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Finite Generalized Hankel Transformation on
Different Spaces Extended to Class of Generalized
Functions

V. R. Lakshmi Gorty, Member, IAENG.

Abstract—In this paper, the finite generalized Hankel trans-
formation on spaces of generalized functions by developing a
new procedure has been studied. The transformation is used
by application of a generalized function to the kernel function
and is extend to a larger space of generalized functions.

Index Terms—generalized Hankel transformation, distribu-
tional spaces, operator.

1. INTRODUCTION

Malgonde [1]] investigated the following generalized Han-
kel transformation

(P10 f) (y) = Fi (y)

—8y 2 [ o) £ @)de, (uz -1/2)
0

(I.1)
where _Zo 5., () = x*J, (Bz"), J, () being the Bessel
function of the first kind of order p. This transformation has
been studied on distributional spaces by different authors [2],
[3[l, [4]]. Malgonde and Gorty [5] investigated the finite gen-
eralized Hankel-Clifford transformation and now extended
to the variant of the classical modified finite generalized
Hankel-transform type defined by
(hv.aparf) (0) = Fag (n)

a

= 1/2ﬂ2/a;2”_2a_1/a,5,1,7# Amz) f(x)dr; m=1,2,..

0
1.2)

for a function f () defined on the interval (0,1) is intro-
duced in [|6] as where p > —% and A1, A2, ... represent the
positive zeros of _Z, 5., (Ana) [7] arranged in ascending
order of magnitude.

Here

Hapup (Anx) = (@A) Ty (B(zAn)") -

The inversion theorem for the transformation is given
in [3].
Theorem 1.1: Let f (t) be a function defined and abso-

)
lutely integrable on (0,a). Assume that p > —% and

(13)

F(t) = am FapwuAml)

m=1

(L4)
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set
A =
2v /tz”*%‘*l/ g Amt) f () dt
v— o, B,v,0 m .
a? 2afa2,57lx,p,+l (/\ma) 0
(L5)
If f() is of the bounded variation in
(a1,02),(0<a; <az<a) and if t € (a1,a2),
oo

then the series

2 am Fo g (An)

m=1
L[f (w+0)+ f (z - 0)]
Some orthogonal series expansions involving generalized
functions have been discussed by Zemanian and motivated to
this author to introduce the finite generalized Hankel trans-
formation [4]]. The same transformation has been extended
to a class of generalized functions by Dube [8]] developing
a quiet different technique. Precisely in this paper, the finite
Hankel-type generalized transformation is extended to a class
of generalized functions, following the method investigated
by [5]]. D (I) is the space of infinitely differentiable functions
with compact support on . Its dual D’ (I) is the space
of Hankel distributions. E (I) is the space of all infinitely
differentiable functions on I and E’(I) is the space of
distributions with compact support.
Finally, we will use the operators

converges to

Aa By = 1-*#”+a+1*2VDx2NV+1Dx*l“’*a'
It is expressed as

Ao pop=1"D*+(1-2a)a' "> D—a~% {(uu)2 - aQ}
(1.6)

and D = %.

The operational formula is easily computable

2v 2
Aa gl Lapvp Am@)] = —(An)" (BY)” Laguu (Ame) .
@17
In the study the finite generalized Hankel transformation
is defined by:

(ha,ﬁ,muf)(n) = Fayﬁ,vﬁu(”)

a

= [y g (3an)”) o, (49

0

For each real number p, a function ¢ (z) is in H,, if and
only if it is defined on 0 < x < 1, it is complex-valued and
smooth, and for each pair of nonnegative integers m and k,

Yok () = sup

S ‘xm (x*ID)k {xﬂhl/zs@ (x)} ’ 1.9)
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exists (i.e., is finite). [, is a linear space. Also, 7}, ,
each is a seminorm on H,. The topology of H, is that
generated by {’yﬁl k}m o The Hankel transformation h,,,
is an automorphism on H » wWhenever p > —%.

The generalized functions in the dual H’, of H, act like
distributions of slow growth as  — oco. Moreover, H',
is the domain of H, the generalized Hankel transformation
hy,, it follows that h, is an automorphism on H’, . This
procedure is reminiscent of Schwartz’s method of extending
the Fourier transformation to distributions of slow growth.
For a real number p and a positive real number a, they
constructed a testing function space J,, ,, as follows:

Let J,, , be a testing function space containing all ¢ (x)
which are defined and smooth on I = (0,1) and for which

% (#)

—ax,.—p—1/2( . —p—1/2 2p+1 —p—1/2 k
e (ac Dx Dx ) (p)

(1.10)
<oofork=0,1,2,---. _#, , is assigned the topology gen-
erated by the countable multinorm {7 “}° . #, , contains
the kernel zy” ¢, (xy) as a function on
0 < z < 1 for each fixed complex y in the strip

Q={y:

. Also defined a new testing function space M, , between
H, and ¢, , namely H, C M, , C _Z4 ., Whereby
Ma, . still contains the kernel function. ¢’ =~ C M, ,
is thus extended to a larger class of generalized functions.
Many properties of M, , and the countable union M, =
Ui2 M,,,,, are also established.

