(xy)
α
Jµ+k

× (β(xy)
ν
)
(
y1−2νD

)k
y−µν−α−1ϕ (y) dy

+(−1)
k
(νβ)

2k
x2ν−2α−1

−kν

1∫
0

νβy2µν+2νk+2ν+1(xy)
α
Jµ+k

× (β(xy)
ν
)
(
y1−2νD

)k+1
y−µν−α−1ϕ (y) dy.

Thus follows:
xνhµ+1,k (ϕ)

= (−1)
k
(νβ)

k
xν−kν

1∫
0

(νβ)xνy−µν−kν−1+νy2µν+2νk+2ν

× Jµ+k+1 (β(xy)
ν
)
(
y1−2νD

)k
y−µν−α−1ϕ (y) dy.

Also can be written as analogously in [13]
xνhµ+1,k (ϕ)

= (−1)
k
(νβ)

k
x−kν+ν

×
1∫
0

[
y2µν+2νk+2ν

(
y1−2νD

)k
y−µν−α−1ϕ (y)

]
× (νβ)x−1(xy)

−µν−kν+ν
Jµ+k+1 (β(xy)

ν
) dy.

Note that
Jµ+k+1 (β(xy)

ν
)

= −(νβ)
−1
xµν+kν−ν+1yµν+kν−ν

×D
[
y−µν−kνJµ+k (β(xy)

ν
)
]

(V.5)

Thus
xνhµ+1,k (ϕ)

= (−1)
k+1

(νβ)
k
xν−kν

×
1∫

0

[
y2µν+2νk+2ν

(
y1−2νD

)k
y−µν−α−1ϕ (y)

]
×D

[
y−µν−kνJµ+k (β(xy)

ν
)
]
dy.

= (−1)
k+1

(νβ)
k
xν−kνy−µν−kνy2µν+2νk+2νJµ+k (β(xy)

ν
)

×
(
y1−2νD

)k
y−µν−α−1ϕ (y) |10

−(−1)
k+1

(νβ)
k
xν−kν

1∫
0

[
y−µν−kνJµ+k (β(xy)

ν
)
]

×D
[
y2µν+2νk+2ν

(
y1−2νD

)k
y−µν−α−1ϕ (y)

]
dy.

Also

D
[
y2µν+2νk+2ν

(
y1−2νD

)k
y−µν−α−1ϕ (y)

]
= (2µν + 2νk + 2ν) y2µν+2νk+2ν−1(y1−2νD)ky−µν−α−1ϕ (y)

+y2µν+2νk+2ν+1
(
y1−2νD

)k+1
y−µν−α−1ϕ (y) .

(V.6)

Thus completes the proof.

VI. THE FINITE GENERALIZED HANKEL-CLIFFORD
TRANSFORMATION: CONTINUOUS MAPPING IN Sα,β,ν,µ

AND Lα,β,ν,µ

In this section, a space onto Sα,β,ν,µ of functions and a
space Lα,β,ν,µ of complex sequences is introduced. The finite
generalized Hankel-Clifford transform ~∗α,β,ν,µ on them is
investigated. Sα,β,ν,µ is defined as the space of all complex
valued functions φ (x) on (0, 1] such that φ (x) is infinitely
differentiable and satisfies for every k ∈ N .

(i) ∆∗
k

α,β,ν,µφ (1) = 0,
(ii) x−µν+α+1−2ν∆∗

k

α,β,ν,µφ (x)→ 0 and

xµν−1−α+2ν d
dx

(
x−µν+α+1−2ν∆∗

k

α,β,ν,µφ (x)
)
→ 0

as x→ 0+
and

(iii) x(2ν+µν−α−1)/2∆∗
k

α,βφ (x) ∈ L (0, 1).
Sα,β,ν,µ is endowed with the topology generated by the
family of seminorms {‖‖k}

∞
k=0 and also is a Hausdorff topo-

logical linear space that verifies the first countability axiom,

where ‖φ‖k =
1∫
0

x−α/2
∣∣∣∆∗ kα,β,ν,µφ (x)

∣∣∣ dx for φ ∈ Sα,β,ν,µ

and k ∈ N . Moreover, the operator ∆∗
k

α,β,ν,µ defines a
continuous mapping from Sα,β,ν,µ into itself. S′α,β,ν,µ is
the dual space of Sα,β,ν,µ and it is equipped with the usual
weak topology.
Proposition 6.1: If f (x) is a function defined on (0, 1)
such that x(2ν−2α−1)/2f (x) is bounded on (0, 1) then f (x)
generates a member of S′α,β,ν,µ through the definition is
given by

