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Abstract—The Blaschke-Minkowski homomorphisms and ra-
dial Blaschke-Minkowski homomorphisms were defined by
Schuster. Recently, Wang et al. extended these concepts to Lp

versions. In this paper, we establish Brunn-Minkowski type
inequalities for the Lp and Lp radial Blaschke-Minkowski
homomorphisms of dual quermassintegrals.

Index Terms—Lp Blaschke-Minkowski homomorphism, Lp

radial Blaschke-Minkowski homomorphism, Brunn-Minkowski
inequality, dual quermassintegral.

I. INTRODUCTION

LET Kn denote the set of convex bodies (compact,
convex subsets with non-empty interiors) in Euclidean

space Rn. For the set of convex bodies containing the origin
in their interiors and the set of origin-symmetric convex
bodies in Rn, we write Kno and Knos, respectively. In addition,
let Sno denote the set of star bodies (about the origin) in Rn.
Let Sn−1 denote the unit sphere and V (K) denote the n-
dimensional volume of the body K. For the standard unit
ball B, its volume V (B) = ωn.

The projection bodies and intersection bodies played
critical roles in the solutions of the Shephard problems
and Busemann-petty problems, respectively (see [10], [22]).
Through the work of Ludwig (see [16], [17]), projection bod-
ies and intersection bodies were characterized as continuous
and GL(n) contravariant valuations. Recently, based on the
properties of the well-known projection and intersection op-
erators, Schuster [23] introduced two special valuations: the
Blaschke-Minkowski homomorphisms and radial Blaschke-
Minkowski homomorphisms which can be stated as follows:
Definition 1.A. A map Φ : Kn → Kn is called a
Blaschke-Minkowski homomorphism, if it satisfies the fol-
lowing conditions:

(1) Φ is continuous;
(2) For all K,L ∈ Kn, Φ(K#L) = ΦK + ΦL, where

K#L denotes the Blaschke sum of K and L, and ΦK+ΦL
denotes the Minkowski addition of ΦK and ΦL;

(3) For all K ∈ Kn and every v ∈ SO(n), Φ(vK) =
vΦ(K), where SO(n) denotes the group of rotations in n-
dimensions.
Definition 1.B. A map Ψ : Sno → Sno is called a radial
Blaschke-Minkowski homomorphism, if it satisfies the fol-
lowing conditions:

(1) Ψ is continuous with respect to the radial metric;
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(2) For all K,L ∈ Sno , Ψ(K+̂L) = ΨK+̃ΨL, where
K+̂L denotes the radial Blaschke sum of K and L, and
ΨK+̃ΨL denotes the radial Minkowski addition of ΨK and
ΨL;

(3) For all K ∈ Sno and every v ∈ SO(n), Ψ(vK) =
vΨ(K), where SO(n) denotes the group of rotations in n-
dimensions.

Associated with the Blaschke-Minkowski homomorphisms
and radial Blaschke-Minkowski homomorphisms, Zhao [32]
established following Brunn-Minkowski type inequalities.
Theorem 1.A. If K,L ∈ Sno and i, j ∈ R, s ∈ N satisfy
i ≤ n− 1 ≤ j ≤ n (i 6= j), 0 ≤ s ≤ n− 1, then(

W̃i(Ψs(K+̃sL))

W̃j(Ψs(K+̃sL))

) 1
j−i

≤
(
W̃i(ΨsK)

W̃j(ΨsK)

) 1
j−i

+

(
W̃i(ΨsL)

W̃j(ΨsL)

) 1
j−i

,

with equality if and only if K and L are dilates. Here Ψs de-
notes the mixed radial Blaschke-Minkowski homomorphisms
of order s, and +̃s denotes the Ls radial sum.
Theorem 1.B. If K,L ∈ Kn in Rn and i, j ∈ R satisfy
i ≤ n+ 1 ≤ j ≤ n and i 6= j, then(

W̃i(Φ
∗(K#L))

W̃j(Φ∗(K#L))

) 1
i−j

≤
(
W̃i(Φ

∗K)

W̃j(Φ∗K)

) 1
i−j

+

(
W̃i(Φ

∗L)

W̃j(Φ∗L)

) 1
i−j

,

with equality if and only if K and L are homothetic. Here
Φ∗K denotes the polar body of ΦK.