An inversion theorem and a representation for M’, ,, are the
main results. The Hankel transformation h, is now defined
on the dual space #’, . The behaviours of _#, near the
origin and the infinity are the following ones:

= sup
zel

|Im y| < a, y # 0 oranegative number}

Fu(z) =0 (") (L11)
as x — O+.

S u(®)
< (2)" [ - L) 55 B 2

(= v sin [ x — }WT - 171' (=" ( 2m + 1)
T 2 4 (21_)27n+1

(1.12)
where (i, k) is understood as in [9].
The main differentiation formulas for .J,, are
d ity y
L) fy (BO)) )
= 1B(Amz) "l 7 (B(Amz)”). (L13)
d (—pw) v
= {On2) ) 7, (B0wa)") }
= —uBAmz) T 7 (BOmm)”) . (L14)

for x,y > 0.

II. THE TESTING FUNCTION SPACE V,, 3., (I)

For each pair of real numbers «, 5, v and u, with u > —%
and Vi g, (I) is the space of all infinitely differentiable
complex-valued functions ¢ (x) defined on I, such that

7}@ GO = = Sup |¥ a? AF a,Bv,ud - #V+a+172u)¢(x)‘ <00
(IL.1)

for each £k =0,1,2,---

The topology of the linear space V. g, , (I) is generated

7‘”“) k=0,1,2,--- .

by the collection of seminorms (W
Thus V4 5., (I) is a countably multinormed space.

Theorem 2.1: Vo ., (I) is complete and therefore a
Fréchet space.

Proof. It can be proved with an argument similar to the one

used by [4], [10]. Let J denote an arbitrary compact of 1.
Let 21 be any fixed point of / and let D~ be the integration

operator D™' = [ ...dt. Let (¢,) be a Cauchy sequence

in Vo g, (). For each non-negative integer k, it follows
from (ILT) that A%, x=(Zrrietl=20)6 (2) converges
uniformly on J as n — oco.

If k =0, then x ¢, (x) converges uniformly on J.

If £ =1, we have

e N  C))
_ x*(full+05+172l/)

x (pmmvretl=2vp o2t D g, (2))

_ x—(—ul/+a+1—2y)x2—21/Dw2¢n (ZC)
1—20)z' "2 D, ¢, (z)
. I,f(f/yw+a+172u)x72u {(PJV)Z . 042} d)n (I’)

+ 1,7(7/yw+a+1721/)(

"Ef(*MV+a+1*2V)Aa’5’V’#¢n (QC)

_(_Hy+a+1—21/)( (I1.2)

=—z

1) (BY)* Ja,ps(An)

D_lx_(_uy+a+1_2y)Aa,,ﬂ,y,u¢n (1‘)
—_ D*le(fplquaJrleV)

% (xfuu+a+172qum2,uV+1Dzl.fullfagbn (1.))

e D™y (@) — 2t Dy ay T b (21)
(IL.3)
And

—(—uu+o¢+1—2u)D—lx—(2/ﬂ/+1)D—lx—(—;tv+a+1—2l/)

X Do poudn (2)

z
_ x—(—;tu+(x+1—2y) /x—(?,u,l/-i—l)x2uu+1Dxx—uV—a¢n (.’E) dr

ZT1

T

x
o~ (Cprtatl=2v) /xllﬂj“"lDle—MV b, (331) dx

T1
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=anmrent 2 [ Do, o))

z1

xT
_x—(—uu+a+1—2u)/(ﬂ)2w+l
T

1

= :L’*(*HVJraJrleV) [‘Tfm’faébn (33) - fﬂfuyiaqsn (xl)}

T

Dyya ™6, (a1) do

21\ 2pv+1 —
_xi(,ﬂy+a+1f2u)/(;1) Dzll'l 124 D‘gbn (xl)d.’b
1
2ur—142v
- oe@=(2)" v
o 1-2 Qv+l [p—2mv —2ny
_ g~ (mpvta+t V)(Zbl) ! wglw - z12uu ]

X D.’E1 -Tli‘uyiagbn (Il)
2pr—1+42v
= ¢n (2) (i) ¢n (1)
— g, (2) {x*(*uv+a+1f2u)(zl)2;w+1
X D:mxliw}iad)n (1’1)
(IL4)

where we set

Gay (x) = (2uw) ™" [a=
when 11 # 0 and ¢, () = log = when p = 0.
The left-hand sides of (I.2), @]} and converges
uniformly on J as n — oo. Then, it follows from these
expressions that D¢, () and DZ?¢, () also converge,
uniformly on J.
A simple inductive process shows that D*¢,, () converges
uniformly on J as n — oo, for each non-negative integer k.
Thus there exists an infinitely differentiable function ¢ (z)
defined on I such that D¥¢, (z) — DF¢(z) as n — oo.
Finally, it is obvious that ¢ € Vi, 3, (I) and ¢ (x) is the
limit of the sequence ¢,, (x) in this space.
V' gwu(I) is the dual space of V.., (I). We assign
to V'q g, (I) the usual weak convergence. Therefore,
V'apwu(I) is a complete space. We now list some
properties of these spaces:

— 1 72}1,11]

(i) D(I) C Vapw,u(I) and the topology of D (I) is
stronger than that induced of it by V,, 5., (I). Hence,
the restriction of any f € V'y 5, (I) to D (I) is in
D’ (I). This can be inferred if we note that

2k
AL g (@)= a;a??*DF¢(x)  (LS)

j=1
where the constants a; depend only on V, ., , (I).
(i) Vaguu() C E(I) and E’(I) is a subspace of

V'a g (I)-
For each f € V'4 .., (I) there exists a positive
constant C' and a nonnegative integer a such that [4]]

[(f, )| < C max AP () (IL6)

for every ¢ € Vo g (1).
Let f(z) be a function defined on I such that
1

[ 7207 | f (z)|dz exists for & > p + 3. Then
0

(iii)

(iv)

f(x) generates a regular generalized function in
Ve (I) by

1
I, )] = / F (@) 6 (@) de, &€ Vg (D). (IL7)
0

(v) For each m = 1,2,... and p > —1 the function
z?=2071l 7 50 (Amz), 0 < 2 < 1is a member

of V8,0 (I). To see this, from (1.3) it follows:
0,a,8,v,1 |, (—pr+a+1-2v) A
gL x Ha g Am)

= sup [ ) (80)” v )| < o0

(IL.8)
for each £k =0,1,2,....

III. THE TESTING FUNCTION SPACES AND ]\4,17 u AND MH

Leta € I and i1 € R. Define M, , as the space of testing
functions ¢ () which are defined and smooth on 0 < z < 1

for which1/2
a, pv+o—
ik ()

=sup |e” g™ (xl_Ql’D)k [m_“”_ago (x)] ‘
zel

for m,k=0,1,2,....

= sup |e—arxm,—,uu—a [Ak“

xcl
where
_ e e (2) ™ (z)
A = K0 (T-2w)k + k1 rA—20)k 1 Fore Gk xk
< M o(z) M 89(1)(1’
< Slél? ko ri—zyw | T Slérl) Akl sa—zyE-T | T
x x
®) (4
+ ...+ Msup |agiZ xk(a)
zel
< 0.
Thus
w12 (g) < . (IL.1)
Assigned to M, , the topology generated by the countable
multinorm {fy; ’2V+a_1/ 2}. M, ,, is a Hausdorff space since
Z{f}fra*l/z is a norm.

Let p > —%. For a fixed complex number y belonging to
the strip

Q={y: |Im y| < a, y# 0 oranegative number} (II.2)

8m
aym
Indeed, it is easily verified that (see [ [S[I, [9])

(vBy 1 72F 2 (y)* T, (B(zy)")) € My, .. (1IL3)

m

g (vBy =122 (wy) " T (Blay)"))

=D a; () y TR T g, (B(ay)”) (L)
j=0

where a; (1) are constants depending on p only.
Considering
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(o12D)" [z (o)™ 70 (Blay)")]
yot (gj172uD)k [(xy)—lw+ju/u_j (ﬂ(xy)u)}
— ya+;w (x1—2yD)k_1 (xl—Qu)

<D [(2y) " gy (Blay)")]

(@1720)" ™ (1)

<[ @B) @) T g (Blay)”)]
= et (1220 D) (2172 (1) (vB)

<D (@) " fugi (Bla))|

ya+,ul/+21/ (xl—QuD) k-2 (xl—Qu)

(=108 [(@y) " e S jra (Blay)")|
— etk () )t

@)™ g (Blay))|

(=D @By (@) g (Blay))]
Thus i _
(a1-2D)" [a= = (ag)* P 7 (Blay)")]

(=D w8y (@) g (Blay))]
(IIL.5)
and

[eg) ™ s (Blay))

1
T 2w AR (u — ju + kv + 1)

as ¢ — 0F.
And

[ey) ™ ik (Blay))|
-0 [(xy)7(;1,ij1/+ku)fl/2€g:\1m y|i|

as T — oo.
Then it follows that

(y™ "2t 7, (B(xy)"))

a, pv
m, kv

< oco. (IIL6)

Therefore

a, p

it [ By ) g ()}

vi—m_a,p

S ’ym,k

(y =it gotiv g, (B(ay)”))
(IL.7)

laz ()] |yl

I

Il
=]

J

< oo for a fixed y € Q.

IV. FINITE GENERALIZED HANKEL TRANSFORMATION
AND CONTINUOUS LINEAR MAPPING

The differential operator N,, £ x(2w+1)/2Dgp—mr—a jg
continuous from M, , into My ,41.

Theorem 4.1: The operation ¢ — N, is a continuous
linear mapping of M, , into M, 1.

Proof. For ¢ € M, ,,
, pr+a+l/2
it (Nup)
= sup e—aT pm (1172VD)kx*,u‘u72u+1/Zx/ul+1/2D:L,fp,V7ag0 (JZ‘)’
el

= sup e —aT pm x172yD)k (1.17211D) mfpwfago (l’)’

xzel (
( g ().

ax

m R

=sup |e"*x

x172uD)
xel

a, pr+a+1/2
m, k

a,prv+a—1/2

(N/NP) = Ym, k+1 (o).