〈f (x) , φ (x)〉 =

1∫
0

f (x) , φ (x) dx , φ ∈Sα,β,ν,µ. (VI.1)

Proof. The result easily follows from the inequality

|〈f(x), φ(x)〉| ≤ ‖φ‖0 sup
0<x<1

∣∣∣x(2ν−2α−1)/2f(x)
∣∣∣ (VI.2)

for φ ∈ Sα,β,ν,µ.
The spaces Vθ,α,β(I) defined by Malgonde [12] analogously
defined as Vθ,α,β,ν,µ (I) related to Sα,β,ν,µ as follows:
Proposition 6.2: Let µ ≥ − 1

2 and θ > 1
4 −

(2ν−2α−1)
2 . Then

Sα,β,ν,µ ⊂ Vθ,α,β,ν,µ (I) and the topology of Sα,β,ν,µ is
stronger than that induced on it by Vθ,α,β,ν,µ (I).
Proof. Let φ ∈ Sα,β,ν,µ. In virtue of the conditions (i) and
(ii), we can write
xθ−(2ν+µν−α−1)∆∗

k

α,βφ(x)

= xθ+µ
x∫

1

t−2µ−(2ν+µν−α−1)
t∫

0

uµ∆∗
k+1

α,β,ν,µφ(u)dudt

(VI.3)
for every x ∈ (0, 1) and k ∈ N .∣∣∣xθ−(2ν+µν−α−1)∆∗ kα,β,ν,µφ(x)

∣∣∣
≤ xθ−

(2ν+µν−α−1)
2

1∫
0

u−(2ν+µν−α−1)/2
∣∣∣∆∗ k+1

α,β,ν,µφ(u)
∣∣∣ du
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≤
1∫

0

u−(2ν+µν−α−1)/2
∣∣∣∆∗ k+1

α,β,ν,µφ(u)
∣∣∣ du

(VI.4)

for every x ∈ (0, 1) and k ∈ N .
Hence, for every φ ∈ Sα,β,ν,µ and k ∈ N ,

sup
0<x<1

∣∣∣xθ−(2ν+µν−α−1)∆∗ kα,β,ν,µφ(x)
∣∣∣ ≤ ‖φ‖k+1 (VI.5)

and Sα,β,ν,µ is contained in Vθ,α,β (I) and the inclusion is
continuous.
From Proposition 6.2, if f ∈ V ′θ,α,β (I), then the restriction
of f to Sα,β,ν,µ is a member of S′α,β,ν,µ.
Define Lα,β,ν,µ as the space of all complex sequences
(an)

∞
n=0 such that lim

n→∞
anλ

2k
n = 0, for every k ∈ N ,

where λn, n = 0, 1, 2, · · · represent the positive roots of the
equation Jα,β,ν,µ(λnx) = 0, arranged in ascending order
of magnitude. The topology of Lα,β,ν,µ is that generated by
the family of norms

{
γkα,β,ν,µ

}∞
k=0

, where

γkα,β,ν,µ ((an)
∞
n=0) =

∞∑
n=0

|an|λ2kn (VI.6)

for every (an)
∞
n=0 ∈ Lα,β,ν,µ and k ∈ N .

Thus Lα,β,ν,µ is a Hausdorff topological linear space that
satisfies the first countability axiom. L′α,β,ν,µ denotes the
dual space of Lα,β,ν,µ and it is endowed with the weak
topology.
Proposition 6.3: Let (bn)

∞
n=0 be a complex sequence such

that |bn| ≤ Mλln for every n ∈ N and for some l ∈ N and
M > 0. Then the linear operator (an)

∞
n=0 → (anbn)

∞
n=0 is a

continuous mapping from Lα,β,ν,µ into itself. Moreover, the
operator in L′α,β,ν,µ, B → (bn)

∞
n=0B where

〈(bn)
∞
n=0B, (an)

∞
n=0〉 = 〈B, (anbn)

∞
n=0〉 , (VI.7)

for (an)
∞
n=0 ∈ Lα,β,ν,µ. is a continuous mapping from

L′α,β,ν,µ into itself.
Proof. It is sufficient to see that
γkα,β,ν,µ ((an)

