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Abstract—In this paper, we consider a class of delayed differ-
ential equation model of plankton allelopathy with harvesting
terms. Firstly, the existence and uniqueness of positive almost
periodic solution for the model are obtained by using the theory
of exponential dichotomy and Banach fixed point theorem.
Secondly, the local asymptotical stability of the model is studied.
Finally, the uniform persistence of the above model is also
considered. Examples with computer simulations are given to
illustrate the feasibility and effectiveness of the main result.

Index Terms—Almost periodic solution; Biological model;
Banach fixed point theorem; Local asymptotical stability; U-
niform persistence.

I. INTRODUCTION

REcently, the effects of toxic substances have been incor-
porated into competitive systems, and many excellent

results have been obtained (see [1-9] for example). Maynard
Smith [1] introduced the effects of toxic substances into a
two-species Lotka-Volterra competitive system by consider-
ing that each species produces a substance toxic to the other
only when the other is present. The modified model takes
the following form:

ẋ1(t) = x1(t)

[
r1(t)

−
2∑
j=1

a1j(t)xj(t)− b1(t)x1(t)x2(t)

]
,

ẋ2(t) = x2(t)

[
r2(t)

−
2∑
j=1

a2j(t)xj(t)− b2(t)x2(t)x1(t)

]
,

(1.1)

where xi(t) denotes the population density of the ith species
at time t for a common pool of resources. The terms b1x21x2
and b2x22x1 denote the effect of toxic substances.

In applications, if the various constituent components of
the temporally nonuniform environment is with incommen-
surable (nonintegral multiples) periods, then one has to con-
sider the environment to be almost periodic since there is no
a priori reason to expect the existence of periodic solutions. If
we consider the effects of the environmental factors, almost
periodicity is sometimes more realistic and more general than
periodicity. Therefore, more and more attention are paid to
almost periodic dynamics behavior for nonlinear differential
equations. For example, in recent years, the existence and
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uniqueness of almost periodic solution for some kinds of
neural networks [10-19] have been widely studied by using
contraction mapping principle. Unlike the neural networks,
the solution of biological models is positive. So we could
not study the existence and uniqueness of positive almost
periodic solution for biological models as the same as the
neural networks by using contraction mapping principle. In
view of this, we introduce varying harvesting rate into a class
of differential equation model of plankton allelopathy and
investigate the existence and uniqueness of positive almost
periodic solution by using contraction mapping principle.

In many earlier studies, it has been shown that harvesting
has a strong impact on dynamic evolution of a population,
e.g., see [20-24]. So the study of the population dynamics
with harvesting is becoming a very important subject in
mathematical bio-economics. The delayed model of plankton
allelopathy with harvesting is generally described as :

ẋ1(t) = x1(t)

[
r1(t)−

2∑
j=1

a1j(t)xj(t− αj(t))

−b1(t)x1(t− µ1(t))x2(t− ν1(t))

]
−h1(t),

ẋ2(t) = x2(t)

[
r2(t)−

2∑
j=1

a2j(t)xj(t− βj(t))

−b2(t)x2(t− ν2(t))x1(t− µ2(t))

]
−h2(t),

(1.2)

where h1 and h2 represent harvesting terms. By using
contraction mapping principle, the main purpose of this paper
is to study the existence and uniqueness of positive almost
periodic solution of system (1.2).

Let C(X,Y) and C1(X,Y) be the space of continuous
functions and continuously differential functions which map
X into Y, respectively. Especially, C(X) := C(X,X),
C1(X) := C1(X,X). For any bounded function f ∈ C(R),
f+ = sups∈R f(s), f− = infs∈R f(s).

We list some assumptions which will be used in this paper.
(H1) ri, aij , bi and hi are nonnegative almost periodic

functions with 0 < h−i < r+i , i, j = 1, 2.
(H2) There exist positive constants ηi ∈[

r+i h
+
i

r−i
,
(r+i )2h+

i

r−i h
−
i

)
(i = 1, 2) such that

sup
s∈R

{
− ri(s) +

2∑
j=1

2aij(s) + 3bi(s)

}
< −ηi < 0,

where i = 1, 2.
The organization of this paper is as follows. In Section 2,
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we give some basic definitions and necessary lemmas which
will be used in later sections. In Section 3, by using Banach
fixed point theorem, we obtain some sufficient conditions
ensuring existence and uniqueness of almost periodic solu-
tion of system (1.2). In Sections 4-5, the local asymptotical
stability and uniform persistence of the model are considered.
Finally, examples with computer simulations are given to
illustrate that the result of this paper is feasible.