Indeed

a,pr+a—1/2

a, pr+a+1/2 (N
= 7m7 k+1

m, k u@)

(¢). vy

Thus, o € M, , implies that N, € My 1.
Also
N, (11 + azep2)
= G AN 2Dg= = (0101 + apps)
_ alx(2,uu+1)/2Dxfuufa<p1 + an(QuV+1)/2Dx7ﬂufa<p2'

NH (Oéltpl =+ Oéggﬁg) = OllNugﬁl + O[QNN('DQ. (IVZ)

Thus N, is linear. Assume {¢, } converges in the sense of

M .
Then
LIV (@n — 00) = 0 (IV.3)
as n — oQ.
But
N —1/2
VI (0 — o)
Jpurv+a—1/2
= AT (Nypn = Nup) — 0(9) (V)

as n — oo. Thus N, is a continuous linear mapping of M, ,
into M, 41 as in [12].
Note: It is impossible for us to define N;l on Mgy, ut1.

Theorem 4.2: The differential operator M,
=Dy Crv/2 s continuous from M, 41 into
M,

a,p-

A

(Advance online publication: 12 August 2019)
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Proof. Indeed,
,y,uu+2a71 (MHQO)

m,k

1
Stm/"xf“’k”‘xf“”*o‘Dx(‘“’H/m(p(x)de

< / mex72uuf2an(uu+l/2)<p(x)H dx

1
g/\
0

1
< / me (2uv + 20 + 1 + 2uk) z~ M —2071/2, (a:)H dx

anI—2;Lu—2an(2p,I/+2o<+1)x—;l,l/—2o¢—1/2(p (

x)H dx

1
+/ me+21/x7uu72afl/2tp(x)Hdm
0

< (2uv + 20+ 1+ 20k) Yl T2 4 AR

This implies
v+2a—1 (77
Tk (Mugp)

m, k

< (2uv 4 2004 1+ 20k) Y BT iU L (IV.S)

Thus M, € M,,, for every ¢ € M, ,+1. But if {p,}
converges in the sense of M, ,41, then Muson € M,,, for
every n and

'Vr(i{,l;c”+2a_1 (Mo — Mugpo)

< (2uv +2a + 1+ 2vk) v ‘Z’Ha (¢n — o)

o i (P = 90) - (IV.6)

{Mugon} converges in the sense of M, , and M, is
continuous.

V. SOME OPERATIONAL FORMULAE

Lemma 1: For each real number p, a function ¢ (x) is in
H,, k is a positive integer and k > —p — 5 . Then for every
¢ € H,(4),

husr (Nup) = (V.1)

Proof. By definition

—hyk (@) -

—k+vk+v—1—pv+1/2
o ktvkt pv+1/ Nyw—1-20)(k=1)---Npw—(1-20)
x N,

w—(1—20) (k—k4+1) N —(1—2041)P (z)
= DkFlg=m=ay (g).

'7?;1 ;J;CVJr?oz 1 (M 90)
= sup He—aL m( 1— QVD)k [x—Quu—Qan(uu-l-l/Q)(p (SL')] H

zel
= sup [|¢(z)||
xel

where ¢ (z) is given by
_ efaa:xm( 1721/D>k
o 2my =20 (2/“/ + 2+ 1) $(2,ul/+20¢)x7,u1/72a71/2(p (1,)
+IEDIL'7‘U’V720(71/2§0 ({ZZ)
which is given as
= sup [[¢r (2)]
xel
where 11 () is given by

= e~ W™ (m1_2”D)k (2uv + 20 + 1)z =20=1/205 (1)

4 (xQV) .T,'l_QVDJ?_#V_Qa_l/QQO (l‘)

< (2 + 20 + 1+ 2wk) A% A2y a2e

This implies
a, pr+2a—1

< (200 + 20+ 1+ k) 4 T gl e (V)

Also notedk that )
(212 D) [x—u'/—a(xy)aﬂyfﬂfj (B(CCZ/)V)}

=yt (@2 D) [(ay) g (Bay)”)]
— () (@)
<D [(ey) ™ oy (B(ay)”)
=y D) (@)
x [_ WB) (wy) et 7, i (B(wy)”)} :
— et (120 DY (4151 (1) ()
x| (@) I Fu i (Blay))]
=yt (p1=2v D)2 (2122 D) (1) ()
x (@) Sy (Ble))]
= ot (1=20 DY (1) (1) (1)
xD [(g;y)*“”””*”fu—m (/a’(wy)”)]
= yortit2 (gl= D) (gl (L1)%(y8)°
< (o)™ i (Blay)”)]
k2w (120 5 DYF (p12v) (L1)2(18)°
XD [(wy) T g jia (Blay)")]
oty (=20 DR 1)3 (33
(@) "9 g i (Blay)”)]