∞
n=0)

≤M
∞∑
n=0

|an|λ2k+ln ≤M1 γ
k+l
α,β,ν,µ ((an)

∞
n=0) (VI.8)

for (an)
∞
n=0 ∈ Lα,β,ν,µ and k ∈ N . M1 being a suitable

positive constant. Thus (bn)
∞
n=0 generates a member of

L′α,β,ν,µ by

〈(bn)
∞
n=0 , (an)

∞
n=0〉 =

∞∑
n=0

anbn (VI.9)

for (an)
∞
n=0 ∈ Lα,β,ν,µ.

The fundamental theorem in the theory of a finite generalized
Hankel transformation asserts that the conventional finite
generalized Hankel transformation ~∗α,β,ν,µ is an isomor-
phism from Sα,β,ν,µ onto Lα,β,ν,µ. The proof of this fact
is the next object:

Theorem 6.1: For µ ≥ − 1
2 , the finite generalized Hankel-

Clifford transformation ~∗α,β,ν,µ is an isomorphism from
Sα,β,ν,µ onto Lα,β,ν,µ.

Proof. Let φ ∈ Sα,β,ν,µ. As it is known, ~∗α,β,ν,µφ = (an)
∞
n=0

an =
2ν

J 2
α,β,ν,µ+1(λn)

1∫
0

Jα,β,ν,µ(λnx)φ(x)dx, (VI.10)

for n ∈ N .
In virtue of the operational rule, for every n ∈ N it is
obtained as:

∆α,β,ν,µ = x2−2νD2+(1−2α)x1−2νD−x−2ν
{

(µν)
2 − α2

}
is not self adjoint.
Together with ∆α,β,ν,µ, the operator ∆∗α,β,ν,µ is defined as

∆∗α,β,ν,µ = x−α−νµDx2µν+1Dx−µν+α+1−2ν . (VI.11)

Therefore
∆∗α,β,ν,µ = x2−2νD2 + (4ν − 2α− 3)x1−2νD

−x−2ν
{

(µν)
2 − (α+ 1− 2ν)

2
}

(VI.12)

λ2nan =
λ2n2ν

J 2
α,β,ν,µ+1(λn)

1∫
0

Jα,β,ν,µ(λnx)φ(x)dx

=
λn2ν

J 2
α,β,ν,µ+1(λn)

1∫
0

d

dx

(
x−(−µν+α+1−2ν)Jα,β,ν,µ+1 (λnx)

)
× x−µν+α+1−2νφ (x) dx

=
λn2ν

J 2
α,β,ν,µ+1(λn)

{
Jα,β,ν,µ+1 (λnx) φ (x)|10

}
− λn2ν

J 2
α,β,ν,µ+1(λn)

1∫
0

x−(−µν+α+1−2ν)Jα,β,ν,µ+1 (λnx)

× d

dx

(
x−µν+α+1−2νφ (x)

)
dx

for n ∈ N .
Moreover, according to (VI.4) since
Jα,β,ν,µ+1 (λnx) φ (x)|10 = 0 and φ (1) = 0 and

lim
x→0+

x−µν+α+1−2νφ (x) = 0. (VI.13)

Hence
λ2nan

= − λn2ν

J 2
α,β,ν,µ+1(λn)

1∫
0

x−(−µν+α+1−2ν)Jα,β,ν,µ+1 (λnx)

(VI.14)

× d

dx

(
x−µν+α+1−2νφ (x)

)
dx.

Now, by invoking (VI.13), one has

= −
1∫
0

d
dx

(
x−α−νµ+2ν−2Jα,β,ν,µ (λnx)

)
x2µν+1

× d
dx

(
x−µν+α+1−2νφ (x)

)
dx

= −Jα,β,ν,µ(λnx)x−α−νµ+2ν−2x2µν+1 d
dx

(
x−µν+α+1−2νφ (x)

)∣∣1
0

+
1∫
0

∆∗α,β,ν,µφ (x) Jα,β,ν,µ(λnx)dx.
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Also in this case by (VI.13), the limit terms are equal to
zero because
Jα,β,ν,µ (λn) = 0, φ ∈ C∞ ((0, 1])

lim
x→0+

x−α+νµ+2ν−1 d

dx

(
x−µν+α+1−2νφ (x)

)
= 0.

