Finite Generalized Hankel Transformation on Different Spaces Extended to Class of Generalized Functions

V. R. Lakshmi Gorty, Member, IAENG.

Abstract—In this paper, the finite generalized Hankel transformation on spaces of generalized functions by developing a new procedure has been studied. The transformation is used by application of a generalized function to the kernel function and is extend to a larger space of generalized functions.

Index Terms—generalized Hankel transformation, distributional spaces, operator.

I. INTRODUCTION

Malgonde [1] investigated the following generalized Hankel transformation

\[
(h_{\nu,\alpha,\beta,\nu,\beta})(y) = F_1(y) = \nu^{\frac{1}{2}} y^{-1-2\alpha+2\nu} \int_{0}^{\infty} \mathcal{J}_{\alpha,\beta,\nu,\mu}(xy) f(x) dx, \quad (\mu \geq -1/2)
\]

(1.1)

where \(\mathcal{J}_{\alpha,\beta,\nu,\mu}(x) = x^{\alpha} J_{\mu}(\beta x) \), \(J_{\mu}(x) \) being the Bessel function of the first kind of order \(\mu \). This transformation has been studied on distributional spaces by different authors [2], [3], [4]. Malgonde and Gorty [5] investigated the finite generalized Hankel-Clifford transformation and now extended to the variant of the classical modified finite generalized Hankel-transform type defined by (1.1). Malgonde [1] investigated the following generalized Hankel-type defined by

\[
(h_{\nu,\alpha,\beta,\nu,\beta})(t) = F_{\alpha,\beta,\nu,\mu}(t) = \nu^{\frac{1}{2}} t^{-1-2\alpha+2\nu} \int_{0}^{\infty} \mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda t) f(\lambda t) d\lambda,
\]

(1.2)

for a function \(f(\lambda) \) defined on the interval \((0, 1)\). Assume that \(\mu \geq -1/2 \) and \(\lambda_1, \lambda_2, \ldots \) represent the positive zeros of \(\mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda t) \) arranged in ascending order of magnitude. Here

\[
\mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda t) = (\lambda t)^{\alpha} J_{\mu}(\beta(\lambda t)^{\nu})
\]

(1.3)

The inversion theorem for the transformation (1.2) is given in [5].

Theorem 1.1: Let \(f(t) \) be a function defined and absolutely integrable on \((0, a)\). Assume that \(\mu \geq -1/2 \) and

\[
f(t) = \sum_{m=1}^{\infty} a_m \mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda_m t)
\]

(1.4)

If \(f(t) \) is of the bounded variation in \((a_1, a_2), (0 < a_1 < a_2 < a)\) and if \(t \in (a_1, a_2) \), then the series \(\sum_{m=1}^{\infty} a_m \mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda_m t) \) converges to \(\frac{1}{2} [f(x + 0) + f(x - 0)] \).

Some orthogonal series expansions involving generalized functions have been discussed by Zemanian and motivated to this author to introduce the finite generalized Hankel transformation [6]. The same transformation has been extended to a class of generalized functions by Dube [8] developing a quiet different technique. Precisely in this paper, the finite Hankel-type generalized transformation is extended to a class of generalized functions, following the method investigated by [5]. \(D(I) \) is the space of infinitely differentiable functions with compact support on \(I \). Its dual \(D'(I) \) is the space of Hankel distributions. \(E(I) \) is the space of all infinitely differentiable functions on \(I \) and \(E'(I) \) is the space of distributions with compact support.

Finally, we will use the operators

\[
\Delta_{\alpha,\beta,\nu,\mu} = x^{-\mu+1-2\nu} D x^{2\nu+1} D x^{-\mu-\alpha}.
\]

It is expressed as

\[
\Delta_{\alpha,\beta,\nu,\mu} = x^{2-2\nu} D^2 + (1 - 2\alpha) x^{1-2\nu} D - x^{-2\nu} \left\{ (\mu^2 - \alpha^2) \right\}
\]

(1.6)

and \(D = \frac{\partial}{\partial x} \).

The operational formula is easily computable

\[
\Delta_{\alpha,\beta,\nu,\mu} \left[\mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda t) \right] = -(\lambda t)^{2\nu}(\beta^n)^2 \mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda t).
\]

(1.7)

In the study the finite generalized Hankel transformation is defined by:

\[
(h_{\alpha,\beta,\nu,\mu})(t) = F_{\alpha,\beta,\nu,\mu}(t)
\]

\[
= \beta^2 \nu^2 \int_{0}^{a} \left(x^{2\nu-2\alpha-1}(\beta x)^{\nu} \mathcal{J}_{\alpha,\beta,\nu,\mu}(\beta x^{\nu}) f(x) dx \right).
\]

(1.8)

For each real number \(\mu \), a function \(\varphi(x) \) is in \(H_{\mu} \) if and only if it is defined on \(0 < x < 1 \) is complex-valued and smooth, and for each pair of nonnegative integers \(m \) and \(k \),

\[
\gamma_{m, k}^\mu(\varphi) \triangleq \sup_{0 < x < 1} \left| x^m (x^{1-D})^k \left[x^{-\mu-1/2} \varphi(x) \right] \right|.
\]

(1.9)
The main differentiation formulas for origin and the infinity are the following ones:

$$\gamma^\mu_{m,k} = \sup_{x \leq \infty} e^{-a x} x^{-\mu-\nu-1/2} \left(x^{\mu-\nu-1/2} D x^{2 \mu+1} D x^{\nu-1/2} \right)^k$$

(I.10)

$$\Theta = \{ y : |\text{Im} \ y | < \alpha, \mu \neq 0 \text{ or a negative number} \}

.$$. Also defined a new testing function space $M_{a,\mu}$ between H_{μ} and $J_{a,\mu}$ namely $H_{\mu} \subset M_{a,\mu} \subset J_{a,\mu}$ whereby $M_{a,\mu}$ still contains the kernel function. The Hankel transformation H_{μ} is now defined on the dual space $J_{a,\mu}$. The behaviors of $J_{a,\mu}$ near the origin and the infinity are the following ones:

$$\mathcal{J}_{a,\mu}(x) = O(x^\mu)$$

(II.1)

as $x \to 0+$.

$$\mathcal{J}_{a,\mu}(x) \approx \left(\frac{2}{\pi x} \right)^{1/2} \left[\cos \left(x - \frac{1}{2} \mu \pi - \frac{1}{4} \pi \right) \sum_{m=0}^{\infty} \frac{(-1)^m (\mu, 2m) \mu^{2m}}{(2x)^{2m}} \right]$$

$$- \left(\frac{2}{\pi x} \right)^{1/2} \left[\sin \left(x - \frac{1}{2} \mu \pi - \frac{1}{4} \pi \right) \sum_{m=0}^{\infty} \frac{(-1)^m (\mu, 2m+1) \mu^{2m+1}}{(2x)^{2m+1}} \right]$$

(I.12)

where (μ, k) is understood as in $[9]$. The main differentiation formulas for $J_{a,\mu}$ are

$$\frac{d}{dx} \left\{ (\lambda m x)^{\mu+1} \right\} = \nu \beta (\lambda m x)^{\mu+1} \mathcal{J}_{a,\mu}(\beta(\lambda m x)^{\mu+1})$$

$$\frac{d}{dx} \left\{ (\lambda m x)^{\mu-1} \right\} = -\nu \beta (\lambda m x)^{\mu-1} \mathcal{J}_{a,\mu}(\beta(\lambda m x)^{\mu-1})$$

(I.13)

for $x, y > 0$.