_ ya+/w+4v (xl—QuD)k_3(_1)3(Vﬁ)3

=y

=Yy

() fugas (Blay))]
=yt () wB) () T e (Bay))]
= (R By (@) T g (Blaw)”)]

Lemma 2: Let p be a fixed real number and k be a positive

integer > —1. Then for every ¢ € H, 11 (A), then
Py (Mup) = ¥ hyg1 g (@) (V.3)

Proof. Using

N,uz/f(172u)(k71) "'NMV7(172U)NMV+2V<)0 ($>

(Advance online publication: 12 August 2019)
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_ x/u/+l/k+u—l/2 (xl_Ql’D) k+1x—,u,1/—a<p (m) )
(V.4)

hlh (MM(P) 2k 2 _oaq—1—kv

= (-1 )*(wB)

[ Quv + 20k + 2v) y?H 2T ()0 T
% (B(xy)") (v~ D)y~ ¢ (y) dy
H(1) By a2t

1

f Vﬂy2uu+2uk+2u+1(xy)ajﬂ+k

0
x (B(zy)”) (y' =2 D)y o (y) dy.

Thus follows:
Rk ()

= (-1'wp) e

(=)

pr—a—1

k+1

1
V—}{)Vf(yﬁ) irVy—MV—kU—l+Vy2MV+2V/€+2V
0

—pr—a—1

X Jurry1 (Blzy)”) (yl_zyD)ky

Also can be written as analogously in [[13]]
2tk (9)
= (~1) (wp) kv

1

x [ |:y2,u1/+2uk+2u (y172uD)ky7
0

¢ (y) dy.

mr=a=leo (y)

k
po—hvy J;L+k+1

x (vB)z ™ (wy)” (B(zy)") dy.

Note that

Juth+1 (5( y)")
(Vﬂ) xuu+kufu+1yuu+kufu

xD [y 7k (Bay)”)] (V.5)

Thus
" hyt1k ()

= ()" wp) -

« / [y
0
xD [y~ =k g, (B(xy)")] dy.

= (=) () Ry T TRy g (Blay))

x (y'=2D)"y o) 15

kv

v+2v v —2v k o —a—
2+ 20k+2 (y1 2 D) Y 1go(y)}

—pr—a—1

—(=1)"wp (zy)")]

R L (B

1
kuku/
0

%D [y2;uz+21/k+21/ (y172uD)ky7w/7a71SD (y)} dy

Also

D |:y2uu+2yk+2y (yl—QuD)ky—;u/—a—l(p (y):|

_ _ k y—a—
_ (2/1V—|—2Vk+2V) y2;tu+2yk+2u 1(y1 2VD) y ny—ao lso(y)

+y2;u/+2uk+2u+1( 1— QVD)kJFl —py—a—l(p(y)-

(V.6)

Thus completes the proof.

VI. THE FINITE GENERALIZED HANKEL-CLIFFORD
TRANSFORMATION: CONTINUOUS MAPPING IN Sq 3.1,
AND Lo g4

In this section, a space onto S, s, of functions and a
space Ly g, of complex sequences is introduced. The finite
generalized Hankel-Clifford transform #, 5, , on them is
investigated. S, 3,,,,, is defined as the space of all complex
valued functions ¢ (x) on (0, 1] such that ¢ () is infinitely
differentiable and satisfies for every k € N.

() Aaﬁu#(b( )_0

(i) z—mvtatl= QVA*”B yu®(x) — 0 and
Y= 1—a+2v d T —pur+a+l1— ZVA ﬁ V,;L¢(x)) S50
as x — 0+
and

(i) a@tm—e=D/2Ax" 6 () € L(0,1).

Sa,,v,u is endowed with the topology generated by the
family of seminorms {||||, },~, and also is a Hausdorff topo-
logical linear space that verifies the first countability axiom,

where 9], = f 2 | ()] d for 6 € Sapy

and £ € N. Moreover the operator Aa B, defines a
continuous mapping from S, .., into itself. S’ g, is
the dual space of S, g, and it is equipped with the usual
weak topology.

Proposition 6.1: If f(x) is a function defined on (0,1)
such that z(2*=22=1/2 ¢ (1) is bounded on (0, 1) then f (x)
generates a member of S’ a,8,v,u through the definition is

given by
/ e

Proof. The result easily follows from the inequality
[(F@). o] < ol sup [ =2702f ()| (v12)
<z

for ¢ € Sag,u -

The spaces Vp o, s(I) defined by Malgonde [12] analogously
defined as Vp o 3,1, (1) related to S, 3., as follows:
Proposition 6.2: Let y1 > —% and 6 > § — W Then
Se.Bvp C Voapwu (I) and the topology of S, 5, is
stronger than that induced on it by Vo ... ().

Proof. Let ¢ € Su 5, In virtue of the conditions (i) and
(i1), we can write

xQ—(ZV—l—uu—a—l)AZkﬁ(b(x)

(f (x z)dx, ¢ €Sapupu- (VL)

x t

_ x9+u/t—2u—(2u+;w—a—1) /UHAaﬁyu(b(u)dUdt

1 0
(VL3)

for every x € (0,1) and k € N.