II. PRELIMINARIES

Now, let us state the following definitions and lemmas,
which will be useful in proving our main result.

Definition 1. ([25, 26]) x ∈ C(R,Rn) is called almost
periodic, if for any ε > 0, it is possible to find a real
number l = l(ε) > 0, for any interval with length l(ε),
there exists a number τ = τ(ε) in this interval such that
‖x(t + τ) − x(t)‖ < ε, ∀t ∈ R. The collection of those
functions is denoted by AP (R,Rn).

Definition 2. ([25, 26]) Let y ∈ C(R,Rn) and P (t) be a
n× n continuous matrix defined on R. The linear system

ẏ(t) = P (t)y(t)

is said to be an exponential dichotomy on R if there exist
constants k, λ > 0, projection S and the fundamental matrix
Y (t) satisfying

‖Y (t)SY −1(s)‖ ≤ ke−λ(t−s), ∀t ≥ s,

‖Y (t)(I − S)Y −1(s)‖ ≤ ke−λ(s−t), ∀t ≤ s.

Lemma 1. ([25, 26]) If the linear system ẏ(t) = P (t)y(t)
has an exponential dichotomy, then almost periodic system

ẏ(t) = P (t)y(t) + g(t)

has a unique almost periodic solution y(t) which can be
expressed as follows:

y(t) =

∫ t

−∞
Y (t)SY −1(s)g(s) ds

−
∫ ∞
t

Y (t)(I − S)Y −1(s)g(s) ds.

Lemma 2. ([26, 27]) Let a, b ∈ AP (R,R). If

M(a) = lim
T→∞

1

T

∫ T

0

a(s) ds 6= 0,

then ẏ(t) = a(t)y(t) + b(t) exists a unique almost periodic
solution y(t) can be written as follows

y(t) =

{ ∫ t
−∞ e

∫ t
s
a(u) dub(s) ds, m(a) < 0,

−
∫ +∞
t

e
∫ t
s
a(u) dub(s) ds, m(a) > 0.

Lemma 3. ([28]) Assume that (B, ρ) is a complete metric
space, T : (B, ρ) → (B, ρ) is a contraction mapping, i.e.,
there exists λ ∈ (0, 1), such that

ρ(Tx, Ty) ≤ λρ(x, y), ∀x, y ∈ B.

Then T has a unique fixed point in B.

III. ALMOST PERIODIC SOLUTION

In this section, we study the existence and uniqueness of
almost periodic solution of system (1.2) by using Banach

fixed point theorem.
Let

ki :=
h−i
r+i

, li :=
r+i h

+
i

r−i ηi
, i = 1, 2.

By (H2), it is easy to see that ki < li ≤ 1, i = 1, 2. Set

B =

{
x = (x1, x2)T ∈ AP (R,R2) :

ki ≤ xi(t) ≤ li, ∀t ∈ R, i = 1, 2

}
with the distance ρ(x, y) from x to y is defined by

ρ(x, y) = max
1≤i≤2

{sup
t∈R
|xi(t)− yi(t)|},

where x(t) = (x1(t), x2(t))T , y(t) = (y1(t), y2(t))T ∈ B.
Obviously, (B, ρ) is a complete metric space.

Theorem 1. Assume that (H1)-(H2) hold, then system (1.2)
has a unique almost periodic solution in B.

Proof: For ∀ϕ ∈ B, we consider the almost periodic
solution of nonlinear almost periodic differential system

ẋ1(t) = r1(t)x1(t)− ϕ1(t)

[
2∑
j=1

a1j(t)ϕj(t− αj(t))

+b1(t)ϕ1(t− µ1(t))ϕ2(t− ν1(t))

]
− h1(t),

ẋ2(t) = r2(t)x2(t)− ϕ2(t)

[
2∑
j=1

a2j(t)ϕj(t− βj(t))

+b2(t)ϕ2(t− ν2(t))ϕ1(t− µ2(t))

]
− h2(t).