(VI.15)
Therefore

λn
1∫
0

x−(−µν+α+1−2ν)Jα,β,ν,µ+1 (λnx)

× d

dx

(
x−µν+α+1−2νφ (x)

)
dx

=

1∫
0

∆∗α,β,ν,µφ (x) Jα,β,ν,µ(λnx)dx. (VI.16)

By combining (VI.15) and (VI.16), it is obtained as
λ2nan

= − 2ν

J 2
α,β,ν,µ+1(λn)

1∫
0

∆∗α,β,ν,µφ (x) Jα,β,ν,µ(λnx)dx

(VI.17)
for every n ∈ N .
An inductive procedure allows to establish that
λ2kn an

= (−1)
k 2ν

J 2
α,β,ν,µ+1(λn)

1∫
0

∆∗
k

α,β,ν,µφ (x) Jα,β,ν,µ(λnx)dx

(VI.18)
for every n, k ∈ N .
From (VI.18), according to Riemann-Lebesgue Lemma [13],
one follows to

λ2kn anJ
2
α,β,ν,µ+1(λn)→ 0 (VI.19)

as n→∞.
Moreover by (VI.17), there exists a positive constant M such
that

λ2kn |an| ≤MJ 2
α,β,ν,µ+1(λn)λ2k+1

n |an| (VI.20)

and then λ2kn an → 0 as n→∞ for every k ∈ N .

Also, for certain Mi > 0, i = 1, 2.
∞∑
n=0

λ2kn |an|

=
∞∑
n=0

1

J 2
α,β,ν,µ+1(λn)λ

4(2ν+µν−α−1)
n

×

∣∣∣∣∣∣
1∫

0

∆∗
k+2

α,β,ν,µφ (x) Jα,β,ν,µ(λnx)dx

∣∣∣∣∣∣
≤M1

∞∑
n=0

λ
−5(2ν+µν−α−1)/2
n

×
1∫

0

∣∣∣(λnx)
(2ν+µν−α−1)/2Jα,β,ν,µ(λnx)

∣∣∣
×
∣∣∣x−(2ν+µν−α−1)/2∆∗

k+2

α,β,ν,µφ (x)
∣∣∣ dx

≤M2

∞∑
n=0

λ
−2(2ν+µν−α−1)
n

×
1∫

0

x−(2ν+µν−α−1)/2
∣∣∣∆∗ k+2

α,β,ν,µφ (x)
∣∣∣ dx.

∞∑
n=0

λ2kn |an|

≤M2

∞∑
n=0

λ−2(2ν+µν−α−1)n

1∫
0

x−(2ν+µν−α−1)/2
∣∣∣∆∗ k+2

α,β,ν,µφ (x)
∣∣∣ dx.

(VI.21)

Hence, since
∞∑
n=0

λ
−2(2ν+µν−α−1)
n <∞, the relation follows

as:
γkα,β,ν,µ ((an)

∞
n=0) ≤M3‖φ‖k+2 (VI.22)

for every k ∈ N and φ ∈ Sα,β,ν,µ and for some M3 > 0.
This inequality proves that the linear mapping ~∗α,β,ν,µ is
continuous from Sα,β,ν,µ into Lα,β,ν,µ.
Let now (an)

∞
n=0 ∈ Lα,β,ν,µ and define

τα,β,ν,µ ((an)
∞
n=0) (x) = φ(x) =

∞∑
n=0

anx
αJα,β,ν,µ (λnx)

for x ∈ (0, 1].
By (VI.13) and (VI.14), given as:
∞∑
n=0

∣∣anx(2ν+µν−α−1)Jα,β,ν,µ (λnx)
∣∣

≤Mx(2ν+µν−α−1)/2
∞∑
n=0

|an|, x > 0 (VI.23)

for a suitable M > 0. Therefore φ ∈ C (0,∞). In a similar
way φ ∈ C∞ (0,∞) can be proved as in [6].
From (VI.18), it follows:
∆∗

k

α,β,ν,µφ (x)

=
∞∑
n=0

(−1)
k
λ2kn anx

(2ν+µν−α−1)Jα,β,ν,µ (λnx) (VI.24)

for x > 0 and k ∈ N . Then ∆∗
k

α,β,ν,µφ (1) = 0 for each
k ∈ N .
Also∣∣∣x(2ν+µν−α−1)∆∗ kα,β,ν,µφ (x)

∣∣∣
≤M1 x

(2ν+µν−α−1)/2
∞∑
n=0

|an|λ2kn . (VI.25)

And from (VI.13), (VI.14) and (VI.15) it follows as:∣∣∣x2ν+µν−α−1 d
dx

(
x−µν+α+1−2ν∆∗

k

α,β,ν,µφ (x)
)∣∣∣

≤M2 x
2ν+µν−α−1+1

∞∑
n=0

|an|λ2k−(−µν+α+1−2ν)+1
n .