More results for the Blaschke-Minkowski homomorphisms
and the radial Blaschke-Minkowski homomorphisms, also
see [1], [4], [5], [6], [7], [8], [12], [15], [27], [28], [29],
[30], [31], [33], [34], [35], [36], [37].

In 2013, based on the properties of Lp projection bodies,
Wang [24] extended the notion of Blaschke-Minkowski ho-
momorphisms to Lp version. Here, according to the range of
solutions of Lp Minkowski problem (see Theorem 9.2.3 of
book [22]), we improve Wang’s definition as follows:
Definition 1.C. For p ≥ 1, a map Φp : Kno → Kno is called
a Lp Blaschke-Minkowski homomorphism, if it satisfies the
following conditions:

(1) Φp is continuous;
(2) For all K,L ∈ Kno , Φp(K#pL) = ΦpK +p ΦpL,

where K#pL denotes the Lp Blaschke sum of K and L,
and ΦpK +p ΦpL denotes Lp Minkowski addition of ΦpK
and ΦpL;

(3) For all K ∈ Kno and every v ∈ SO(n), Φp(vK) =
vΦp(K), where SO(n) denotes the group of rotations in n-
dimensions.
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Remark 1.1. In Definition 1.C, if replace “Φp : Kno → Kno ”
by “Φp : Knos → Knos”, then Definition 1.C is just the Wang’s
work (see [24]).

In [26], Wang, Liu and He defined the Lp radial Blaschke-
Minkowski homomorphisms based on the radial Blaschke-
Minkowski homomorphisms.
Definition 1.D. For p > 0, a map Ψp : Sno → Sno is called a
Lp radial Blaschke-Minkowski homomorphism, if it satisfies
the following conditions:

(1) Ψp is continuous with respect to radial metric;
(2) For all K,L ∈ Sno , Ψp(K+̂pL) = ΨpK+̃pΨpL,

where K+̂pL denotes the Lp radial Blaschke addition of K
and L, and ΨpK+̃pΨpL denotes the Lp radial Minkowski
addition of ΨpK and ΨpL;

(3) For all K ∈ Sno and every v ∈ SO(n), Ψp(vK) =
vΨp(K), where SO(n) denotes the group of rotations in
n-dimensions.

From Definition 1.D, we easily see that the Lp radial
Blaschke-Minkowski homomorphism is a more general form
of the Lp intersection operator. Regarding the studies of
the Lp Blaschke-Minkowski homomorphisms and Lp radial
Blaschke-Minkowski homomorphisms, many results have
been obtained in these articles (see [2], [3], [14], [25], [39]).

The purpose of this paper is to establish Brunn-Minkowski
type inequalities for the Lp Blaschke-Minkowski homomor-
phisms and the Lp radial Blaschke-Minkowski homomor-
phisms based on Theorem 1.A and Theorem 1.B, respective-
ly. Our results can be stated as follows:
Theorem 1.1. For p > 0, let Ψp : Sno → Sno be a Lp ra-
dial Blaschke-Minkowski homomorphism, K1,K2, L1, L2 ∈
Sno , i, j ∈ R and i 6= j. If i ≤ n− p ≤ j ≤ n, then(

W̃i(Ψp(K1+̂pK2))

W̃j(Ψp(L1+̂pL2))

) p
j−i

≤
(
W̃i(ΨpK1)

W̃j(ΨpL1)

) p
j−i

+

(
W̃i(ΨpK2)

W̃j(ΨpL2)

) p
j−i

; (1.1)

if n− p ≤ i ≤ n ≤ j, then(
W̃i(Ψp(K1+̂pK2))

W̃j(Ψp(L1+̂pL2))

) p
j−i

≥
(
W̃i(ΨpK1)

W̃j(ΨpL1)

) p
j−i

+

(
W̃i(ΨpK2)

W̃j(ΨpL2)

) p
j−i

. (1.2)

In each case, equality holds if and only if K1 and K2 are
dilates, L1 and L2 are dilates and with the same dilation
coefficient.
Theorem 1.2. For p ≥ 1, let Φp : Kno → Kno be a
Lp Blaschke-Minkowski homomorphism, K1,K2, L1, L2 ∈
Kno , i, j ∈ R and i 6= j. If i ≥ n+ p ≥ j ≥ n, then(