’ 0—utpr—a—1) Ax* ‘

o, 3, V;LQS('T)
/1
0

k+1

—utpr—a—1)/2 ‘Aa 5, VM¢(u)‘ du

Quvtpr—a—1)
0— =
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—2v4pr—a—1)/2 Aa,gjf;ﬁb(u) du

1
< [
0

(V1.4)

for every z € (0,1) and k € N.
Hence, for every ¢ € So 3,1, and k € N,

sup [afCrrme ALY o) < 0l (VLS)
0<z<1

and S, 8, is contained in Vjy o 5 (1) and the inclusion is
continuous.
From Proposition 6.2, if f € V'g o 5 (I), then the restriction
of f to Sa 8, is @ member of S’y 3, .
Define L, g, as the space of all complex sequences
(an) o such that hm an)\2k = 0, for every k € N,
where \,,n =0,1, 2 - represent the positive roots of the
equation ja,gyl,,u()\n:c) = 0, arranged in ascending order
of magnitude. The topology of %o% 8,v,u 1 that generated by

the family of norms {PY‘];’B’V’#}]C:O’ where
72,,@,1/7;4 ((an):,o:O) = Z |a’n| )\ik (VI6)
n=0

for every (a,),—y € La,g,, and k € N.

Thus Lq .., is a Hausdorff topological linear space that
satisfies the first countability axiom. L', g, , denotes the
dual space of L, g, , and it is endowed with the weak
topology.

Proposition 6.3: Let (b,),-, be a complex sequence such
that |b,| < M), for every n € N and for some | € N and
M > 0. Then the linear operator (a,),— o — (anbn),— o is a
continuous mapping from L, g, ,, into itself. Moreover, the
operator in L'y 8., B — (by),—, B where

<(bn)zo=0 B, (an)io=0> = (B, (anbn)zo=o> )

for (an)y—y € La,guwu. is a continuous mapping from
L' g, into itself.
Proof. It is sufficient to see that

Py(];,,@,u,u ((an)zo:o)

(VL7)

o k-+1 [e’e}
<MY Jan| < My AEE L ((a0)0,) (VL)

n=0

for (as),~y € La,gy,, andk € N. M; being a suitable
positive constant. Thus (bn)zozo generates a member of
L/a’g,,,“u by

((bn)nZo > (@n)no) Zan n (VL9)

for (an),y—y € La,gup-
The fundamental theorem in the theory of a finite generalized
Hankel transformation asserts that the conventional finite
generalized Hankel transformation %7, 5, , is an isomor-
phism from So ., onto Lo gy, - The proof of this fact
is the next object:

Theorem 6.1: For p > f%, the finite generalized Hankel-
Clifford transformation %7, 5, , is an isomorphism from
Sa,8,u,u ONO Ly 81 4.

Proof. Let € Sa g, As itis known, i, 5, ¢ = (an),—

a n

//@7/57 v, )‘nx (b(x)dx, (VIIO)
/a B u+1

forn € N.
In virtue of the operational rule, for every n € N it is
obtained as:

Ao = 0 D34 (1-20)5 2 D=0~ { (u)? - a?}

is not self adjoint.

Together with A, 3.,,,, the operator A% is defined as

Bov,p

B =T CTVEDPVH Dy tatlz2y ()
Therefore
”8 v = 2272 D? + (v — 2a — 3)x' =D
¥ {(W)2 —(a+1- 21/)2} (VL12)

1
A22y
/\ian:n—/ B Anz)d(z)dr
P pui O | s o))
L
(35 V7u+1()\n)

1
d VT l/

/@ ~hytatl=2 /ozﬁu,p,—&-l (>\nx))

0

X T ””*O‘“*Q”gb(x) dx

An 2V
= /25 +1()\ ) {/%[37'/7#-"-1 ()‘nx) ¢(x)|(1)}
a,B,v,u n

1
)\TLQV 7(7
2P
/a,ﬂ,u,erl( n) 0

% i (g:fﬂu+a+172u¢ (:E)) dx

RO g bkt (AnT)

dx
forn € N.
Moreover, according to (VL4) since
Fopawpr (M) ¢ (x)]g =0 and ¢ (1) = 0 and

$1E(1)1+ pmvFatl=2vg () — 0 (VL13)
Hence
Na,

\ 1
’ﬂ2l/ —(—pv —2v
= o ) T S )
a,B,v,ut+1\7 0

0
(VL.14)

d
X (z=Feti=2 (2)) da.
Now, by invoking (VI.13), one has
1
= — [ R e ()2

0
X% (xfuu+oc+172u¢( )) dx
—— /a,,@,l/,u()\nx) —a—vpu+2v—2 2;/,1/+1 dd (LI} pr+a+1— 2y¢

+ f Aoc BV (il?) /aﬁ’%ld«()\nx)dx'
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Also in this case by (VI.13), the limit terms are equal to
zero because

Hapn (M) =0, € C>((0,1])
d
: —a+tvut+2v—1 7 —pr+a+l-—2v _
(VI.15)
The{efore
)\nfx—(—ltu+a+1—2u) ja,ﬂ,u,u+1 ()\nx)
0
dx (ZZ? pr+a+l— 2V¢ (x)) dx
/Aaﬁvu %) o Bvu(Anz)de. (VL16)
By combining (VI.I3) and (VI.I6), it is obtained as
Aay,
1
2 [ 20 @) s
=TTz v a,B,v T a,B,v, n)ax
/(3,571/,;1,-1-1 (An) 0 Bowngs B
(VL.17)

for every n € N.
An inductive procedure allows to establish that

>\2kan
/Aa B,v ,u
for every n,k € N.