(3.1)

Notice that M(ri) > 0, i = 1, 2. Thus, by Lemma 2.2, we
obtain that the system (3.1) has exactly one almost periodic
solution:

xϕ(t) = (xϕ1 (t), xϕ2 (t))T ,

where

xϕ1 (t) =

∫ +∞

t

e−
∫ s
t
r1(u) du

{
ϕ1(s)

[ 2∑
j=1

a1j(s)ϕj(s− αj(s))

+b1(s)ϕ1(s− µ1(s))ϕ2(s− ν1(s))

]
+ h1(s)

}
ds,

xϕ2 (t) =

∫ +∞

t

e−
∫ s
t
r2(u) du

{
ϕ2(s)

[ 2∑
j=1

a2j(s)ϕj(s− βj(s))

+b2(s)ϕ2(s− ν2(s))ϕ1(s− µ2(s))

]
+ h1(s)

}
ds.

Now, we give a mapping T defined on B by setting

T (ϕ) = (T1(ϕ), T2(ϕ))T = (xϕ1 , x
ϕ
2 )T , ∀ϕ ∈ B.

First, we prove that the mapping T is a self-mapping from
B to B. In fact, ∀ϕ ∈ B, in view of definition of T , we have

T1(ϕ)(t) ≥
∫ +∞

t

e−
∫ s
t
r1(u) duh1(s) ds ≥ k1, ∀t ∈ R.
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Similarly, T2(ϕ)(t) ≥ h−
2

r+2
= k2, ∀t ∈ R. On the other hand,

it follows that

T1(ϕ)(t)

=

∫ +∞

t

e−
∫ s
t
r1(u) du

{
ϕ1(s)

[ 2∑
j=1

a1j(s)ϕj(s− αj(s))

+b1(s)ϕ1(s− µ1(s))ϕ2(s− ν1(s))

]
+ h1(s)

}
ds

≤
∫ +∞

t

e−
∫ s
t
r1(u) du

{
l1

[ 2∑
j=1

a1j(s)lj + b1(s)l1l2

]
+ h1(s)

}
ds

≤
∫ +∞

t

e−
∫ s
t
r1(u) du

{
l1

[ 2∑
j=1

a1j(s) + b1(s)

]
+ h1(s)

}
ds

≤
∫ +∞

t

[
r1(s)e−

∫ s
t
r1(u) du − η1e−r

+
1 (s−t)

]
l1 ds+

h+1
r−1

≤ (1− η1

r+1
)l1 +

h+1
r−1

= l1, ∀t ∈ R.

Similarly, T2(ϕ)(t) ≤ l2, ∀t ∈ R. So T is a self-mapping
from B to B.

Next, we show that T : B→ B is a contraction mapping.
In fact, for ∀ϕ,ψ ∈ B, we have

|T1(ϕ)− T1(ψ)|0
:= sup

t∈R
|T1(ϕ)(t)− T1(ψ)(t)|

= sup
t∈R

∣∣∣∣ ∫ +∞

t

e−
∫ s
t
r1(u) du

{
ϕ1(s)

[ 2∑
j=1

a1j(s)ϕj(s− αj(s))

+b1(s)ϕ1(s− µ1(s))ϕ2(s− ν1(s))

]
+ h1(s)

}
ds

−
∫ +∞

t

e−
∫ s
t
r1(u) du

{
ψ1(s)

[ 2∑
j=1

a1j(s)ψj(s− αj(s))

+b1(s)ψ1(s− µ1(s))ψ2(s− ν1(s))

]
+ h1(s)

}
ds

∣∣∣∣
≤ sup

t∈R

∫ +∞

t

e−
∫ s
t
r1(u) du

×
{ 2∑
j=1

a1j(s)

∣∣∣∣ϕ1(s)ϕj(s− αj(s))

−ψ1(s)ψj(s− αj(s))
∣∣∣∣ds

+b1(s)

∣∣∣∣ϕ1(s)ϕ1(s− µ1(s))ϕ2(s− ν1(s))

−ψ1(s)ψ1(s− µ1(s))ψ2(s− ν1(s))

∣∣∣∣}ds

≤ sup
t∈R

∫ +∞

t

e−
∫ s
t
r1(u) du

{ 2∑
j=1

2a1j(s) + 3b1(s)

}
dsρ(ϕ,ψ)