II. THE TESTING FUNCTION SPACE $V_{\alpha,\beta,\nu,\mu}(I)$

For each pair of real numbers α, β, ν and μ, with $\mu \geq -\frac{1}{2}$ and $V_{\alpha,\beta,\nu,\mu}(I)$ is the space of all infinitely differentiable complex-valued functions $f(x)$ defined on I, such that

$$\gamma^\alpha_{\theta,\beta,\nu,\mu} = \sup_{x \in I} x^\theta \Delta^{k}_{\alpha,\beta,\nu,\mu} x^{-(\mu+\alpha+1-2\nu)} f(x)$$

(II.1)

for each $k = 0, 1, 2, \cdots$.

The topology of the linear space $V_{\alpha,\beta,\nu,\mu}(I)$ is generated by the collection of seminorms $|\mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda m x)^{\mu+1} \mathcal{J}_{a,\mu}(\beta(\lambda m x)^{\mu+1})|$.

Thus $V_{\alpha,\beta,\nu,\mu}(I)$ is a countably normed space.

Theorem 2.1: $V_{\alpha,\beta,\nu,\mu}(I)$ is complete and therefore a Fréchet space.

Proof. It can be proved with an argument similar to the one used by [4, 10]. Let J denote an arbitrary compact of I.

Let x_1 be any fixed point of I and let $D^{-1} = \int_{x_1}^{x} \cdots \int_{x_1}^{x} \cdots dt$. Let (ϕ_n) be a Cauchy sequence in $V_{\alpha,\beta,\nu,\mu}(I)$. For each non-negative integer k, it follows from (II.1) that $\Delta^{k}_{\alpha,\beta,\nu,\mu} x^{-(\mu+\alpha+1-2\nu)} \phi_n(x)$ converges uniformly on J as $n \to \infty$.

If $k = 0$, then $x \phi_n(x)$ converges uniformly on J.

If $k = 1$, we have

$$x^{-(\mu+\alpha+1-2\nu)} \mathcal{J}_{a,\mu}(\lambda m x) = x^{-(\mu+\alpha+1-2\nu)}$$

(II.2)

$$D^{-1} \mathcal{J}_{a,\mu}(\lambda m x) = D^{-1} \mathcal{J}_{a,\mu}(\lambda m x)$$

(II.3)

And

$$x^{-(\mu+\alpha+1-2\nu)} D^{-1} x^{-(\mu+\alpha+1-2\nu)} D^{-1} x^{-(\mu+\alpha+1-2\nu)}$$

(II.4)

(Advance online publication: 12 August 2019)
Thus there exists an infinitely differentiable function \(\phi \) such that

\[
D\phi \to 0 \quad \text{uniformly on } \{ \alpha, \beta, \nu, \mu \}
\]

The left-hand sides of (II.2), (II.3) and (II.4) converges uniformly on \((\alpha, \beta, \nu, \mu) \) for every \(0 < x < 1 \) and the usual weak convergence. Therefore, \(\{ \phi \} \) generates a regular generalized function in \(V'_{\alpha, \beta, \nu, \mu} (I) \) by

\[
\langle f, \phi \rangle = \int_0^1 f(x) \phi(x) \, dx, \quad \phi \in V_{\alpha, \beta, \nu, \mu} (I).
\]

(V) Let \(k \geq 1/2 \) be a positive integer. This can be inferred if we note that

\[
\gamma_k^\alpha \beta \nu \mu \left[x^{-(\alpha+1)/2} \right] \leq \sup_{\alpha, \beta, \nu, \mu} \left(\frac{\phi(x)}{x^{1-2\nu}} \right) \]

for \(k = 0, 1, 2, \ldots \).

III. THE TESTING FUNCTION SPACES AND \(M_{a, \mu} \) AND \(M_\mu \)

Let \(a \in I \) and \(\mu \in R \). Define \(M_{a, \mu} \) as the space of testing functions \(\varphi(x) \) which are defined and smooth on \(0 < x < 1 \) for which

\[
\gamma_{m,k}^{a, \mu+1/2} (\varphi) = \sup_{x \in I} e^{-ax} x^m \left[x^{1-2\nu} D^k \varphi(x) \right]
\]

where

\[
A_k = a_k \frac{\varphi(x)}{x^{1-2\nu}} + \frac{\varphi(1)(x)}{x^{1-2\nu-k}} + \cdots + a_{k-1} \frac{\varphi^{(k-1)}(x)}{x^{1-2\nu}} + \frac{\varphi^{(k)}(x)}{x^{1-2\nu}}
\]

\[
\leq M \sup_{x \in I} \left| a_k \frac{\varphi(x)}{x^{1-2\nu}} + a_{k-1} \frac{\varphi^{(1)}(x)}{x^{1-2\nu-k}} + \cdots + a_1 \frac{\varphi^{(k-1)}(x)}{x^{1-2\nu}} + \frac{\varphi^{(k)}(x)}{x^{1-2\nu}} \right|
\]

Thus

\[
\gamma_{m,k}^{a, \mu} (\varphi) < \infty.
\]

Assigned to \(M_{a, \mu} \) the topology generated by the countable multinorm \(\left\{ \gamma_{m,k}^{a, \mu} \right\} \). \(M_{a, \mu} \) is a Hausdorff space since \(\gamma_{m,k}^{a, \mu} (\varphi) \) is a norm.

Let \(\mu \geq -1 \). For a fixed complex number \(y \) belonging to the strip

\[
\Omega = \{ y : \text{Im } y < a, \ y \neq 0 \text{ or a negative number} \}
\]

\[
\frac{\partial^m}{\partial y^m} \left(\nu^\beta y^{-1-2\nu} (xy)^\alpha J_\mu (\beta(xy)^\nu) \right) \in M_{a, \mu}.
\]