From (VLI8), according to Riemann-Lebesgue Lemma [13],
one follows to

= ()

) Joppu(Anz)da
/oz,ﬁ v /,L+1 "

(VL18)

AEan 725001 (An) =0 (VL19)

as n — 0o.
Moreover by (VI.I7), there exists a positive constant M such

that
Ao Jan| < M/(iﬁ,u,wl()‘n))‘ik—kl |an| (V1.20)

and then \?*a,, — 0 as n — oo for Every ke N.

Also, for certain M; > 0,7 =1, 2. E /\ o)
B nZO e Bov u+1()‘ ))\4(2v+w a=1)
K kt2
/A ,Bvu /agynu( )d
<My 3 APty
n=0
1
2utpr—a—1)/2
X / ‘ )@t )/ /a,ﬂ,u,u(xnx)‘
0

% ‘(E Qv4pr—a-—1) /2Aakgi#¢(m)’dx

< M, Z )\;2(2V+MV_(X_1)
n=0

k+2

% —(2u+uu a—1)/2 ‘A*,ﬁuy(b (.%‘)’dl’

O\H

o~ 2k
ZO A lan|
e

0 1
< M2Z)\;2(2y+,uufafl)/x7(2l/+m/7afl)/2 chgj/,u(b (1,) dr.
0

n=0
(VI.21)
Hence, since io: A, 2@rtrr—a—l) o the relation follows
as: n=0
W g ((an)itg) < M|,y (V1.22)

for every K € N and ¢ € S, 5, and for some M3z > 0.
This inequality proves that the linear mapping 7 is

a,Bv,p
continuous from So g, iNt0 L gy, p-
Let now (an), - € La g, and define
Ta B ((an)nzg) () = d() = Z an® Lagv,u (Ant)
n=0
for z € (0,1].
By (VI.I3) and (VI.14), given as:
Z |anx(2u+uufa71)/aﬁ7y’ﬂ ()\nx)|
n=0
< Mg@vtmw—a-1)/2 Z ap|,z >0 (VL.23)

n=0
for a suitable M > 0. Therefore ¢ € C (0,00). In a similar
way ¢ € C* (0,00) can be proved as in [6].
From (VLIS), it follows:
AZ B, y,,u(b (l‘)

for z > 0 and £ € N. Then Aaﬁyuaﬁ(l) = 0 for each
keN.

Also
‘ rt+pr—a— UAzﬁy,ﬁb(Jﬁ)’

YAk, pGrtiv=a=l) g o () (VI.24)

< M, I(2u+uufa71)/2 Z |an|)\ik
n=0
And from (VL.13), (VI.14) and (VLI3) it follows as:

2utpur—a—1_d pr+a+1-—2v A *
o (o A6 (@)|

(V1.25)

oo
S ]\42 1,21/+;L1/7a71+1 § |an|>\ik7(fyu+a+172u)+l.
n=0

(V1.26)
Hence
pr+a+1-2v
xl_l)r(r)1+x Aq ,Bwu(ﬁ ()
. vtu—a—1 4 [ _pvtati-2v
_£1_1>I(I)1+£L'2 +u 1%<£L’”++1 2Aaﬂuy¢(‘r)):0'

(V1.27)
On the other hand, since the series defining Aa Bon® (@)
is uniformly convergent in = € (0, 1), there exists a p051tive
constant M3 such that
1

[tz |86 @) do <30 D A
n=0

0
(V1.28)

for each k£ € N. Therefore 7, 5, is a continuous mapping
from Lo g, into Sa g0, 4.
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VII. APPLICATIONS

Recently in [14]], a fingerprint recognition method based
on Gabor wavelet transform and discrete cosine transform
(DCT) was proposed useful development in computer engi-
neering. In this section, applications to Mathematical Physics
have been demonstrated with wider use in Mechanical En-
gineering field.

(A) Dirichlet problem in cylindrical coordinates. The gener-
alized finite Hankel-Type Integral Transformation of the first
type when applied with generalized Dirichlet’s problem:
Find the conventional solution v(r, z) of the equation
82

ov
e 1-2v >
or? +(1=2a)r Oor

71"72”{(#”)270[ }er%

=0, (VIL1)

0 <r <1,0 <z < oo satisfying boundary conditions:

i) As z — oo+, v(r, z) converges to zero in the sense of
(1)
ii) As z — 0+4,v(r, z) converges in the sense of D’(I) to
F) € VVasnD)
iii) As 7 — 1—,v(r, 2z) converges to 0 on ¢ < z < oo for
each c <0
iv) Asr — 0+,v(r,z) =0(1)onc< z <
Let us denote V(n, 2) = fia g, (v(r, 2)).
According to becomes
0%

=0.