≤ sup
t∈R

∫ +∞

t

e−
∫ s
t
r1(u) du[r1(s)− η1] dsρ(ϕ,ψ)

≤ sup
t∈R

[ ∫ +∞

t

r1(s)e−
∫ s
t
r1(u) du ds

−
∫ +∞

t

er
+
1 (s−t)η1 ds

]
ρ(ϕ,ψ)

≤
(
1− η1

r+1

)
ρ(ϕ,ψ). (3.2)

Similarly, we also have

|T1(ϕ)− T1(ψ)|0 := sup
t∈R
|T2(ϕ)(t)− T2(ψ)(t)|

≤
(
1− η2

r+2

)
ρ(ϕ,ψ). (3.3)

It follows from (3.2)-(3.3) that

ρ(T (ϕ), T (ψ)) ≤ max

{
1− η1

r+1
, 1− η2

r+2

}
ρ(ϕ,ψ)

= λρ(ϕ,ψ),

where λ = max

{
1 − η1

r+1
, 1 − η2

r+2

}
∈ [0, 1), which implies

that the mapping T : B → B is a contraction mapping.
Therefore, the mapping T possesses a unique fixed point

x∗ = (x∗1, x
∗
2)T ∈ B, Tx∗ = x∗.

So system (1.2) has a unique almost periodic solution. This
completes the proof.

IV. LOCAL ASYMPTOTICAL STABILITY

In this section, we will construct some suitable Lyapunov
functions to study the local asymptotical stability of system
(1.2).

Theorem 2. Assume that αi = βi = µi = νi = 0, i = 1, 2,

(H3) Θ = r− −A−B > 0, where

r− := min
1≤i≤2

r−i ,

A := max
1≤i≤2

[a+1i + a+2i],

B := (b+1 + b+2 ) max
1≤i≤2

li.

Then system (1.2) is locally asymptotically stable.

Proof: Assume that x(t) = (x1(t), x2(t))T ∈ B and
x∗(t) = (x∗1(t), x∗2(t))T ∈ B are any two solutions of system
(1.2). In view of system (1.2), for t ∈ R+, we have

(x1(t)− x∗1(t))′

= r1(t)
[
x1(t)− x∗1(t)

]
−

2∑
j=1

a1j(t)
[
xj(t)− x∗j (t)

]
−b1(t)x2(t)

[
x1(t)− x∗1(t)

]
−b1(t)x∗1(t)

[
x2(t)− x∗2(t)

]
,
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(x2(t)− x∗2(t))′

= r2(t)
[
x2(t)− x∗2(t)

]
−

2∑
j=1

a2j(t)
[
xj(t)− x∗j (t)

]
−b2(t)x2(t)

[
x1(t)− x∗1(t)

]
−b2(t)x∗1(t)

[
x2(t)− x∗2(t)

]
.

Let

V (t) =
2∑
i=1

|xi(t)− x∗i (t)|.

Hence we can obtain from (H3) that

D+V (t) = D+
2∑
i=1

|xi(t)− x∗i (t)|

≥
2∑
i=1

r−i |xi(t)− x
∗
i (t)|

−
n∑
j=1

[a+1j + a+2j ]|xj(t)− x
∗
j (t)|

−(b+1 + b+2 ) max
1≤i≤2

li

n∑
j=1

|xj(t)− x∗j (t)|

≥ (r− −A−B)V (t) = ΘV (t).

Integrating the last inequality from T0 to t leads to

V (T0) + Θ
2∑
i=1

∫ t

T0

|xi(s)− x∗i (s)|∆s ≤ V (t) < +∞,

that is,
2∑
i=1

∫ +∞

T0

|xi(s)− x∗i (s)|∆s < +∞,

which implies that
2∑
i=1

lim
s→+∞

|xi(s)− x∗i (s)| = 0.

Thus, system (1.2) is locally asymptotically stable. This
completes the proof.

Theorem 3. Assume that (H1)-(H3) hold. Then the unique
almost periodic solution of system (1.2) is locally asymptot-
ically stable.

V. Uniform persistence
Our object in this section is to prove the uniform persis-

tence of system (1.2).