Indeed, it is easily verified that (see [1], [9])

\[
\frac{\partial^m}{\partial y^m} \left(\nu^\beta y^{-1-2\nu} (xy)^\alpha J_\mu (\beta(xy)^\nu) \right)
\]

where \(a_j (\mu) \) are constants depending on \(\mu \) only.
\[(x^{1-2\nu}D)^k \left[x^{-\mu-\alpha}(xy)^{\alpha+jv} \mathcal{J}_{\mu-j} (\beta(xy)^\nu) \right] \]
\[= y^{\alpha+\mu} \left(x^{1-2\nu}D \right)^k \left[(xy)^{-\mu+jv} \mathcal{J}_{\mu-j} (\beta(xy)^\nu) \right] \]
\[= y^{\alpha+\mu} \left(x^{1-2\nu}D \right)^{k-1} \left(x^{1-2\nu} \right) \times D \left[(xy)^{-\mu+jv} \mathcal{J}_{\mu-j} (\beta(xy)^\nu) \right] \]
\[= y^{\alpha+\mu} \left(x^{1-2\nu}D \right)^{k-1} \left(x^{1-2\nu} \right) \times \left[(n+1)(xy)^{-\mu+jv+k+v} - 1 \right] \left(\mu+jv+k+v \right) \]
\[= \frac{1}{(x^{1-2\nu}D)^k \left[x^{-\mu-\alpha}(xy)^{\alpha+jv} \mathcal{J}_{\mu-j} (\beta(xy)^\nu) \right]} \]
\[= O \left((xy)^{-(\mu+jv+k)v-1/2} e^{x|\Im y|} \right) \]
\[\text{as } x \to 0^+. \]

And
\[\left(xy \right)^{-\mu+jv-kv} \mathcal{J}_{\mu-j+k} (\beta(xy)^\nu) \]
\[= O \left((x)^{-(\mu+jv+kv)} e^{x|\Im y|} \right) \]
\[\text{as } x \to \infty. \]

Then it follows that
\[\gamma_{m,k}^{\alpha,\mu} \left(y^{-1-\alpha+2\nu} x^{\alpha+jv} \mathcal{J}_{\mu-j} (\beta(xy)^\nu) \right) \leq M^{\alpha,\mu}_{m,k} \left(\nu \right) \beta \left(y^{-1-\alpha+2\nu} \nu \mathcal{J}_{\mu-j} (\beta(xy)^\nu) \right) \]
\[\leq \sum_{j=0}^m a_j(\mu) \left| y \right|^{\nu-j} \gamma_{m,k}^{\alpha,\mu} \left(y^{-1-\alpha+2\nu} x^{\alpha+jv} \mathcal{J}_{\mu-j} (\beta(xy)^\nu) \right) \]
\[< \infty \text{ for a fixed } y \in \Omega. \]

IV. Finite Generalized Hankel Transformation and Continuous Linear Mapping

The differential operator \(N_\mu \triangleq x^{(2\mu+1)/2} D x^{-\mu-\alpha} \) is continuous from \(M_{\alpha,\mu} \) into \(M_{\alpha,\mu+1} \).

Theorem 4.1: The operation \(\varphi \to N_\mu \varphi \) is a continuous linear mapping of \(M_{\alpha,\mu} \) into \(M_{\alpha,\mu+1} \).

Proof: For \(\varphi \in M_{\alpha,\mu} \),
\[\gamma_{m,k}^{\alpha,\mu+\alpha+1/2} (N_\mu \varphi) = \sup_{x \in I} \left| e^{-ax^m \left(x^{1-2\nu}D \right)^k \left(x^{-1-\alpha+2\nu} + x^{(2\mu+1)/2} D x^{-\mu-\alpha} \varphi (x) \right)} \right| \]
\[= \sup_{x \in I} \left| e^{-ax^m \left(x^{1-2\nu}D \right)^k \left(x^{1-2\nu}D \right)^k \left(x^{-1-\alpha+2\nu} + x^{(2\mu+1)/2} D x^{-\mu-\alpha} \varphi (x) \right)} \right| \]
\[= \sup_{x \in I} \left| e^{-ax^m \left(x^{1-2\nu}D \right)^k \left(x^{1-2\nu}D \right)^k \left(x^{-1-\alpha+2\nu} + x^{(2\mu+1)/2} D x^{-\mu-\alpha} \varphi (x) \right)} \right| \]
\[= \left(\gamma_{m,k}^{\alpha,\mu+\alpha+1/2} \right)^{\alpha+\mu+1/2} (N_\mu \varphi) = \left(\gamma_{m,k}^{\alpha,\mu+\alpha+1/2} \right)^{\alpha+\mu+1/2} (\varphi). \] (IV.1)

Thus, \(\varphi \in M_{\alpha,\mu} \) implies that \(N_\mu \varphi \in M_{\alpha,\mu+1} \).

Also
\[N_\mu (\alpha_1 \varphi_1 + \alpha_2 \varphi_2) = x^{(2\mu+1)/2} D x^{-\mu-\alpha} (\alpha_1 \varphi_1 + \alpha_2 \varphi_2) = \alpha_1 x^{(2\mu+1)/2} D x^{-\mu-\alpha} \varphi_1 + \alpha_2 x^{(2\mu+1)/2} D x^{-\mu-\alpha} \varphi_2. \]

\[N_\mu (\alpha_1 \varphi_1 + \alpha_2 \varphi_2) = \alpha_1 N_\mu \varphi_1 + \alpha_2 N_\mu \varphi_2. \] (IV.2)

Thus \(N_\mu \) is linear. Assume \(\{ \varphi_n \} \) converges in the sense of \(M_{\alpha,\mu} \). Then
\[\gamma_{m,k+1}^{\alpha,\mu+1/2} (\varphi_n - \varphi_0) \to 0 \] (IV.3)

as \(n \to \infty \).

But
\[\gamma_{m,k+1}^{\alpha,\mu+1/2} (\varphi_n - \varphi_0) \to 0 \] (IV.4)

as \(n \to \infty \). Thus \(N_\mu \) is a continuous linear mapping of \(M_{\alpha,\mu} \) into \(M_{\alpha,\mu+1} \) as in [12].

Theorem 4.2: The differential operator \(M_\mu \triangleq x^{-\mu-\alpha} D x^{(2\mu+1)/2} \) is continuous from \(M_{\alpha,\mu+1} \) into \(M_{\alpha,\mu} \).

(Advance online publication: 12 August 2019)
where
\[\gamma \text{ is given as} \quad x D^\nu x \]

converges in the sense of
\[\mu \nu \]

Also noted that
\[(x^{2 \nu} D)^k \left[x^{-2 \mu \nu} a(x y)^{\nu+j \nu} \phi_{\nu-j} (\beta (x y)^{\nu}) \right] \]

\[= y^{\alpha+\mu} (x^{2 \nu} D)^{k-1} (x^{1-2 \nu}) \]

\[\times D \left[(x y)^{-\mu+j \nu} \phi_{\nu-j} (\beta (x y)^{\nu}) \right] \]

\[= y^{\alpha+\mu} (x^{1-2 \nu}) \]

\[\times \left[- (\nu \beta) (x y)^{-\mu+j \nu} \phi_{\nu-j} (\beta (x y)^{\nu}) \right]. \]

This implies \(\gamma_{m,k}^{\mu+2 \nu} \)

\[\leq (2 \mu + 2 \alpha + 1 + 2 \nu k) \gamma_{m,k}^{\mu+2 \nu} + \gamma_{m+1,k+1}^{\mu+2 \nu}. \] (V.2)