W̃i(Φ
∗
p(K1#pK2))

W̃j(Φ∗
p(L1#pL2))

) p
i−j

≤
(
W̃i(Φ

∗
pK1)

W̃j(Φ∗
pL1)

) p
i−j

+

(
W̃i(Φ

∗
pK2)

W̃j(Φ∗
pL2)

) p
i−j

; (1.3)

if n+ p ≥ i ≥ n ≥ j, then(
W̃i(Φ

∗
p(K1#pK2))

W̃j(Φ∗
p(L1#pL2))

) p
i−j

≥
(
W̃i(Φ

∗
pK1)

W̃j(Φ∗
pL1)

) p
i−j

+

(
W̃i(Φ

∗
pK2)

W̃j(Φ∗
pL2)

) p
i−j

. (1.4)

In each case, with equality if and only if ΦpK1 and ΦpK2

are dilates, ΦpL1 and ΦpL2 are dilates and with the same
dilation coefficient. Here Φ∗

pK is the polar body of ΦpK.
In this paper, the proofs of Theorem 1.1 and Theorem 1.2

will be given in Section III.

II. PRELIMINARIES

A. Support function, radial function and polar set

Suppose that R is the set of real number. If K ∈ Kn, the
support function of K, hK = h(K, ·) : Rn → R, is defined
by (see [10])

h(K,x) = max{x · y : y ∈ K}, x ∈ Rn,

where x · y denotes the standard inner product of x and y.
For a compact star shaped (about the origin) K in Rn, the

radial function of K, ρK = ρ(K, ·) : Rn\{0} → [0,+∞),
is defined by (see [10])

ρ(K,x) = max{λ ≥ 0 : λx ∈ K}, x ∈ Rn\{0}.

If ρK is positive and continuous, then K will be called a
star body (respect to the origin).

If E ⊂ Rn is a nonempty subset, the polar of set E, E∗,
is a convex set whose definition is given by (see [10], [22])

E∗ = {x ∈ Rn : x · y ≤ 1, y ∈ E}.

For K ∈ Kno , it is not difficult to obtain (K∗)∗ = K.
From the definitions of support function, radial function

and polar, for K ∈ Kno , then (see [10])

h(K∗, ·) =
1

ρ(K, ·)
, ρ(K∗, ·) =

1

h(K, ·)
. (2.1)

B. Lp Minkowski combination and Lp radial combination

For K,L ∈ Kno , λ, µ ≥ 0 (not both zero) and real p ≥ 1,
the Lp Minkowski combination, λ ·K +p µ · L ∈ Kno , of K
and L is defined by (see [10], [22])

h(λ ·K +p µ · L, ·)p = λh(K, ·)p + µh(L, ·)p, (2.2)

where “ +p ” denotes the Lp Minkowski addition and λ ·K
denotes the Lp Minkowski scalar multiplication.

Let K,L ∈ Sno , λ, µ ≥ 0 (not both zero) and real p 6= 0,
the Lp radial combination, λ ◦K+̃p µ ◦ L ∈ Sno , of K and
L is given by (see [9], [22])

ρ(λ ◦K+̃p µ ◦ L, ·)p = λρ(K, ·)p + µρ(L, ·)p, (2.3)

where “+̃p” denotes the Lp radial sum and λ ◦K denotes
the Lp radial scalar multiplication.

C. Dual quermassintegrals

Lutwak [18] gave the notion of dual quermassintegrals.
For K ∈ Sno and real i, the dual quermassintegral, W̃i(K),
of K is given by

W̃i(K) =
1

n

∫
Sn−1

ρ(K,u)n−idu. (2.4)

Especially,

W̃0(K) =
1

n

∫
Sn−1

ρ(K,u)ndu = V (K),
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and

W̃n(K) =
1

n

∫
Sn−1

du =
1

n
S(B) = V (B) = ωn.

D. Lp Blaschke combination

For K,L ∈ Kno , n 6= p and λ, µ ≥ 0 (not both zero), the
Lp Blaschke combination, λ�K#p µ� L, of K and L is
defined by (see [22])

Sp(λ�K#pµ� L, ·) = λSp(K, ·) + µSp(L, ·),

where “#p” denotes the Lp Blaschke addition and λ � K
denotes the Lp Blaschke scalar multiplication. Here Sp(M, ·)
denotes the Lp surface area measure of M ∈ Kno .