Theorem 4. Assume that hi(t) = α1(t) = β1(t) ≡ 0 in
system (1.2), ∀t ∈ R, i = 1, 2. Suppose further that

(H3) r−1 > a+12M2 + b+1 M1M2, r−2 > a+21M1 + b+2 M1M2.
Then for any positive solution (x1, x2)T of system (1.2)
satisfies

Ni ≤ xi(t) ≤Mi, i = 1, 2,

where Ni and Mi are defined as those in (5.2)-(4.5),
respectively, i = 1, 2. That is, system (1.2) is uniformly

persistent.

Proof: By the first equation of system (1.2) that

ẋ1(t) ≤ x1(t)
[
r+1 − a

−
11x1(t)

]
. (5.1)

By Lemmas 2.3 and 2.4 in [29], we have from (5.1) that

x1(t) ≤ r+1
a−11

:= M1. (5.2)

Further, from the second equation of system (1.2) that

ẋ2(t) ≤ x2(t)
[
r+2 − a

−
22x2(t)

]
.

By Lemmas 2.3 and 2.4 in [29], we have

x2(t) ≤ r+2
a−22

:= M2. (5.3)

In view of the first equation of system (1.2), it follows that

ẋ1(t) ≥ x1(t)

[
r−1 − a

+
12M2 − b+1 M1M2 − a+11x1(t)

]
,

which implies that

x1(t) ≥ r−1 − a
+
12M2 − b+1 M1M2

a+11
:= N1. (5.4)

Similar to the argument as that in (5.4), we obtain from the
second equation of system (1.2) that

x2(t) ≥ r−2 − a
+
21M1 − b+2 M1M2

a+22
:= N2. (5.5)

The proof is completed.

VI. AN EXAMPLE AND NUMERICAL SIMULATIONS

Example 1. Consider the following differential equation
model of plankton allelopathy with harvesting terms:

ẋ1(t) = x1(t)

[
1−

2∑
j=1

a1j(t)xj(t− 1)

−b1(t)x1(t)x2(t− sin2(
√

2t))

]
− 0.1,

ẋ2(t) = x2(t)

[
1−

2∑
j=1

a2j(t)xj(t− 1)

−b2(t)x2(t)x1(t− cos2(
√

3t))

]
− 0.1,

(6.1)

where b1(s) = b2(s) = 0.1 sin2(
√

3s) and(
a11(s) a12(s)
a21(s) a22(s)

)
= 0.1

(
sin2(

√
2s) cos2(

√
3s)

cos2(
√

5s) cos2(
√

7s)

)
,

∀s ∈ R. Then system (6.1) has a unique almost periodic
solution.

Proof: Corresponding to system (1.2), a+ij = 0.1, b+i =

0.1, r−i = 1 and h+i = h−i = 0.1, i, j = 1, 2. Taking η1 =
η2 = 0.2. By a easy calculation, we obtain

sup
s∈R

{
− ri(s) +

2∑
j=1

2aij(s) + 3bi(s)

}
< −0.3 < −ηi < 0,

where i = 1, 2, which implies that (H2) in Theorem 1 holds.
It is easy to verify that (H1) in Theorem 1 is satisfied and
the result follows from Theorem 1 (see Figures 1-3). This
completes the proof.
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Example 2. Consider system (5.1), corresponding to system
(1.2), li = 0.5, r− = 1, A = 0.4, B = 0.1 i = 1, 2.
Therefore, Θ = 1 − 0.4 − 0.1 = 0.5 > 0, which implies
that (H3) in Theorem 2 holds. By Theorem 2, system (6.1)
is locally asymptotically stable (see Figures 4-5). Observing
Figures 1-5, system (6.1) is uniformly persistent.
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Fig. 1 Almost periodic oscillation of state variable x1
system (6.1)
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Fig. 2 Almost periodic oscillation of state variable x2
system (6.1)
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Fig. 3 Phase response of state variables x1, x2 of sys-
tem (6.1)
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1
(0)=0.7

Fig. 4 Uniform asymptotical stability of state variable x1
of system (6.1)
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0

5
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15

20

x 2(t
)

x
2
(0)=0.5 x

2
(0)=0.9

Fig. 5 Uniform asymptotical stability of state variable x2
of system (6.1)

VII. CONCLUSION

In this paper, some sufficient conditions are established for
the existence, uniqueness and local asymptotical stability of
almost periodic solution for a harvesting model of plankton
allelopathy with time delays. Further, the uniform persistence
of the above model is also considered. The method used
in this paper may be used to study many other ecological
models.
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