(VI.26)
Hence
lim
x→0+

x−µν+α+1−2ν∆∗
k

α,β,ν,µφ (x)

= lim
x→0+

x2ν+µν−α−1
d

dx

(
x−µν+α+1−2ν∆∗

k

α,β,ν,µφ (x)
)

= 0.

(VI.27)
On the other hand, since the series defining ∆∗

k

α,β,ν,µφ (x)
is uniformly convergent in x ∈ (0, 1), there exists a positive
constant M3 such that

1∫
0

x(2ν+µν−α−1)/2
∣∣∣∆∗ kα,β,ν,µφ (x)

∣∣∣ dx ≤M3

∞∑
n=0

λ2kn |an|

(VI.28)
for each k ∈ N . Therefore τα,β,ν,µ is a continuous mapping
from Lα,β,ν,µ into Sα,β,ν,µ.
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VII. APPLICATIONS

Recently in [14], a fingerprint recognition method based
on Gabor wavelet transform and discrete cosine transform
(DCT) was proposed useful development in computer engi-
neering. In this section, applications to Mathematical Physics
have been demonstrated with wider use in Mechanical En-
gineering field.
(A) Dirichlet problem in cylindrical coordinates. The gener-
alized finite Hankel-Type Integral Transformation of the first
type when applied with generalized Dirichlet’s problem:
Find the conventional solution v(r, z) of the equation

r2−2ν
∂2v

∂r2
+(1−2α)r1−2ν

∂v

∂r
−r−2ν

{
(µν)

2 − α2
}
v+

∂2v

∂z2

= 0, (VII.1)

0 < r < 1, 0 < z <∞ satisfying boundary conditions:
i) As z →∞+, v(r, z) converges to zero in the sense of
D′(I)

ii) As z → 0+, v(r, z) converges in the sense of D′(I) to
f(r) ∈ V ′α,β,ν,µ(I)

iii) As r → 1−, v(r, z) converges to 0 on c ≤ z <∞ for
each c < 0

iv) As r → 0+, v(r, z) = O(1) on c ≤ z <∞
Let us denote V (n, z) = ~α,β,ν,µ (v(r, z)).
According to (VII.1) becomes

∆α,β,ν,µv +
∂2v

∂z2
= 0. (VII.2)

By applying ~α,β,ν,µ to (VII.2)

~α,β,ν,µ
(
∆k
α,β,ν,µ

)
= (−1)

k
(νβλn

ν)
2k

(~α,β,ν,µ) [f(x)].

Equation (VII.2) becomes

(−1) (νβλνn)
2

(~α,β,ν,µ) [v(r, z)] +
∂2~α,β,ν,µ[v(r, z)]

∂z2
= 0.

(−1) (νβλνn)
2
V (n, z) +

∂2

∂z2
V (n, z) = 0. (VII.3)

Considering
(
~∗α,β,ν,µf

)
= F ∗α,β,ν,µ (n) the solution be-

comes
V (n, z) = Fα,β,ν,µ(n)e−νβzλn

because of the boundary conditions (i) and (ii).
Also the inversion formulae can be obtained

v(r, z) = (~−1α,β,ν,µFα,β,ν,µ)(n) = f(r)

=
∞∑
n=1

2νF (n)e−νβλnzJα,β,ν,µ (λnr)

(λn)
2J 2

α,β,ν,µ (λn)
(VII.4)

Recall that F (m) = O

(
λ
2s− (−µν+α−2ν)

2 + 1
2

m

)
as m → ∞

for some nonnegative integer ‘s′. On the other hand, λm ≈(
m+ (−µν+α−2ν)

4 + 1
4

)
is uniformly bounded on 0 < r < 1

(for each m = 1, 2, . . . ) and e−νβzλm = O(e−cπm) uni-
formly on c ≤ z < ∞. These facts imply that (VII.4) and
the series obtained by applying the operators ∆α,β,ν,µ,r and
∂2