E. Lp projection body and Lp intersection body

The notion of Lp projection body was introduced by
Lutwak, Yang and Zhang [19] as follows: For each K ∈ Kno
and p ≥ 1, the Lp projection body, ΠpK, of K is an origin-
symmetric convex body whose support function is given by

hpΠpK
(u) =

1

nωncn−2,p

∫
Sn−1

|u · v|pdSp(K, v),

for all u ∈ Sn−1, and cn,p = ωn+p/ω2ωnωp−1.
In 2006, Haberl and Ludwing [11] defined the Lp inter-

section body as follows: For K ∈ Sno and 0 < p < 1, the
Lp intersection body, IpK, of K is an origin-symmetric star
body whose radial function is defined by

ρpIpK(u) =

∫
K

|u · x|−pdx

=
1

n− p

∫
Sn−1

|u · v|−pρn−pK (v)dS(v),

for all u ∈ Sn−1.
On the further study of the projection bodies and intersec-

tion bodies, we may refer to [13] and [20].

III. RESULTS AND PROOFS

In this section, we will prove Theorem 1.1 and Theorem
1.2. In order to complete the proof of Theorem 1.1, we
require the following lemmas.
Lemma 3.1 ([21]). (Dresher’s inequality) Let functions
f1, f2, g1, g2 ≥ 0, E is a bounded measurable subset in
Rn, if s ≥ 1 ≥ t ≥ 0 and s 6= t, then(∫

E
(f1 + f2)sdx∫

E
(g1 + g2)tdx

) 1
s−t

≤
(∫

E
fs1dx∫

E
gt1dx

) 1
s−t

+

(∫
E
fs2dx∫

E
gt2dx

) 1
s−t

, (3.1)

equality holds if and only if f1/f2 = g1/g2.
Lemma 3.2 ([38]). (Reverse Dresher’s inequality) Let func-
tions f1, f2, g1, g2 ≥ 0, E is a bounded measurable subset
in Rn, if 1 ≥ s ≥ 0 ≥ t and s 6= t, then(∫

E
(f1 + f2)sdx∫

E
(g1 + g2)tdx

) 1
s−t

≥
(∫

E
fs1dx∫

E
gt1dx

) 1
s−t

+

(∫
E
fs2dx∫

E
gt2dx

) 1
s−t

, (3.2)

equality holds if and only if f1/f2 = g1/g2.
Lemma 3.3 ([26]). A map Ψp : Sno → Sno is a Lp (p >
0) radial Blaschke-Minkowski homomorphism if and only if
there is a non-negative measure µ ∈M(Sn−1, ê ) such that

ρ(ΨpK, ·)p = ρ(K, ·)n−p ∗ µ.

Proof of Theorem 1.1. Since K1,K2 ∈ Sno , by (2.4),
Definition 1.D and (2.3), we have

W̃i(Ψp(K1+̂pK2))

=
1

n

∫
Sn−1

ρ(Ψp(K1+̂pK2), u)n−idu

=
1

n

∫
Sn−1

ρ(ΨpK1+̃pΨpK2, u)n−idu

=
1

n

∫
Sn−1

(ρ(ΨpK1, u)p+ρ(ΨpK2, u)p)
n−i
p du. (3.3)

Similarly, for L1, L2 ∈ Sno , we get

W̃j(Ψp(L1+̂pL2))

=
1

n

∫
Sn−1

(ρ(ΨpL1, u)p+ρ(ΨpL2, u)p)
n−j
p du. (3.4)

Since i ≤ n − p ≤ j ≤ n, then n−i
p ≥ 1 ≥ n−j

p ≥ 0, thus
from (3.3), (3.4) and associated with (3.1), we obtain(

W̃i(Ψp(K1+̂pK2))

W̃j(Ψp(L1+̂pL2))