V. SOME OPERATIONAL FORMULAE

Lemma 1: For each real number \(\mu \), a function \(\phi (x) \) is in \(H_{\mu} (k) \) for each \(k \geq - \frac{1}{2} \). Then for every \(\varphi \in H_{\mu} (A) \),

\[h_{\mu+1,k} (N_{\alpha} \varphi) = - x h_{\mu+1,k} (\varphi). \] (V.1)

Proof. By definition
\[x^{-k+\nu+\nu-1} x^{2 \nu} N_{\nu} \varphi = (1-2 \nu) (k-1) \cdots (1-2 \nu) \]

\[\times N_{\mu-1} (1-2 \nu) x^{-\mu \nu} \varphi (x) \]

\[= D^{k+1} x^{-\mu \nu} \varphi (x). \]

\[\gamma_{m,k}^{\mu+2 \nu} \]

\[= \sup_{x \in G} \left\{ e^{-a x} x^m (x^{1-2 \nu} D)^k \left[x^{-2 \mu \nu} \varphi (x) \right] \right\} \]

\[= \sup_{x \in G} \left\{ \psi (x) \right\} \]

where \(\psi (x) \) is given by
\[= e^{-a x} x^m (x^{1-2 \nu} D)^k (2 \mu+2 \alpha+1) x^{-\mu \nu} \varphi (x) \]

\[+ x D x^{-\mu \nu} \varphi (x) \]

which is given as
\[= \sup_{x \in G} \left\{ \psi (x) \right\} \]

where \(\psi (x) \) is given by
\[= e^{-a x} x^m (x^{1-2 \nu} D)^k (2 \mu+2 \alpha+1) x^{-\mu \nu} \varphi (x) \]

\[+ \left(x^{2 \nu} \right) x^{-2 \mu \nu} D x^{-\mu \nu} \varphi (x) \]

\[\leq (2 \mu + 2 \alpha + 1 + 2 \nu k) \gamma_{m,k}^{\mu+2 \nu} + \gamma_{m+1,k+1}^{\mu+2 \nu}. \] (V.2)

Lemma 2: Let \(\mu \) be a fixed real number and \(k \) be a positive integer \(\geq - \frac{1}{2} \). Then for every \(\varphi \in H_{\mu+1} (A) \),

\[h_{\mu,k} (M_{\mu} \varphi) = x^k h_{\mu+1,k} (\varphi). \] (V.3)

Proof. Using
\[N_{\mu} \varphi = (1-2 \nu) (k-1) \cdots (1-2 \nu) \]

\[\times N_{\mu+1} (-2 \nu) x^{-\mu \nu} \varphi (x) \]

\[= D^{k+1} x^{-\mu \nu} \varphi (x). \]

\[\gamma_{m,k}^{\mu+2 \nu} \]

\[= \sup_{x \in G} \left\{ e^{-a x} x^m (x^{1-2 \nu} D)^k \left[x^{-2 \mu \nu} \varphi (x) \right] \right\} \]

\[= \sup_{x \in G} \left\{ \psi (x) \right\} \]

where \(\psi (x) \) is given by
\[= e^{-a x} x^m (x^{1-2 \nu} D)^k (2 \mu+2 \alpha+1) x^{-\mu \nu} \varphi (x) \]

\[+ x D x^{-\mu \nu} \varphi (x) \]

which is given as
\[= \sup_{x \in G} \left\{ \psi (x) \right\} \]

where \(\psi (x) \) is given by
\[= e^{-a x} x^m (x^{1-2 \nu} D)^k (2 \mu+2 \alpha+1) x^{-\mu \nu} \varphi (x) \]

\[+ \left(x^{2 \nu} \right) x^{-2 \mu \nu} D x^{-\mu \nu} \varphi (x) \]

\[\leq (2 \mu + 2 \alpha + 1 + 2 \nu k) \gamma_{m,k}^{\mu+2 \nu} + \gamma_{m+1,k+1}^{\mu+2 \nu}. \] (V.2)

\[\times D \left[(x y)^{-\mu+j \nu} \phi_{\nu-j} (\beta (x y)^{\nu}) \right] \]

\[= y^{\alpha+\mu} (x^{1-2 \nu}) \]

\[\times \left[(x y)^{-\mu+j \nu} \phi_{\nu-j} (\beta (x y)^{\nu}) \right]. \]
\[h_{\mu,k}(M_\nu \varphi) = (-1)^k (\nu \beta)^k \int_0^1 (2 \mu + 2k + 2\nu) y^{2\mu + 2k + 2\nu - 1}(x y)^{\alpha} J_{\mu+k} \times (\beta(xy)^{\nu}) (y^{1-2\nu}D)^k y^{-\mu-\alpha-1} \varphi(y) dy \]

(\text{V.4})

Thus completes the proof.

VI. THE FINITE GENERALIZED HANKEL-CLIFFORD TRANSFORMATION: CONTINUOUS MAPPING IN \(S_{\alpha,\beta,\nu,\mu} \) AND \(L_{\alpha,\beta,\nu,\mu} \)

In this section, a space onto \(S_{\alpha,\beta,\nu,\mu} \) of functions and a space \(L_{\alpha,\beta,\nu,\mu} \) of complex sequences is introduced. The finite generalized Hankel-Clifford transform \(h^*_\alpha,\beta,\nu,\mu \) on them is investigated. \(S_{\alpha,\beta,\nu,\mu} \) is defined as the space of all complex valued functions \(\varphi(x) \) on \((0,1]\) such that \(\varphi(x) \) is infinitely differentiable and satisfies for every \(k \in N \).

(i) \(\Delta^*_\alpha,\beta,\nu,\mu,\phi(1) = 0 \),

(ii) \(x^{-\mu+\alpha+1-2k} \Delta^*_\alpha,\beta,\nu,\mu \phi(x) \rightarrow 0 \) and \(x^{\mu-1-2k} \int_0^x y^{-\mu+\alpha-1-2k} \Delta^*_\alpha,\beta,\nu,\mu \phi(x) \rightarrow 0 \) as \(x \rightarrow 0+ \)

and

(iii) \(x^{2(\mu+\alpha-1)/2} \Delta^*_\alpha,\beta,\nu,\mu \phi(x) \in L(0,1) \).

\(S_{\alpha,\beta,\nu,\mu} \) is endowed with the topology generated by the family of seminorms \(|||\varphi|||_k \) and also is a Hausdorff topological linear space that verifies the first countability axiom, where |||\(\varphi ||| = \int_0^1 x^{-\mu-2} \Delta^*_\alpha,\beta,\nu,\mu,\phi(x) dx \) for \(\varphi \in S_{\alpha,\beta,\nu,\mu} \)

and \(k \in N \). Moreover, the operator \(\Delta^*_\alpha,\beta,\nu,\mu \) defines a continuous mapping from \(S_{\alpha,\beta,\nu,\mu} \) into itself. \(S_{\alpha,\beta,\nu,\mu} \) is the dual space of \(S_{\alpha,\beta,\nu,\mu} \) and it is equipped with the usual weak topology.