∂z2 under the summation sign in (VII.4) converge uniformly

on 0 < r < 1, 0 < z <∞.
Thus applying

∆α,β,ν,µv +
∂2v

∂z2
= 0 (VII.5)

term by term, we conclude that (VII.4) is a solution of the
differential equation (VII.1).
The uniform convergence of (VII.4) allows to take limits
when r → 0 + and r → 1− under the summation sign.
Therefore, the boundary conditions (iii) and (iv) are directly
verified.
Finally, note that (VII.4) defines a continuous function on
0 < r < 1, 0 < z <∞.
Consequently, it generates a regular member in D′(I). This
last result, the uniform convergence of the series and the
inversion theorem ensure the fulfillment of the boundary
conditions (i) and (ii).
Remarks: When µ = 0, (VII.5) is the Laplace’s equation
and the problem described here coincides exactly with the
problem investigated by Zemanian in [4], although it is
considered in the space A′and not in our space V ′α,β,ν,µ(I).
Moreover, note that the use of the generalized finite
Hankel-Type Integral Transformation makes unnecessary
the change of variables u(r, z) =

√
r v(r, z), which must

be done in [8] previous to the employment of the finite
Hankel transformations. On the contrary, the transformation
[~α,β,ν,µ allows to obtain directly the solution v(r, z) to
(VII.4) in agreement with solution given by Zemanian [4], in
view of that Jα,β,ν,0(z) = j0(z) and v(r, z) = r−

1
2 u(r, z).

(B) Find a function u(r, t) on the domain
{(r, t) : 0 < r < 1, t > 0} that satisfies the differential
equation:

r2−2ν
∂2u

∂r2
+(1−2α)r1−2ν

∂u

∂r
−r−2ν

{
(µν)

2 − α2
}
u+

∂2u

∂t2
= 0

(VII.6)
µ ≥ 0 satisfying boundary conditions:

v) As t→∞+, u(r, t) converges to zero in the sense of
D′(I)

vi) As r → 0+, u(r, t) converges in the sense of D′(I) to
g(r) ∈ V ′α,β,ν,µ(I)

vii) As r → 1−, u(r, t) converges to zero on c ≤ t < ∞
for each c < 0

viii) As r → 0+, u(r, t) = O(1) on c ≤ t <∞.

Let us denote U(n, t) = ~α,β,ν,µ (u(r, t)).
According to (VII.2), (VII.6) becomes

∆α,β,ν,µu+
∂2u

∂t2
= 0.

By applying ~α,β,ν,µ to (VII.3)

~α,β,ν,µ
(
∆k
α,β,ν,µ

)
= (−1)

k
(νβλn

ν)
2k

(~α,β,ν,µ) [f(x)].

Equation (VII.6) becomes

(−1) (νβλνn)
2

(~α,β,ν,µ) [u(r, t)] +
∂2~α,β,ν,µ[u(r, t)]

∂t2
= 0.

(−1) (νβλνn)
2
U(n, t) +

∂2

∂t2
U(n, t) = 0.

The solution becomes:

U(n, t) = Fα,β,ν,µ(n)e−νβtλn (VII.7)
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because of the boundary conditions (i) and (ii).
Also the inversion formulae can be obtained

u(r, t) =
∞∑
n=1

2νG(m)e−νβλmtJα,β,ν,µ (λmr)

(λm)
2νJ 2

α,β,ν,µ (λm)
. (VII.8)

It can be proved that (VII.8) truly is a solution to problem
(VII.6) in the same way as in the first example.
This section is concluded with the note that many other prob-
lems in Mathematical Physics have the same form. Given
a partial differential equation involving the n-dimensional
Laplacian operator

∆α,β,ν,µu = D2
x1
u+D2

x2
u+ ...+D2

xnu,

finding solutions depending only on
r = (x21 + x22 + x23 + ...+ x2n−1)

1
2 and z = xn it follows

that u(r, z) must satisfy equations analogous to (VII.4)
and (VII.8) with µ = (n − 3)/2;n ≥ 3 [6]. The finite
Hankel-type integral transformation provides an elegant and
straightforward method to solve both equations for any value
of µ ≥ 0 (i.e., for each n ≥ 3).
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