) p
j−i

=

(∫
Sn−1(ρ(ΨpK1, u)p + ρ(ΨpK2, u)p)

n−i
p du∫

Sn−1(ρ(ΨpL1, u)p + ρ(ΨpL2, u)p)
n−j
p du

) p
j−i

≤
(∫

Sn−1(ρ(ΨpK1, u)p)
n−i
p du∫

Sn−1(ρ(ΨpL1, u)p)
n−j
p du

) p
j−i

+

(∫
Sn−1(ρ(ΨpK2, u)p)

n−i
p du∫

Sn−1(ρ(ΨpL2, u)p)
n−j
p du

) p
j−i

=

(∫
Sn−1 ρ(ΨpK1, u)n−idu∫
Sn−1 ρ(ΨpL1, u)n−jdu

) p
j−i

+

(∫
Sn−1 ρ(ΨpK2, u)n−idu∫
Sn−1 ρ(ΨpL2, u)n−jdu

) p
j−i

=

(
W̃i(ΨpK1)

W̃j(ΨpL1)

) p
j−i

+

(
W̃i(ΨpK2)

W̃j(ΨpL2)

) p
j−i

.

This yields inequality (1.1).
By the equality condition of (3.1), we know that equality

holds in (1.1) if and only if ρ(ΨpK1, ·)
ρ(ΨpK2, ·) =

ρ(ΨpL1, ·)
ρ(ΨpL2, ·) , and

according to Lemma 3.3, we see that equality holds in (1.1)
if and only if ρ(K1, ·)

ρ(K2, ·) = ρ(L1, ·)
ρ(L2, ·) , i.e., K1 and K2 are dilates,

L1 and L2 are dilates and with the same dilation coefficient.
Similarly, for n − p ≤ i ≤ n ≤ j, we can get desired

inequality (1.2) from the inequalities (3.2), (3.3) and (3.4).
Taking i = 0, j = n in Theorem 1.1, and notice that

W̃0(M) = V (M) and W̃n(M) = ωn for any M ∈ Sno , we
have a following fact.
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Corollary 3.1. Let Ψp : Sno → Sno be a Lp radial Blaschke-
Minkowski homomorphism, K1,K2 ∈ Sno . If 0 < p < n,
then

V (Ψp(K1+̂pK2))
p
n ≤ V (ΨpK1)

p
n + V (ΨpK2)

p
n ;

if p > n, then

V (Ψp(K1+̂pK2))
p
n ≥ V (ΨpK1)

p
n + V (ΨpK2)

p
n .

In each case, equality holds if and only if K1 and K2 are
dilates.

As a special example of the Lp radial Blaschke-Minkowski
homomorphisms, the Lp intersection body have the following
result by Theorem 1.1.
Corollary 3.2. For 0 < p < 1, K1,K2, L1, L2 ∈ Sno , i, j ∈
R and i 6= j. If i ≤ n− p ≤ j ≤ n, then(

W̃i(Ip(K1+̂pK2))

W̃j(Ip(L1+̂pL2))

) p
j−i

≤
(
W̃i(IpK1)

W̃j(IpL1)

) p
j−i

+

(
W̃i(IpK2)

W̃j(IpL2)

) p
j−i

;

if n− p ≤ i ≤ n ≤ j, then(
W̃i(Ip(K1+̂pK2))

W̃j(Ip(L1+̂pL2))

) p
j−i

≥
(
W̃i(IpK1)

W̃j(IpL1)

) p
j−i

+

(
W̃i(IpK2)

W̃j(IpL2)

) p
j−i

.

In each case, equality holds if and only if K1 and K2 are
dilates, L1 and L2 are dilates and with the same dilation
coefficient.

Proof of Theorem 1.2. For K1,K2 ∈ Kno , from (2.4),
Definition 1.C, (2.1) and (2.2), we obtain

W̃i(Φ
∗
p(K1#pK2))

=
1

n

∫
Sn−1

ρ(Φ∗
p(K1#pK2), u)n−idu

=
1

n

∫
Sn−1

h(Φp(K1#pK2), u)−(n−i)du

=
1

n

∫
Sn−1

h(ΦpK1 +p ΦpK2, u)−(n−i)du

=
1

n

∫
Sn−1

(h(ΦpK1, u)p+h(ΦpK2, u)p)
−(n−i)

p du. (3.5)

Similarly, for L1, L2 ∈ Kno , we have

W̃j(Φ
∗
p(L1#pL2))

=
1

n

∫
Sn−1

(h(ΦpL1, u)p+h(ΦpL2, u)p)
−(n−j)

p du. (3.6)