Proposition 6.1: If \(f(x) \) is a function defined on \((0,1]\) such that \(x^{2(\nu-2\alpha-1)/2} f(x) \) is bounded on \((0,1]\) then \(f(x) \) generates a member of \(S'_{\alpha,\beta,\nu,\mu} \) through the definition is given by

\[(f(x), \phi(x)) = \int_0^1 f(x) \phi(x) dx, \phi \in S_{\alpha,\beta,\nu,\mu}. \]

(\text{VI.1})

Proof. The result easily follows from the inequality

\[||(f(x), \phi(x))||_0 \leq ||\phi||_0 \sup_{0 \leq x \leq 1} \left| x^{(2\nu-2\alpha-1)/2} f(x) \right| \]

for \(\phi \in S_{\alpha,\beta,\nu,\mu} \).

The spaces \(V_{\theta,\alpha,\beta}(I) \) defined by Malgonde \([12] \) analogously defined as \(V_{\theta,\alpha,\beta,\nu,\mu}(I) \) related to \(S_{\alpha,\beta,\nu,\mu} \) as follows:

Proposition 6.2: Let \(\mu \geq -\frac{1}{2} \) and \(\theta > \frac{1}{2} - \frac{2\nu-2\alpha-1}{2} \). Then

\[S_{\alpha,\beta,\nu,\mu} \subset V_{\theta,\alpha,\beta,\nu,\mu}(I) \]

and the topology of \(S_{\alpha,\beta,\nu,\mu} \) is stronger than that induced on it by \(V_{\theta,\alpha,\beta,\nu,\mu}(I) \).

Proof. Let \(\phi \in S_{\alpha,\beta,\nu,\mu} \). In virtue of the conditions (i) and (ii), we can write

\[x^{\theta-(2\nu-\mu-\alpha-1)} \Delta^*_\alpha,\beta,\nu,\mu \phi(x) \]

\[= x^{\theta+\mu} \int_1^x t^{-2\nu-(2\nu+\mu-\alpha-1)} \int_0^t u^\mu \Delta^*_{\alpha,\beta,\nu,\mu,\phi(u)} dudt \]

(\text{VI.3})

for every \(x \in (0,1) \) and \(k \in N \).

(Advance online publication: 12 August 2019)
\[\frac{1}{u} - \frac{(\alpha - \beta - \alpha - 1)\phi(u)}{u^{2}} \leq 1 \int_{0}^{u} \Delta_{\alpha,\beta,\nu,\mu}^{k+1}(u) |\phi(u)| du. \]

(VI.4)

for every \(x \in (0, 1) \) and \(k \in \mathbb{N} \).

Hence, for every \(\phi \in S_{\alpha,\beta,\nu,\mu} \) and \(k \in \mathbb{N} \),

\[\sup_{0 < x < 1} |x^{\theta} - (\alpha - \beta - \alpha - 1)\Delta_{\alpha,\beta,\nu,\mu}^{k}(x)| \leq \|\phi\|_{k+1} \]

(VI.5)

and \(S_{\alpha,\beta,\nu,\mu} \) is contained in \(V_{\theta,\alpha,\beta}(I) \) and the inclusion is continuous.

From Proposition 6.2, if \(f \in V_{\theta,\alpha,\beta}(I) \), then the restriction of \(f \) to \(S_{\alpha,\beta,\nu,\mu} \) is a member of \(S'_{\alpha,\beta,\nu,\mu} \).

Define \(L_{\alpha,\beta,\nu,\mu} \) as the space of all complex sequences \((a_{n})_{n=0}^{\infty} \) such that \(\lim_{n \to \infty} a_{n} \lambda_{n}^{k} = 0 \), for every \(k \in \mathbb{N} \), where \(\lambda_{n}, n = 0, 1, 2, \ldots \) represent the positive roots of the equation \(\phi_{\alpha,\beta,\nu,\mu}(\lambda_{n}x) = 0 \), arranged in ascending order of magnitude. The topology of \(L_{\alpha,\beta,\nu,\mu} \) is that generated by the family of norms \(\{\gamma_{\alpha,\beta,\nu,\mu}(a_{n})\}_{n=0}^{\infty} \), where

\[\gamma_{\alpha,\beta,\nu,\mu}(a_{n}) = \sum_{n=0}^{\infty} |a_{n}| \lambda_{n}^{k} \]

(VI.6)

for every \((a_{n})_{n=0}^{\infty} \in L_{\alpha,\beta,\nu,\mu} \) and \(k \in \mathbb{N} \).

Thus \(L_{\alpha,\beta,\nu,\mu} \) is a Hausdorff topological linear space that satisfies the first countability axiom. \(L'_{\alpha,\beta,\nu,\mu} \) denotes the dual space of \(L_{\alpha,\beta,\nu,\mu} \) and it is endowed with the weak topology.

Proposition 6.3: Let \((b_{n})_{n=0}^{\infty} \) be a complex sequence such that \(|b_{n}| \leq M \lambda_{n}^{k} \) for every \(n \in \mathbb{N} \) and for some \(l \in \mathbb{N} \) and \(M > 0 \). Then the linear operator \((a_{n})_{n=0}^{\infty} \to (a_{n}b_{n})_{n=0}^{\infty} \) is a continuous mapping from \(L_{\alpha,\beta,\nu,\mu} \) into itself. Moreover, the operator in \(L'_{\alpha,\beta,\nu,\mu} \), \(B \to (b_{n})_{n=0}^{\infty} \), is a continuous mapping from \(L'_{\alpha,\beta,\nu,\mu} \) into itself.

Proof. It is sufficient to see that

\[\gamma_{\alpha,\beta,\nu,\mu}((a_{n})_{n=0}^{\infty}) \leq M\gamma_{\alpha,\beta,\nu,\mu}((b_{n})_{n=0}^{\infty}) \]

(VI.8)

for \((a_{n})_{n=0}^{\infty} \in L_{\alpha,\beta,\nu,\mu} \) and \(k \in \mathbb{N} \). \(M_{1} \) being a suitable positive constant. Thus \((b_{n})_{n=0}^{\infty} \) generates a member of \(L'_{\alpha,\beta,\nu,\mu} \) by

\[\langle (b_{n})_{n=0}^{\infty}, (a_{n})_{n=0}^{\infty} \rangle = \sum_{n=0}^{\infty} a_{n}b_{n} \]

(VI.9)

for \((a_{n})_{n=0}^{\infty} \in L_{\alpha,\beta,\nu,\mu} \).

The fundamental theorem in the theory of a finite generalized Hankel transformation asserts that the conventional finite generalized Hankel transformation \(\hat{h}_{\alpha,\beta,\nu,\mu} \) is an isomorphism from \(S_{\alpha,\beta,\nu,\mu} \) onto \(L_{\alpha,\beta,\nu,\mu} \). The proof of this fact is the next object:

Theorem 6.1: For \(\mu > -\frac{1}{2} \), the finite generalized Hankel-Clifford transformation \(\hat{h}_{\alpha,\beta,\nu,\mu} \) is an isomorphism from \(S_{\alpha,\beta,\nu,\mu} \) onto \(L_{\alpha,\beta,\nu,\mu} \).