Aq 75Vﬂv+a b)

By applying fia, 5., to (VIL2)
k vy 2k
hﬂ-ﬂy’/,ﬂ (Ai,ﬁ,u,y) = (_1) (Vﬁ)‘n )

(VIL2)

(hapv) [f ()]

Equation becomes
?he .
(1) (WX () o, )]+ et P2
82
(—1) (WBAY)?V (n, z) + SV (m2) =0 (VIL3)

Considering (hfx.&uyuf)
comes

= F} 3, (n) the solution be-

V(n,z) = Faﬁﬂ,}u(n)e_”ﬁz)‘”

because of the boundary conditions (i) and (ii).
Also the inversion formulae can be obtained

v(r,2) = (hy g Fapu)(n) = f(r)

_Vﬂ/\"Z/a,ﬁ v (AnT)
/2(1 B, ( )

_ (= ;u+n/ 2u)+2

(VIL4)

-5

Recall that F(m) = O (/\25 as m — o0
for some nonnegative integer ‘s’. On the other hand, \,, =~
(m + pvtac?y) i) is uniformly bounded on 0 < r < 1
(for each m = 1,2,...) and e7V#**» = O(e~™™) uni-
formly on ¢ < z < oo. These facts imply that (VIL.4) and
the series obtained by applying the operators A, g, ., and

92
%= under the summation sign in (VIL4) converge uniformly

onl<r<1,0<z<o0.
Thus applying

0%v

Ao guu + 5= 0 (VIL5)

term by term, we conclude that is a solution of the
differential equation (VILI).

The uniform convergence of allows to take limits
when » — 0 + and r — 1— under the summation sign.
Therefore, the boundary conditions (iii) and (iv) are directly
verified.

Finally, note that defines a continuous function on
0<r<1,0<z<o0.

Consequently, it generates a regular member in D’(I). This
last result, the uniform convergence of the series and the
inversion theorem ensure the fulfillment of the boundary
conditions (i) and (ii).

Remarks: When p = 0, is the Laplace’s equation
and the problem described here coincides exactly with the
problem investigated by Zemanian in [4], although it is
considered in the space A’and not in our space V'y, 3., ,,(I).
Moreover, note that the use of the generalized finite
Hankel-Type Integral Transformation makes unnecessary
the change of variables u(r,z) = /rv(r,z), which must
be done in [8|] previous to the employment of the finite
Hankel transformations. On the contrary, the transformation
[fte,,0,, allows to obtain directly the solution v(r,z) to
in agreement with solution given by Zemanian [4], in
view of that 7, 3.,.0(2) = jo(z) and v(r,z) = r~ 2 u(r, 2).

(B) Find a function wu(r,t) on the domain
{(r,t):0<r <1,t>0} that satisfies the differential
equation:

82 1—9, OU
or? +(1-2a)r or

0%u

R

1 > 0 satisfying boundary conditions:

v) As t — oo+, u(r,t) converges to zero in the sense of

D'(I)

vi) As r — 0+, u(r,t) converges in the sense of D’(I) to
9(r) € V'a g u(l)
As r — 1—,u(r,t) converges to zero on ¢ < t < 00
for each ¢ < 0
As r — 0+, u(r,t)

R (O

vii)

viii) =0(1) onc <t < 0.

Let us denote U(n,t) = ha g, (u(r,t)).
According to (VIL.2), (VIL.6) becomes
0%u
A%B’V”uu + w =0.

By applying hia 3., to (VIL3)
k vy 2k
ha’ﬂ’y’“ (Af’vﬂ»l’,lt) = (_1) (VBATL )
Equation becomes

(=1) WBA)? (Rapn) lulr, )] +

(haﬁw,u) [f(2)].

Ohopuulu(rt)] _ |
ot2 e
2

(1) BNV, ) + U, ) = 0.

The solution becomes:

U(n,t) = Fopu(n)ePn (VIL7)
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because of the boundary conditions (i) and (ii).
Also the inversion formulae can be obtained

i QZ/G(m)e_Uﬁ)\mt/a7ﬁ7u,u ()\WLT)
n=1 ()‘m)QVjZQ,B,V,u ()\m)

It can be proved that truly is a solution to problem
in the same way as in the first example.

This section is concluded with the note that many other prob-
lems in Mathematical Physics have the same form. Given
a partial differential equation involving the n-dimensional
Laplacian operator

u(r,t) =

(VILS)

Aa.ﬂ,u,,uu - chlu + Dgzu + ...+ Dinu,

finding solutions depending onl)ll on
r=(@+23+22+...+22 )% and 2 = =z, it follows
that u(r,z) must satisfy equations analogous to (VIL4)
and with o = (n — 3)/2;n > 3 [6]. The finite
Hankel-type integral transformation provides an elegant and
straightforward method to solve both equations for any value
of >0 (i.e., for each n > 3).
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