For i ≥ n+ p ≥ j ≥ n, then −(n−i)
p ≥ 1 ≥ −(n−j)

p ≥ 0,
thus from (3.5), (3.6) and combined with (3.1), we know that(

W̃i(Φ
∗
p(K1#pK2))

W̃j(Φ∗
p(L1#pL2))

) p
i−j

=

(∫
Sn−1(h(ΦpK1, u)p + h(ΦpK2, u)p)

−(n−i)
p du∫

Sn−1(h(ΦpL1, u)p + h(ΦpL2, u)p)
−(n−j)

p du

) p
i−j

≤
(∫

Sn−1(h(ΦpK1, u)p)
−(n−i)

p du∫
Sn−1(h(ΦpL1, u)p)

−(n−j)
p du

) p
i−j

+

(∫
Sn−1(h(ΦpK2, u)p)

−(n−i)
p du∫

Sn−1(h(ΦpL2, u)p)
−(n−j)

p du

) p
i−j

=

(∫
Sn−1 h(ΦpK1, u)−(n−i)du∫
Sn−1 h(ΦpL1, u)−(n−j)du

) p
i−j

+

(∫
Sn−1 h(ΦpK2, u)−(n−i)du∫
Sn−1 h(ΦpL2, u)−(n−j)du

) p
i−j

=

(∫
Sn−1 ρ(Φ∗

pK1, u)n−idu∫
Sn−1 ρ(Φ∗

pL1, u)n−jdu

) p
i−j

+

(∫
Sn−1 ρ(Φ∗

pK2, u)n−idu∫
Sn−1 ρ(Φ∗

pL2, u)n−jdu

) p
i−j

=

(
W̃i(Φ

∗
pK1)

W̃j(Φ∗
pL1)

) p
i−j

+

(
W̃i(Φ

∗
pK2)

W̃j(Φ∗
pL2)

) p
i−j

.

This is just the inequality (1.3).
By the equality condition of (3.1), equality holds in (1.3)

if and only if h(ΦpK1,·)
h(ΦpK2,·) =

h(ΦpL1,·)
h(ΦpL2,·) , i.e., ΦpK1 and ΦpK2

are dilates, ΦpL1 and ΦpL2 are dilates and with the same
dilation coefficient.

Similar to the above method, if n + p ≥ i ≥ n ≥ j, we
can prove the inequality (1.4) by (3.2), (3.5) and (3.6).

In particular, if i = n and j = 0 in (1.4), we obtain a
result as follows.
Corollary 3.3. Let Φp : Kno → Kno be a Lp Blaschke-
Minkowski homomorphism, K1,K2 ∈ Kno , if 1 ≤ p 6= n,
then

V (Φ∗
p(K1#pK2))−

p
n ≥ V (Φ∗

pK1)−
p
n + V (Φ∗

pK2)−
p
n ,

with equality if and only if ΦpK1 and ΦpK2 are dilates.
Since the Lp projection body is a special example of the

Lp Blaschke-Minkowski homomorphisms, therefore, we can
obtain the following fact from Theorem 1.2.
Corollary 3.4. For p ≥ 1, K1,K2, L1, L2 ∈ Kno , i, j ∈ R
and i 6= j. If i ≥ n+ p ≥ j ≥ n, then(

W̃i(Π
∗
p(K1#pK2))

W̃j(Π∗
p(L1#pL2))

) p
i−j

≤
(
W̃i(Π

∗
pK1)

W̃j(Π∗
pL1)

) p
i−j

+

(
W̃i(Π

∗
pK2)

W̃j(Π∗
pL2)

) p
i−j

;

if n+ p ≥ i ≥ n ≥ j, then(
W̃i(Π

∗
p(K1#pK2))

W̃j(Π∗
p(L1#pL2))

) p
i−j

≥
(
W̃i(Π

∗
pK1)

W̃j(Π∗
pL1)

) p
i−j

+

(
W̃i(Π

∗
pK2)

W̃j(Π∗
pL2)

) p
i−j

.

In each case, equality holds if and only if ΠpK1 and ΠpK2

are dilates, ΠpL1 and ΠpL2 are dilates and with the same
dilation coefficient. Here Π∗

pK denotes the polar body of
ΠpK.