Proof. Let \(\phi \in S_{\alpha,\beta,\nu,\mu} \). As it is known, \(h_{\alpha,\beta,\nu,\mu} = (a_{n})_{n=0}^{\infty} \)

\[a_{n} = \frac{2\nu}{\int_{\alpha,\beta,\nu,\mu}(\lambda_{n})} \int_{0}^{1} \phi_{\alpha,\beta,\nu,\mu}(\lambda_{n}x) \phi(x) dx, \]

(VI.10)

for \(n \in \mathbb{N} \).

In virtue of the operational rule, for every \(n \in \mathbb{N} \) it is obtained as:

\[\Delta_{\alpha,\beta,\nu,\mu} = x^{2-2\nu}D^{2} + \{2(1-2\alpha)x^{1-2\nu}D - x^{2}\nu\} \]

is not self adjoint.

Together with \(\Delta_{\alpha,\beta,\nu,\mu} \), the operator \(\Delta_{\alpha,\beta,\nu,\mu} \) is defined as

\[\Delta_{\alpha,\beta,\nu,\mu} = x^{2-2\nu}D^{2} + \{2(1-2\alpha)x^{1-2\nu}D - x^{2}\nu\} \]

(VI.11)

Therefore

\[\Delta_{\alpha,\beta,\nu,\mu} = x^{2-2\nu}D^{2} + \{2(1-2\alpha)x^{1-2\nu}D - x^{2}\nu\} \]

(VI.12)

\[\lambda_{n}^{2}\phi = \frac{\lambda_{n}^{2}}{\int_{\alpha,\beta,\nu,\mu}(\lambda_{n})} \int_{0}^{1} \phi_{\alpha,\beta,\nu,\mu}(\lambda_{n}x) \phi(x) dx \]

for \(n \in \mathbb{N} \). Moreover, according to (VI.4) since

\[\langle \phi_{\alpha,\beta,\nu,\mu+1}(\lambda_{n}x), \phi(x) \rangle = 0 \]

and \(\phi(1) = 0 \) and

\[\lim_{x \to 0^{+}} x^{-\mu+\alpha+1-2\nu} \phi(x) = 0. \]

(VI.13)

Hence

\[\lambda_{n}^{2}\phi = \frac{\lambda_{n}^{2}}{\int_{\alpha,\beta,\nu,\mu}(\lambda_{n})} \int_{0}^{1} x^{-\mu+\alpha+1-2\nu} \phi(x) dx \]

(VI.14)

Now, by invoking (VI.13), one has

\[= \frac{1}{x^{2\nu + 1}} \int_{0}^{x^{-\mu+\alpha+1-2\nu}} \phi(x) dx \]

and

\[= \frac{1}{x^{2\nu + 1}} \int_{0}^{x^{-\mu+\alpha+1-2\nu}} \phi(x) dx \]

(VI.15)

\[= \int_{0}^{x^{-\mu+\alpha+1-2\nu}} \phi(x) dx \]

(VI.16)

\[= \int_{0}^{x^{-\mu+\alpha+1-2\nu}} \phi(x) dx \]

(VI.17)

\[= \int_{0}^{x^{-\mu+\alpha+1-2\nu}} \phi(x) dx \]

(VI.18)

\[= \int_{0}^{x^{-\mu+\alpha+1-2\nu}} \phi(x) dx \]

(VI.19)
Also in this case by (VI.13), the limit terms are equal to zero because
\[
\mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda_n) = 0, \phi \in C^\infty((0, 1])
\]
\[
\lim_{x \to 0^+} x^{-\alpha + \nu + 2\nu - 1} \frac{d}{dx} (x^{-\mu + \alpha + 1 - 2\nu} \phi(x)) = 0.
\]
(\text{VI.15})

Therefore
\[
\lambda_n \int_0^\infty x^{-(\mu + \alpha + 1 - 2\nu)} \mathcal{J}_{\alpha,\beta,\nu,\mu + 1}(\lambda_n x) dx \times \frac{d}{dx} (x^{-\mu + \alpha + 1 - 2\nu} \phi(x)) dx
\]
\[
= \int \Delta_{\alpha,\beta,\nu,\mu}^k \phi(x) \mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda_n x) dx.
\]
(\text{VI.16})

By combining (VI.15) and (VI.16), it is obtained as
\[
\lambda_n^2 a_n = -\frac{2\nu}{\mathcal{J}_{\alpha,\beta,\nu,\mu + 1}(\lambda_n)} \int_0^\infty \Delta_{\alpha,\beta,\nu,\mu}^k \phi(x) \mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda_n x) dx
\]
for every \(n \in \mathbb{N} \).

An inductive procedure allows to establish that
\[
\lambda_n^2 a_n = (-1)^k \frac{2\nu}{\mathcal{J}_{\alpha,\beta,\nu,\mu + 1}(\lambda_n)} \int_0^\infty \Delta_{\alpha,\beta,\nu,\mu}^k \phi(x) \mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda_n x) dx
\]
for every \(k \in \mathbb{N} \).

From (VI.18), according to Riemann-Lebesgue Lemma [13], one follows to
\[
\lambda_n^2 a_n \mathcal{J}_{\alpha,\beta,\nu,\mu + 1}(\lambda_n) \to 0
\]
as \(n \to \infty \).

Moreover by (VI.17), there exists a positive constant \(M \) such that
\[
\lambda_n^2 |a_n| \leq M \mathcal{J}_{\alpha,\beta,\nu,\mu + 1}(\lambda_n) \lambda_n^{2k+1} |a_n|
\]
and then \(\lambda_n^2 a_n \to 0 \) as \(n \to \infty \) for every \(k \in \mathbb{N} \).

Also, for certain \(M_1 > 0 \), \(i = 1, 2 \), \(\sum_{n=0}^\infty \lambda_n^2 |a_n| \)
\[
= \sum_{n=0}^\infty \frac{1}{\mathcal{J}_{\alpha,\beta,\nu,\mu + 1}(\lambda_n)} \lambda_n^{2k+1} \Delta_{\alpha,\beta,\nu,\mu}^{k+2} \phi(x) \mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda_n x) dx
\]
\[
\leq M_1 \sum_{n=0}^\infty \lambda_n^{-(2\nu + \mu + \alpha - 1)/2} \times \int_0^\infty \Delta_{\alpha,\beta,\nu,\mu}^{k+2} \phi(x) \mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda_n x) dx
\]
\[
\leq M_2 \sum_{n=0}^\infty \lambda_n^{-2(\nu + \mu + \alpha)} \times \int_0^\infty \left(x^{-2(\nu + \mu + \alpha) - 1} \Delta_{\alpha,\beta,\nu,\mu}^{k+2} \phi(x) \right) dx
\]
(\text{VI.21})

Hence, since \(\sum_{n=0}^\infty \lambda_n^{-(2\nu + \mu + \alpha) - 1} < \infty \), the relation follows as:
\[
\tau_{\alpha,\beta,\nu,\mu}(\lambda_n |a_n|) \leq M_3 \|\phi\|_{k+2}
\]
(\text{VI.22})

for every \(k \in \mathbb{N} \) and \(\phi \in S_{\alpha,\beta,\nu,\mu} \) and for some \(M_3 > 0 \). This inequality proves that the linear mapping \(h_{\alpha,\beta,\nu,\mu} \) is continuous from \(S_{\alpha,\beta,\nu,\mu} \) into \(L_{\alpha,\beta,\nu,\mu} \).