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_07

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 



ACKNOWLEDGMENT

The authors would like to sincerely thank the referees for
very valuable and helpful comments and suggestions, which
made the paper more accurate and readable.

REFERENCES

[1] B. Chen and W. D. Wang, “A type of Busemann-Petty problems for
Blaschke-Minkowski homomorphisms,” Wuhan University Journal of
Natural Sciences, vol. 23, no. 4, pp. 289–294, 2018.

[2] B. Chen and W. D. Wang, “Some inequalities for Lp radial Blaschke-
Minkowski homomorphisms,” Quaestiones Mathematicae, vol. 42, no.
3, pp. 391–405, 2019.

[3] F. X. Chen and G. S. Leng, “Brunn-Minkowski type inequalities for
Lp Blaschke-Minkowski homomorphisms,” Journal Nonlinear Science
and Applications, vol. 9, no. 12, pp. 6034–6040, 2016.

[4] F. X. Chen and G. S. Leng, “Orlicz-Brunn-Minkowski inequalities for
Blaschke-Minkowski homomorphisms,” Geometriae Dedicata, vol. 187,
no. 1, pp. 137–149, 2017.

[5] Y. B. Feng and W. D. Wang, “Blaschke-Minkowski homomorphisms
and affine surface area,” Publicationes Mathematicae Debrecen, vol.
85, no. 3-4, pp. 297–308, 2014.

[6] Y. B. Feng, W. D. Wang and J. Yuan, “Differences of quermass-and
dual quermassintegrals of Blaschke-Minkowski and radial Blaschke-
Minkowski homomorphisms,” Bulletin of the Belgian Mathematical
Society, vol. 21, no. 4, pp. 577–592, 2014.

[7] Y. B. Feng, W. D. Wang and J. Yuan, “Inequalities of quermassintegrals
about mixed Blaschke Minkowski homomorphisms,” Tamkang Journal
of Mathematics, vol. 46, no. 3, pp. 217–227, 2015.

[8] Y. B. Feng, S. H. Wu and W. D. Wang, “Mixed chord-integrals of index
i and radial Blaschke-Minkowski homomorphisms,” Rocky Mountain
Journal of Mathematics, vol. 47, no. 8, pp. 2627–2640, 2017.

[9] R. J. Gardner, “The Brunn-Minkowski inequality,” Bulletin of the
American Mathematical Society, vol. 39, no. 3, pp. 355–405, 2002.

[10] R. J. Gardner, “Geometric Tomography,” 2nd edn, Cambridge Univer-
sity Press, Cambridge, 2006.

[11] C. Haberl and M. Ludwig, “A characterization of Lp intersection
bodies,” International Mathematics Research Notices, vol. 9, pp. 1–29,
2006.

[12] L. W. Ji and Z. B. Zeng, “Some inequalities for radial Blaschke-
Minkowski homomorphisms,” Czechoslovak Mathematical Journal, vol.
67, no. 3, pp. 779–793, 2017.

[13] C. Li and W. D. Wang, “On the Shephard type problems for general
Lp-projection bodies,” IAENG Internation Journal of Applied Mathe-
matics, vol. 49, no. 1, pp. 122–126, 2019.

[14] Y. N. Li and W. D. Wang, “Monotonicity inequalities for Lp Blaschke-
Minkowski homomorphisms,” Journal of Inequalities and Applications,
vol. 131, no. 1, pp. 1–10, 2014.

[15] Z. F. Li and W. D. Wang, “Star dual of radial Blaschke-Minkowski
homomorphism,” Wuhan University Journal of Natural Sciences, vol.
23, no. 4, pp. 295–300, 2018.

[16] M. Ludwig, “Projection bodies and valuations,” Advances in Mathe-
matics, vol. 172, no. 2, pp. 158–168, 2002.

[17] M. Ludwig, “Intersection bodies and valuations,” American Journal of
Mathematics, vol. 128, no. 6, pp. 1409–1428, 2006.

[18] E. Lutwak, “Dual mixed volume,” Pacific Journal of Mathematics, vol.
58, no. 2, pp. 531–538, 1975.

[19] E. Lutwak, D. Yang and G. Y. Zhang, “Lp affine isoperimetric
inequalities,” Journal of Differential Geometry, vol. 56, no. 2000, pp.
111–132, 2000.

[20] T. Y. Ma and Y. B. Feng, “Orlicz intersection bodies,” IAENG
Internation Journal of Applied Mathematics, vol. 47, no. 1, pp. 20–
27, 2017.

[21] J. E. Pecaric and P. R. Beeasck, “On Jessen’s inequality for convex
functions,” Journal Mathematical Analysics & Applications, vol. 110,
no. 2, pp. 1536–1552, 1991.

[22] R. Schneider, “Convex Bodies: The Brunn-Minkowski Theory,” 2nd
edn, Cambridge University Press, Cambridge, 2014.

[23] F. E. Schuster, “Volume inequalities and additive maps of convex
bodies,” Mathematika, vol. 53, no. 2, pp. 211–234, 2006.

[24] W. Wang, “Lp Blaschke-Minkowski homomorphisms,” Journal of
Inequalities and Applications, vol. 2013, no. 1, pp. 1–14, 2013.

[25] W. Wang, “Lp Brunn-Minkowski type inequalities for Blaschke-
Minkowski homomorphisms,” Geometriae Dedicata, vol. 164, no. 1,
pp. 273–285, 2013.

[26] W. Wang, L. J. Liu and B. W. He, “Lp radial Minkowski homo-
morphisms,” Taiwanese Journal of Mathematics, vol. 15, no. 3, pp.
1183–1199, 2011.

[27] B. Wei, W. D. Wang and F. H. Lu, “Inequalities for radial Blaschke-
Minkowski homomorphisms,” Annales Polonici Mathematics, vol. 113,
no. 3, pp. 243–253, 2015.

[28] W. D. Wang, H. P. Chen and Y. Y. Zhang, “Busemann-Petty problem
for the i-th radial Blaschke-Minkowski homomorphisms,” Filomat, vol.
32, no. 19, pp. 6819–6827, 2018.

[29] C. J. Zhao, “On polars of Blaschke-Minkowski homomorphisms,”
Mathematica Scandinavica, vol. 111, no. 1, pp. 147–160, 2012.

[30] C. J. Zhao, “On radial Blaschke-Minkowski homomorphisms,” Ge-
ometriae Dedicata, vol. 167, no. 1, pp. 1–10, 2013.

[31] C. J. Zhao, “On radial and polar Blaschke-Minkowski homomorphism-
s,” Proceedings of the American Mathematical Society, vol. 141, no. 2,
pp. 1–10, 2013.

[32] C. J. Zhao, “Volume sums of polar Blaschke-Minkowski homomor-
phisms,” Proceedings Mathematical Sciences, vol. 125, no. 2, pp. 209–
219, 2015.

[33] C. J. Zhao, “On Blaschke-Minkowski homomorphisms and radial
Blaschke-Minkowski homomorphisms,” Journal of Geometric Analysis,
vol. 26, no. 2, pp. 1523–1538, 2016.

[34] C. J. Zhao, “Orlicz-Brunn-Minkowski inequality for radial Blaschke-
Minkowski homomorphisms,” Quaestiones Mathematicae, vol. 41, no.
7, pp. 937–950, 2018.

[35] C. J. Zhao and W. S. Cheung, “Radial Blaschke-Minkowski homomor-
phisms and volume differences,” Geometriae Dedicata, vol. 154, no. 1,
pp. 81–91, 2011.

[36] C. J. Zhao and W. S. Cheung, “Dresher type inequalities for radial
Blaschke-Minkowski homomorphisms,” Moscow Mathematical Jour-
nal, vol. 16, no. 2, pp. 371–379, 2016.

[37] C. J. Zhao and W. S. Cheung, “Quotient for radial Blaschke-
Minkowski homomorphisms,” Bulletin of the American Mathematical
Society, vol. 108, no. 2, pp. 147–157, 2017.

[38] P. Zhang, W. D. Wang and X. H. Zhang, “On dual mixed quermassin-
tegral quotient function,” Journal of Inequalities and Applications, vol.
2015, no. 1, pp. 1–9, 2015

[39] Y. Zhou and W. D. Wang, “Some Brunn-Minkowski type inequali-
ties for Lp radial Blaschke-Minkowski homomorphisms,” Journal of
Inequalities and Applications, vol. 2016, no. 1, pp. 1–11, 2016.

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_07

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 