Let now \(\{a_n\}_{n=0}^\infty \in L_{\alpha,\beta,\nu,\mu} \) and define
\[
\tau_{\alpha,\beta,\nu,\mu}(\lambda_n |a_n|) = \phi(x) = \sum_{n=0}^\infty a_n x^{2(\nu + \mu + \alpha - 1)} \mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda_n x)
\]
for \(x \in (0, 1] \).

By (VI.13) and (VI.14), given as:
\[
\sum_{n=0}^\infty |a_n| x^{2(\nu + \mu + \alpha - 1)} \mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda_n x)
\]
\[
\leq M x^{2(\nu + \mu + \alpha - 1)/2} \sum_{n=0}^\infty |a_n|, x > 0
\]
(\text{VI.23})

for a suitable \(M > 0 \). Therefore \(\phi \in C(0, \infty) \). In a similar way \(\phi \in C^\infty(0, \infty) \) can be proved as in [6].

From (VI.18), it follows:
\[
\Delta_{\alpha,\beta,\nu,\mu}^{k+2} \phi(x)
\]
= \(\sum_{n=0}^\infty (-1)^k \lambda_n^{2k} a_n x^{2(\nu + \mu + \alpha - 1)} \mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda_n x) \)
(\text{VI.24})

for \(x > 0 \) and \(k \in \mathbb{N} \). Then \(\Delta_{\alpha,\beta,\nu,\mu}^k \phi(1) = 0 \) for each \(k \in \mathbb{N} \).

Also
\[
\left| x^{2(\nu + \mu + \alpha - 1)} \Delta_{\alpha,\beta,\nu,\mu}^k \phi(x) \right|
\]
\[
\leq M_3 x^{2(\nu + \mu + \alpha - 1) - 1/2} \sum_{n=0}^\infty |a_n| \lambda_n^{2k}. \]
\]
(\text{VI.25})

And from (VI.13), (VI.14) and (VI.15) it follows as:
\[
\left| x^{2(\nu + \mu + \alpha - 1)} \Delta_{\alpha,\beta,\nu,\mu}^k \phi(x) \right|
\]
\[
\leq M_3 x^{2(\nu + \mu + \alpha - 1) - 1/2} \sum_{n=0}^\infty |a_n| \lambda_n^{2k}. \]
\]
(\text{VI.26})

Hence
\[
\lim_{x \to 0^+} x^{-\mu + \alpha + 1 - 2\nu} \Delta_{\alpha,\beta,\nu,\mu}^k \phi(x)
\]
\[
= \lim_{x \to 0^+} x^{2(\nu + \mu + \alpha - 1)} \frac{d}{dx} \left(x^{-\mu + \alpha + 1 - 2\nu} \Delta_{\alpha,\beta,\nu,\mu}^k \phi(x) \right) = 0.
\]
(\text{VI.27})

On the other hand, since the series defining \(\Delta_{\alpha,\beta,\nu,\mu}^k \phi(x) \) is uniformly convergent in \(x \in (0, 1] \), there exists a positive constant \(M_3 \) such that
\[
\int_0^1 x^{2(\nu + \mu + \alpha - 1)/2} \left| \Delta_{\alpha,\beta,\nu,\mu}^k \phi(x) \right| dx \leq M_3 \sum_{n=0}^\infty \lambda_n^{2k} |a_n|
\]
(\text{VI.28})

for each \(k \in \mathbb{N} \). Therefore \(\tau_{\alpha,\beta,\nu,\mu} \) is a continuous mapping from \(L_{\alpha,\beta,\nu,\mu} \) into \(S_{\alpha,\beta,\nu,\mu} \).
VII. APPLICATIONS

Recently in [13], a fingerprint recognition method based on Gabor wavelet transform and discrete cosine transform (DCT) was proposed useful development in computer engineering. In this section, applications to Mathematical Physics have been demonstrated with wider use in Mechanical Engineering field.

(A) Dirichlet problem in cylindrical coordinates. The general-ized finite Hankel-Type Integral Transformation of the first type when applied with generalized Dirichlet’s problem:

Find the conventional solution \(v(r, z) \) of the equation

\[
r^2 - 2a \frac{\partial^2 v}{\partial r^2} + (1 - 2\alpha)r^2 \frac{\partial v}{\partial r} - r^2 \left((\mu v)^2 - \alpha^2 \right) \frac{\partial^2 v}{\partial z^2} = 0,
\]

on \(0 < r < 1, 0 < z < \infty \) satisfying boundary conditions:

i) As \(z \to 0^+ \), \(v(r, z) \) converges to zero in the sense of \(D'(I) \).

ii) As \(z \to 0^+ \), \(v(r, z) \) converges in the sense of \(D'(I) \) to \(f(r) \) for each \(r \in V'_{\alpha,\beta,\nu,\mu}(I) \).

iii) As \(r \to 1^{-} \), \(v(r, z) \) converges to 0 on \(c \leq z < \infty \) for each \(c \in 0 < c < 0 \).

iv) As \(r \to 0^+ \), \(v(r, z) \) is \(O(1) \) on \(c \leq z < \infty \).

Let us denote \(V(n, z) = h_{\alpha,\beta,\nu,\mu}(v(r, z)) \).

According to (VII.1) becomes

\[
\Delta_{\alpha,\beta,\nu,\mu} v + \frac{\partial^2 v}{\partial z^2} = 0.
\]

By applying \(h_{\alpha,\beta,\nu,\mu} \) to (VII.2)

\[
h_{\alpha,\beta,\nu,\mu}(\Delta_{\alpha,\beta,\nu,\mu} h_{\alpha,\beta,\nu,\mu}) = (-1)^k (\nu \beta \lambda_n)^{2k} (h_{\alpha,\beta,\nu,\mu}) \{ f(x) \}.
\]

Equation (VII.2) becomes

\[
\frac{(-1)(\nu \beta \lambda_n)^{2k}}{\alpha^2} (h_{\alpha,\beta,\nu,\mu}) \{ v(r, z) \} + \frac{\partial h_{\alpha,\beta,\nu,\mu}[v(r, z)]}{\partial z^2} = 0.
\]

\[
\frac{(-1)(\nu \beta \lambda_n)^{2k}}{\alpha^2} V(n, z) + \frac{\partial^2 V(n, z)}{\partial z^2} = 0.
\]

Considering \(h_{\alpha,\beta,\nu,\mu}(f) = F_{\alpha,\beta,\nu,\mu}(n) \) the solution becomes

\[
V(n, z) = F_{\alpha,\beta,\nu,\mu}(n) e^{-\nu \beta z \lambda_n}
\]

because of the boundary conditions (i) and (ii).

Also the inversion formulae can be obtained

\[
\sum_{n=1}^{\infty} F(n)e^{-\nu \beta z \lambda_n} \mathcal{J}_{\alpha,\beta,\nu,\mu}(\lambda_n r)
\]

Recall that \(F(m) = O \left(\frac{\lambda_m}{\lambda_m^2} \right) \) as \(m \to \infty \) for some nonnegative integer \(s' \). On the other hand, \(\lambda_m \approx (m + (\frac{\mu^2 + \nu^2 - 2\nu \alpha}{4} + \frac{1}{2}) \) is uniformly bounded on \(0 < r < 1 \) (for each \(m = 1, 2, \ldots \)) and \(e^{-\nu \beta z \lambda_m} = O(e^{-\alpha t m}) \) uniformly on \(c \leq z < \infty \). These facts imply that (VII.4) and the series obtained by applying the operators \(\Delta_{\alpha,\beta,\nu,\mu} \) and \(\frac{\partial^2}{\partial z^2} \) under the summation sign in (VII.3) converge uniformly on \(0 < r < 1, 0 < z < \infty \).

Thus applying

\[
\Delta_{\alpha,\beta,\nu,\mu} v + \frac{\partial^2 v}{\partial z^2} = 0
\]

term by term, we conclude that (VII.4) is a solution of the differential equation (VII.1).

The uniform convergence of (VII.4) allows to take limits when \(r \to 0^+ \) and \(r \to 1^{-} \) under the summation sign. Therefore, the boundary conditions (iii) and (iv) are directly verified.

Finally, note that (VII.4) defines a continuous function on \(0 < r < 1, 0 < z < \infty \).

Consequently, it generates a regular member in \(D'(I) \). This last result, the uniform convergence of the series and the inversion theorem ensure the fulfillment of the boundary conditions (i) and (ii).

Remarks: When \(\mu = 0 \), (VII.5) is the Laplace’s equation and the problem described here coincides exactly with the problem investigated by Zemanian in [4], although it is considered in the space \(A' \) and not in our space \(V'_{\alpha,\beta,\nu,\mu}(I) \). Moreover, note that the use of the generalized finite Hankel-Type Integral Transformation makes unnecessary the change of variables \(u(r, z) = \sqrt{r} v(r, z) \), which must be done in [3] previous to the employment of the finite Hankel transformations. On the contrary, the transformation \(h_{\alpha,\beta,\nu,\mu} \) allows to obtain directly the solution \(v(r, z) \) (VII.4) in agreement with solution given by Zemanian [4], in view of that \(\mathcal{J}_{\alpha,\beta,\nu,\mu}(z) = j_0(z) \) and \(v(r, z) = r^{-\frac{\nu}{2}} u(r, z) \).

(B) Find a function \(u(r, t) \) on the domain \(\{r, t\} : 0 < r < 1, t > 0 \} \) that satisfies the differential equation:

\[
r^2 - 2 \alpha r \frac{\partial u}{\partial r} + (1 - 2\alpha)r^2 \frac{\partial u}{\partial r} - r^2 \left((\mu v)^2 - \alpha^2 \right) \frac{\partial^2 u}{\partial t^2} = 0
\]

on \(0 < r < 1, 0 < z < \infty \) demanding boundary conditions:

v) As \(t \to \infty^+ \), \(u(r, t) \) converges to zero in the sense of \(D'(I) \).

vi) As \(t \to 0^+ \), \(u(r, t) \) converges in the sense of \(D'(I) \) to \(f(r) \) for each \(r \in V'_{\alpha,\beta,\nu,\mu}(I) \).

vii) As \(r \to 1^{-} \), \(u(r, t) \) converges to zero on \(c \leq t < \infty \) for each \(c < 0 \).

viii) As \(r \to 0^+ \), \(u(r, t) \) is \(O(1) \) on \(c \leq t < \infty \).

Let us denote \(U(n, t) = h_{\alpha,\beta,\nu,\mu}(u(r, t)) \).

According to (VII.2), (VII.6) becomes

\[
\Delta_{\alpha,\beta,\nu,\mu} u + \frac{\partial^2 u}{\partial t^2} = 0.
\]

By applying \(h_{\alpha,\beta,\nu,\mu} \) to (VII.3)

\[
h_{\alpha,\beta,\nu,\mu}(\Delta_{\alpha,\beta,\nu,\mu} h_{\alpha,\beta,\nu,\mu}) = (-1)^k (\nu \beta \lambda_n)^{2k} (h_{\alpha,\beta,\nu,\mu}) [f(x)].
\]

Equation (VII.6) becomes

\[
\frac{(-1)(\nu \beta \lambda_n)^{2k}}{\alpha^2} U(n, t) + \frac{\partial^2 U(n, t)}{\partial t^2} = 0.
\]

The solution becomes:

\[
U(n, t) = F_{\alpha,\beta,\nu,\mu}(n) e^{-\nu \beta t \lambda_n}
\]

(Advance online publication: 12 August 2019)
because of the boundary conditions (i) and (ii). Also the inversion formulae can be obtained

\[u(r, t) = \sum_{n=1}^{\infty} 2\nu G(n) e^{-\nu R_{n}} \mathcal{F}_{\alpha, \beta, \nu, \mu}(\lambda_{n} r), \]

(VII.8)

It can be proved that (VII.8) truly is a solution to problem (VII.6) in the same way as in the first example.

This section is concluded with the note that many other problems in Mathematical Physics have the same form. Given a partial differential equation involving the \(n \)-dimensional Laplacian operator

\[\Delta_{\alpha, \beta, \nu, \mu} u = \sum_{i=1}^{n} D_{x_{i}}^{2} u + \sum_{i<j} D_{x_{i}} D_{x_{j}} u, \]

finding solutions depending only on \(r = (x_{1}^{2} + x_{2}^{2} + \ldots + x_{n-1}^{2})^{1/2} \) and \(z = x_{n} \) it follows that \(u(r, z) \) must satisfy equations analogous to (VII.4) and (VII.8) with \(\mu = (n-3)/2; n \geq 3 \) \([6]\). The finite Hankel-type integral transformation provides an elegant and straightforward method to solve both equations for any value of \(\mu \geq 0 \) (i.e., for each \(n \geq 3 \)).

COMPLIANCE WITH ETHICAL STANDARDS

Disclosure of potential conflicts of interest: I declare as an author of this study that there is no conflict of interest from whomsoever concerned.

Research involving Human Participants and/or Animals: This article does not contain any studies with human participants or animals performed by the author.

REFERENCES

(Advance online publication: 12 August 2019)